exit.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/freezer.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <linux/kcov.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/unistd.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/mmu_context.h>
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_rcu(&p->thread_node);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. bool group_dead = thread_group_leader(tsk);
  81. struct sighand_struct *sighand;
  82. struct tty_struct *uninitialized_var(tty);
  83. cputime_t utime, stime;
  84. sighand = rcu_dereference_check(tsk->sighand,
  85. lockdep_tasklist_lock_is_held());
  86. spin_lock(&sighand->siglock);
  87. posix_cpu_timers_exit(tsk);
  88. if (group_dead) {
  89. posix_cpu_timers_exit_group(tsk);
  90. tty = sig->tty;
  91. sig->tty = NULL;
  92. } else {
  93. /*
  94. * This can only happen if the caller is de_thread().
  95. * FIXME: this is the temporary hack, we should teach
  96. * posix-cpu-timers to handle this case correctly.
  97. */
  98. if (unlikely(has_group_leader_pid(tsk)))
  99. posix_cpu_timers_exit_group(tsk);
  100. /*
  101. * If there is any task waiting for the group exit
  102. * then notify it:
  103. */
  104. if (sig->notify_count > 0 && !--sig->notify_count)
  105. wake_up_process(sig->group_exit_task);
  106. if (tsk == sig->curr_target)
  107. sig->curr_target = next_thread(tsk);
  108. }
  109. /*
  110. * Accumulate here the counters for all threads as they die. We could
  111. * skip the group leader because it is the last user of signal_struct,
  112. * but we want to avoid the race with thread_group_cputime() which can
  113. * see the empty ->thread_head list.
  114. */
  115. task_cputime(tsk, &utime, &stime);
  116. write_seqlock(&sig->stats_lock);
  117. sig->utime += utime;
  118. sig->stime += stime;
  119. sig->gtime += task_gtime(tsk);
  120. sig->min_flt += tsk->min_flt;
  121. sig->maj_flt += tsk->maj_flt;
  122. sig->nvcsw += tsk->nvcsw;
  123. sig->nivcsw += tsk->nivcsw;
  124. sig->inblock += task_io_get_inblock(tsk);
  125. sig->oublock += task_io_get_oublock(tsk);
  126. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  127. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  128. sig->nr_threads--;
  129. __unhash_process(tsk, group_dead);
  130. write_sequnlock(&sig->stats_lock);
  131. /*
  132. * Do this under ->siglock, we can race with another thread
  133. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  134. */
  135. flush_sigqueue(&tsk->pending);
  136. tsk->sighand = NULL;
  137. spin_unlock(&sighand->siglock);
  138. __cleanup_sighand(sighand);
  139. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  140. if (group_dead) {
  141. flush_sigqueue(&sig->shared_pending);
  142. tty_kref_put(tty);
  143. }
  144. }
  145. static void delayed_put_task_struct(struct rcu_head *rhp)
  146. {
  147. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  148. perf_event_delayed_put(tsk);
  149. trace_sched_process_free(tsk);
  150. put_task_struct(tsk);
  151. }
  152. void release_task(struct task_struct *p)
  153. {
  154. struct task_struct *leader;
  155. int zap_leader;
  156. repeat:
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials. But shut RCU-lockdep up */
  159. rcu_read_lock();
  160. atomic_dec(&__task_cred(p)->user->processes);
  161. rcu_read_unlock();
  162. proc_flush_task(p);
  163. write_lock_irq(&tasklist_lock);
  164. ptrace_release_task(p);
  165. __exit_signal(p);
  166. /*
  167. * If we are the last non-leader member of the thread
  168. * group, and the leader is zombie, then notify the
  169. * group leader's parent process. (if it wants notification.)
  170. */
  171. zap_leader = 0;
  172. leader = p->group_leader;
  173. if (leader != p && thread_group_empty(leader)
  174. && leader->exit_state == EXIT_ZOMBIE) {
  175. /*
  176. * If we were the last child thread and the leader has
  177. * exited already, and the leader's parent ignores SIGCHLD,
  178. * then we are the one who should release the leader.
  179. */
  180. zap_leader = do_notify_parent(leader, leader->exit_signal);
  181. if (zap_leader)
  182. leader->exit_state = EXIT_DEAD;
  183. }
  184. write_unlock_irq(&tasklist_lock);
  185. release_thread(p);
  186. call_rcu(&p->rcu, delayed_put_task_struct);
  187. p = leader;
  188. if (unlikely(zap_leader))
  189. goto repeat;
  190. }
  191. /*
  192. * Note that if this function returns a valid task_struct pointer (!NULL)
  193. * task->usage must remain >0 for the duration of the RCU critical section.
  194. */
  195. struct task_struct *task_rcu_dereference(struct task_struct **ptask)
  196. {
  197. struct sighand_struct *sighand;
  198. struct task_struct *task;
  199. /*
  200. * We need to verify that release_task() was not called and thus
  201. * delayed_put_task_struct() can't run and drop the last reference
  202. * before rcu_read_unlock(). We check task->sighand != NULL,
  203. * but we can read the already freed and reused memory.
  204. */
  205. retry:
  206. task = rcu_dereference(*ptask);
  207. if (!task)
  208. return NULL;
  209. probe_kernel_address(&task->sighand, sighand);
  210. /*
  211. * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
  212. * was already freed we can not miss the preceding update of this
  213. * pointer.
  214. */
  215. smp_rmb();
  216. if (unlikely(task != READ_ONCE(*ptask)))
  217. goto retry;
  218. /*
  219. * We've re-checked that "task == *ptask", now we have two different
  220. * cases:
  221. *
  222. * 1. This is actually the same task/task_struct. In this case
  223. * sighand != NULL tells us it is still alive.
  224. *
  225. * 2. This is another task which got the same memory for task_struct.
  226. * We can't know this of course, and we can not trust
  227. * sighand != NULL.
  228. *
  229. * In this case we actually return a random value, but this is
  230. * correct.
  231. *
  232. * If we return NULL - we can pretend that we actually noticed that
  233. * *ptask was updated when the previous task has exited. Or pretend
  234. * that probe_slab_address(&sighand) reads NULL.
  235. *
  236. * If we return the new task (because sighand is not NULL for any
  237. * reason) - this is fine too. This (new) task can't go away before
  238. * another gp pass.
  239. *
  240. * And note: We could even eliminate the false positive if re-read
  241. * task->sighand once again to avoid the falsely NULL. But this case
  242. * is very unlikely so we don't care.
  243. */
  244. if (!sighand)
  245. return NULL;
  246. return task;
  247. }
  248. struct task_struct *try_get_task_struct(struct task_struct **ptask)
  249. {
  250. struct task_struct *task;
  251. rcu_read_lock();
  252. task = task_rcu_dereference(ptask);
  253. if (task)
  254. get_task_struct(task);
  255. rcu_read_unlock();
  256. return task;
  257. }
  258. /*
  259. * Determine if a process group is "orphaned", according to the POSIX
  260. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  261. * by terminal-generated stop signals. Newly orphaned process groups are
  262. * to receive a SIGHUP and a SIGCONT.
  263. *
  264. * "I ask you, have you ever known what it is to be an orphan?"
  265. */
  266. static int will_become_orphaned_pgrp(struct pid *pgrp,
  267. struct task_struct *ignored_task)
  268. {
  269. struct task_struct *p;
  270. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  271. if ((p == ignored_task) ||
  272. (p->exit_state && thread_group_empty(p)) ||
  273. is_global_init(p->real_parent))
  274. continue;
  275. if (task_pgrp(p->real_parent) != pgrp &&
  276. task_session(p->real_parent) == task_session(p))
  277. return 0;
  278. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  279. return 1;
  280. }
  281. int is_current_pgrp_orphaned(void)
  282. {
  283. int retval;
  284. read_lock(&tasklist_lock);
  285. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  286. read_unlock(&tasklist_lock);
  287. return retval;
  288. }
  289. static bool has_stopped_jobs(struct pid *pgrp)
  290. {
  291. struct task_struct *p;
  292. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  293. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  294. return true;
  295. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  296. return false;
  297. }
  298. /*
  299. * Check to see if any process groups have become orphaned as
  300. * a result of our exiting, and if they have any stopped jobs,
  301. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  302. */
  303. static void
  304. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  305. {
  306. struct pid *pgrp = task_pgrp(tsk);
  307. struct task_struct *ignored_task = tsk;
  308. if (!parent)
  309. /* exit: our father is in a different pgrp than
  310. * we are and we were the only connection outside.
  311. */
  312. parent = tsk->real_parent;
  313. else
  314. /* reparent: our child is in a different pgrp than
  315. * we are, and it was the only connection outside.
  316. */
  317. ignored_task = NULL;
  318. if (task_pgrp(parent) != pgrp &&
  319. task_session(parent) == task_session(tsk) &&
  320. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  321. has_stopped_jobs(pgrp)) {
  322. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  323. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  324. }
  325. }
  326. #ifdef CONFIG_MEMCG
  327. /*
  328. * A task is exiting. If it owned this mm, find a new owner for the mm.
  329. */
  330. void mm_update_next_owner(struct mm_struct *mm)
  331. {
  332. struct task_struct *c, *g, *p = current;
  333. retry:
  334. /*
  335. * If the exiting or execing task is not the owner, it's
  336. * someone else's problem.
  337. */
  338. if (mm->owner != p)
  339. return;
  340. /*
  341. * The current owner is exiting/execing and there are no other
  342. * candidates. Do not leave the mm pointing to a possibly
  343. * freed task structure.
  344. */
  345. if (atomic_read(&mm->mm_users) <= 1) {
  346. mm->owner = NULL;
  347. return;
  348. }
  349. read_lock(&tasklist_lock);
  350. /*
  351. * Search in the children
  352. */
  353. list_for_each_entry(c, &p->children, sibling) {
  354. if (c->mm == mm)
  355. goto assign_new_owner;
  356. }
  357. /*
  358. * Search in the siblings
  359. */
  360. list_for_each_entry(c, &p->real_parent->children, sibling) {
  361. if (c->mm == mm)
  362. goto assign_new_owner;
  363. }
  364. /*
  365. * Search through everything else, we should not get here often.
  366. */
  367. for_each_process(g) {
  368. if (g->flags & PF_KTHREAD)
  369. continue;
  370. for_each_thread(g, c) {
  371. if (c->mm == mm)
  372. goto assign_new_owner;
  373. if (c->mm)
  374. break;
  375. }
  376. }
  377. read_unlock(&tasklist_lock);
  378. /*
  379. * We found no owner yet mm_users > 1: this implies that we are
  380. * most likely racing with swapoff (try_to_unuse()) or /proc or
  381. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  382. */
  383. mm->owner = NULL;
  384. return;
  385. assign_new_owner:
  386. BUG_ON(c == p);
  387. get_task_struct(c);
  388. /*
  389. * The task_lock protects c->mm from changing.
  390. * We always want mm->owner->mm == mm
  391. */
  392. task_lock(c);
  393. /*
  394. * Delay read_unlock() till we have the task_lock()
  395. * to ensure that c does not slip away underneath us
  396. */
  397. read_unlock(&tasklist_lock);
  398. if (c->mm != mm) {
  399. task_unlock(c);
  400. put_task_struct(c);
  401. goto retry;
  402. }
  403. mm->owner = c;
  404. task_unlock(c);
  405. put_task_struct(c);
  406. }
  407. #endif /* CONFIG_MEMCG */
  408. /*
  409. * Turn us into a lazy TLB process if we
  410. * aren't already..
  411. */
  412. static void exit_mm(struct task_struct *tsk)
  413. {
  414. struct mm_struct *mm = tsk->mm;
  415. struct core_state *core_state;
  416. mm_release(tsk, mm);
  417. if (!mm)
  418. return;
  419. sync_mm_rss(mm);
  420. /*
  421. * Serialize with any possible pending coredump.
  422. * We must hold mmap_sem around checking core_state
  423. * and clearing tsk->mm. The core-inducing thread
  424. * will increment ->nr_threads for each thread in the
  425. * group with ->mm != NULL.
  426. */
  427. down_read(&mm->mmap_sem);
  428. core_state = mm->core_state;
  429. if (core_state) {
  430. struct core_thread self;
  431. up_read(&mm->mmap_sem);
  432. self.task = tsk;
  433. self.next = xchg(&core_state->dumper.next, &self);
  434. /*
  435. * Implies mb(), the result of xchg() must be visible
  436. * to core_state->dumper.
  437. */
  438. if (atomic_dec_and_test(&core_state->nr_threads))
  439. complete(&core_state->startup);
  440. for (;;) {
  441. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  442. if (!self.task) /* see coredump_finish() */
  443. break;
  444. freezable_schedule();
  445. }
  446. __set_task_state(tsk, TASK_RUNNING);
  447. down_read(&mm->mmap_sem);
  448. }
  449. atomic_inc(&mm->mm_count);
  450. BUG_ON(mm != tsk->active_mm);
  451. /* more a memory barrier than a real lock */
  452. task_lock(tsk);
  453. tsk->mm = NULL;
  454. up_read(&mm->mmap_sem);
  455. enter_lazy_tlb(mm, current);
  456. task_unlock(tsk);
  457. mm_update_next_owner(mm);
  458. mmput(mm);
  459. if (test_thread_flag(TIF_MEMDIE))
  460. exit_oom_victim();
  461. }
  462. static struct task_struct *find_alive_thread(struct task_struct *p)
  463. {
  464. struct task_struct *t;
  465. for_each_thread(p, t) {
  466. if (!(t->flags & PF_EXITING))
  467. return t;
  468. }
  469. return NULL;
  470. }
  471. static struct task_struct *find_child_reaper(struct task_struct *father,
  472. struct list_head *dead)
  473. __releases(&tasklist_lock)
  474. __acquires(&tasklist_lock)
  475. {
  476. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  477. struct task_struct *reaper = pid_ns->child_reaper;
  478. struct task_struct *p, *n;
  479. if (likely(reaper != father))
  480. return reaper;
  481. reaper = find_alive_thread(father);
  482. if (reaper) {
  483. pid_ns->child_reaper = reaper;
  484. return reaper;
  485. }
  486. write_unlock_irq(&tasklist_lock);
  487. if (unlikely(pid_ns == &init_pid_ns)) {
  488. panic("Attempted to kill init! exitcode=0x%08x\n",
  489. father->signal->group_exit_code ?: father->exit_code);
  490. }
  491. list_for_each_entry_safe(p, n, dead, ptrace_entry) {
  492. list_del_init(&p->ptrace_entry);
  493. release_task(p);
  494. }
  495. zap_pid_ns_processes(pid_ns);
  496. write_lock_irq(&tasklist_lock);
  497. return father;
  498. }
  499. /*
  500. * When we die, we re-parent all our children, and try to:
  501. * 1. give them to another thread in our thread group, if such a member exists
  502. * 2. give it to the first ancestor process which prctl'd itself as a
  503. * child_subreaper for its children (like a service manager)
  504. * 3. give it to the init process (PID 1) in our pid namespace
  505. */
  506. static struct task_struct *find_new_reaper(struct task_struct *father,
  507. struct task_struct *child_reaper)
  508. {
  509. struct task_struct *thread, *reaper;
  510. thread = find_alive_thread(father);
  511. if (thread)
  512. return thread;
  513. if (father->signal->has_child_subreaper) {
  514. /*
  515. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  516. * We start from father to ensure we can not look into another
  517. * namespace, this is safe because all its threads are dead.
  518. */
  519. for (reaper = father;
  520. !same_thread_group(reaper, child_reaper);
  521. reaper = reaper->real_parent) {
  522. /* call_usermodehelper() descendants need this check */
  523. if (reaper == &init_task)
  524. break;
  525. if (!reaper->signal->is_child_subreaper)
  526. continue;
  527. thread = find_alive_thread(reaper);
  528. if (thread)
  529. return thread;
  530. }
  531. }
  532. return child_reaper;
  533. }
  534. /*
  535. * Any that need to be release_task'd are put on the @dead list.
  536. */
  537. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  538. struct list_head *dead)
  539. {
  540. if (unlikely(p->exit_state == EXIT_DEAD))
  541. return;
  542. /* We don't want people slaying init. */
  543. p->exit_signal = SIGCHLD;
  544. /* If it has exited notify the new parent about this child's death. */
  545. if (!p->ptrace &&
  546. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  547. if (do_notify_parent(p, p->exit_signal)) {
  548. p->exit_state = EXIT_DEAD;
  549. list_add(&p->ptrace_entry, dead);
  550. }
  551. }
  552. kill_orphaned_pgrp(p, father);
  553. }
  554. /*
  555. * This does two things:
  556. *
  557. * A. Make init inherit all the child processes
  558. * B. Check to see if any process groups have become orphaned
  559. * as a result of our exiting, and if they have any stopped
  560. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  561. */
  562. static void forget_original_parent(struct task_struct *father,
  563. struct list_head *dead)
  564. {
  565. struct task_struct *p, *t, *reaper;
  566. if (unlikely(!list_empty(&father->ptraced)))
  567. exit_ptrace(father, dead);
  568. /* Can drop and reacquire tasklist_lock */
  569. reaper = find_child_reaper(father, dead);
  570. if (list_empty(&father->children))
  571. return;
  572. reaper = find_new_reaper(father, reaper);
  573. list_for_each_entry(p, &father->children, sibling) {
  574. for_each_thread(p, t) {
  575. t->real_parent = reaper;
  576. BUG_ON((!t->ptrace) != (t->parent == father));
  577. if (likely(!t->ptrace))
  578. t->parent = t->real_parent;
  579. if (t->pdeath_signal)
  580. group_send_sig_info(t->pdeath_signal,
  581. SEND_SIG_NOINFO, t);
  582. }
  583. /*
  584. * If this is a threaded reparent there is no need to
  585. * notify anyone anything has happened.
  586. */
  587. if (!same_thread_group(reaper, father))
  588. reparent_leader(father, p, dead);
  589. }
  590. list_splice_tail_init(&father->children, &reaper->children);
  591. }
  592. /*
  593. * Send signals to all our closest relatives so that they know
  594. * to properly mourn us..
  595. */
  596. static void exit_notify(struct task_struct *tsk, int group_dead)
  597. {
  598. bool autoreap;
  599. struct task_struct *p, *n;
  600. LIST_HEAD(dead);
  601. write_lock_irq(&tasklist_lock);
  602. forget_original_parent(tsk, &dead);
  603. if (group_dead)
  604. kill_orphaned_pgrp(tsk->group_leader, NULL);
  605. if (unlikely(tsk->ptrace)) {
  606. int sig = thread_group_leader(tsk) &&
  607. thread_group_empty(tsk) &&
  608. !ptrace_reparented(tsk) ?
  609. tsk->exit_signal : SIGCHLD;
  610. autoreap = do_notify_parent(tsk, sig);
  611. } else if (thread_group_leader(tsk)) {
  612. autoreap = thread_group_empty(tsk) &&
  613. do_notify_parent(tsk, tsk->exit_signal);
  614. } else {
  615. autoreap = true;
  616. }
  617. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  618. if (tsk->exit_state == EXIT_DEAD)
  619. list_add(&tsk->ptrace_entry, &dead);
  620. /* mt-exec, de_thread() is waiting for group leader */
  621. if (unlikely(tsk->signal->notify_count < 0))
  622. wake_up_process(tsk->signal->group_exit_task);
  623. write_unlock_irq(&tasklist_lock);
  624. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  625. list_del_init(&p->ptrace_entry);
  626. release_task(p);
  627. }
  628. }
  629. #ifdef CONFIG_DEBUG_STACK_USAGE
  630. static void check_stack_usage(void)
  631. {
  632. static DEFINE_SPINLOCK(low_water_lock);
  633. static int lowest_to_date = THREAD_SIZE;
  634. unsigned long free;
  635. free = stack_not_used(current);
  636. if (free >= lowest_to_date)
  637. return;
  638. spin_lock(&low_water_lock);
  639. if (free < lowest_to_date) {
  640. pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
  641. current->comm, task_pid_nr(current), free);
  642. lowest_to_date = free;
  643. }
  644. spin_unlock(&low_water_lock);
  645. }
  646. #else
  647. static inline void check_stack_usage(void) {}
  648. #endif
  649. void __noreturn do_exit(long code)
  650. {
  651. struct task_struct *tsk = current;
  652. int group_dead;
  653. TASKS_RCU(int tasks_rcu_i);
  654. profile_task_exit(tsk);
  655. kcov_task_exit(tsk);
  656. WARN_ON(blk_needs_flush_plug(tsk));
  657. if (unlikely(in_interrupt()))
  658. panic("Aiee, killing interrupt handler!");
  659. if (unlikely(!tsk->pid))
  660. panic("Attempted to kill the idle task!");
  661. /*
  662. * If do_exit is called because this processes oopsed, it's possible
  663. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  664. * continuing. Amongst other possible reasons, this is to prevent
  665. * mm_release()->clear_child_tid() from writing to a user-controlled
  666. * kernel address.
  667. */
  668. set_fs(USER_DS);
  669. ptrace_event(PTRACE_EVENT_EXIT, code);
  670. validate_creds_for_do_exit(tsk);
  671. /*
  672. * We're taking recursive faults here in do_exit. Safest is to just
  673. * leave this task alone and wait for reboot.
  674. */
  675. if (unlikely(tsk->flags & PF_EXITING)) {
  676. pr_alert("Fixing recursive fault but reboot is needed!\n");
  677. /*
  678. * We can do this unlocked here. The futex code uses
  679. * this flag just to verify whether the pi state
  680. * cleanup has been done or not. In the worst case it
  681. * loops once more. We pretend that the cleanup was
  682. * done as there is no way to return. Either the
  683. * OWNER_DIED bit is set by now or we push the blocked
  684. * task into the wait for ever nirwana as well.
  685. */
  686. tsk->flags |= PF_EXITPIDONE;
  687. set_current_state(TASK_UNINTERRUPTIBLE);
  688. schedule();
  689. }
  690. exit_signals(tsk); /* sets PF_EXITING */
  691. /*
  692. * Ensure that all new tsk->pi_lock acquisitions must observe
  693. * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
  694. */
  695. smp_mb();
  696. /*
  697. * Ensure that we must observe the pi_state in exit_mm() ->
  698. * mm_release() -> exit_pi_state_list().
  699. */
  700. raw_spin_unlock_wait(&tsk->pi_lock);
  701. if (unlikely(in_atomic())) {
  702. pr_info("note: %s[%d] exited with preempt_count %d\n",
  703. current->comm, task_pid_nr(current),
  704. preempt_count());
  705. preempt_count_set(PREEMPT_ENABLED);
  706. }
  707. /* sync mm's RSS info before statistics gathering */
  708. if (tsk->mm)
  709. sync_mm_rss(tsk->mm);
  710. acct_update_integrals(tsk);
  711. group_dead = atomic_dec_and_test(&tsk->signal->live);
  712. if (group_dead) {
  713. hrtimer_cancel(&tsk->signal->real_timer);
  714. exit_itimers(tsk->signal);
  715. if (tsk->mm)
  716. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  717. }
  718. acct_collect(code, group_dead);
  719. if (group_dead)
  720. tty_audit_exit();
  721. audit_free(tsk);
  722. tsk->exit_code = code;
  723. taskstats_exit(tsk, group_dead);
  724. exit_mm(tsk);
  725. if (group_dead)
  726. acct_process();
  727. trace_sched_process_exit(tsk);
  728. exit_sem(tsk);
  729. exit_shm(tsk);
  730. exit_files(tsk);
  731. exit_fs(tsk);
  732. if (group_dead)
  733. disassociate_ctty(1);
  734. exit_task_namespaces(tsk);
  735. exit_task_work(tsk);
  736. exit_thread(tsk);
  737. /*
  738. * Flush inherited counters to the parent - before the parent
  739. * gets woken up by child-exit notifications.
  740. *
  741. * because of cgroup mode, must be called before cgroup_exit()
  742. */
  743. perf_event_exit_task(tsk);
  744. sched_autogroup_exit_task(tsk);
  745. cgroup_exit(tsk);
  746. /*
  747. * FIXME: do that only when needed, using sched_exit tracepoint
  748. */
  749. flush_ptrace_hw_breakpoint(tsk);
  750. TASKS_RCU(preempt_disable());
  751. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  752. TASKS_RCU(preempt_enable());
  753. exit_notify(tsk, group_dead);
  754. proc_exit_connector(tsk);
  755. mpol_put_task_policy(tsk);
  756. #ifdef CONFIG_FUTEX
  757. if (unlikely(current->pi_state_cache))
  758. kfree(current->pi_state_cache);
  759. #endif
  760. /*
  761. * Make sure we are holding no locks:
  762. */
  763. debug_check_no_locks_held();
  764. /*
  765. * We can do this unlocked here. The futex code uses this flag
  766. * just to verify whether the pi state cleanup has been done
  767. * or not. In the worst case it loops once more.
  768. */
  769. tsk->flags |= PF_EXITPIDONE;
  770. if (tsk->io_context)
  771. exit_io_context(tsk);
  772. if (tsk->splice_pipe)
  773. free_pipe_info(tsk->splice_pipe);
  774. if (tsk->task_frag.page)
  775. put_page(tsk->task_frag.page);
  776. validate_creds_for_do_exit(tsk);
  777. check_stack_usage();
  778. preempt_disable();
  779. if (tsk->nr_dirtied)
  780. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  781. exit_rcu();
  782. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  783. do_task_dead();
  784. }
  785. EXPORT_SYMBOL_GPL(do_exit);
  786. void complete_and_exit(struct completion *comp, long code)
  787. {
  788. if (comp)
  789. complete(comp);
  790. do_exit(code);
  791. }
  792. EXPORT_SYMBOL(complete_and_exit);
  793. SYSCALL_DEFINE1(exit, int, error_code)
  794. {
  795. do_exit((error_code&0xff)<<8);
  796. }
  797. /*
  798. * Take down every thread in the group. This is called by fatal signals
  799. * as well as by sys_exit_group (below).
  800. */
  801. void
  802. do_group_exit(int exit_code)
  803. {
  804. struct signal_struct *sig = current->signal;
  805. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  806. if (signal_group_exit(sig))
  807. exit_code = sig->group_exit_code;
  808. else if (!thread_group_empty(current)) {
  809. struct sighand_struct *const sighand = current->sighand;
  810. spin_lock_irq(&sighand->siglock);
  811. if (signal_group_exit(sig))
  812. /* Another thread got here before we took the lock. */
  813. exit_code = sig->group_exit_code;
  814. else {
  815. sig->group_exit_code = exit_code;
  816. sig->flags = SIGNAL_GROUP_EXIT;
  817. zap_other_threads(current);
  818. }
  819. spin_unlock_irq(&sighand->siglock);
  820. }
  821. do_exit(exit_code);
  822. /* NOTREACHED */
  823. }
  824. /*
  825. * this kills every thread in the thread group. Note that any externally
  826. * wait4()-ing process will get the correct exit code - even if this
  827. * thread is not the thread group leader.
  828. */
  829. SYSCALL_DEFINE1(exit_group, int, error_code)
  830. {
  831. do_group_exit((error_code & 0xff) << 8);
  832. /* NOTREACHED */
  833. return 0;
  834. }
  835. struct wait_opts {
  836. enum pid_type wo_type;
  837. int wo_flags;
  838. struct pid *wo_pid;
  839. struct siginfo __user *wo_info;
  840. int __user *wo_stat;
  841. struct rusage __user *wo_rusage;
  842. wait_queue_t child_wait;
  843. int notask_error;
  844. };
  845. static inline
  846. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  847. {
  848. if (type != PIDTYPE_PID)
  849. task = task->group_leader;
  850. return task->pids[type].pid;
  851. }
  852. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  853. {
  854. return wo->wo_type == PIDTYPE_MAX ||
  855. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  856. }
  857. static int
  858. eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
  859. {
  860. if (!eligible_pid(wo, p))
  861. return 0;
  862. /*
  863. * Wait for all children (clone and not) if __WALL is set or
  864. * if it is traced by us.
  865. */
  866. if (ptrace || (wo->wo_flags & __WALL))
  867. return 1;
  868. /*
  869. * Otherwise, wait for clone children *only* if __WCLONE is set;
  870. * otherwise, wait for non-clone children *only*.
  871. *
  872. * Note: a "clone" child here is one that reports to its parent
  873. * using a signal other than SIGCHLD, or a non-leader thread which
  874. * we can only see if it is traced by us.
  875. */
  876. if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  877. return 0;
  878. return 1;
  879. }
  880. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  881. pid_t pid, uid_t uid, int why, int status)
  882. {
  883. struct siginfo __user *infop;
  884. int retval = wo->wo_rusage
  885. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  886. put_task_struct(p);
  887. infop = wo->wo_info;
  888. if (infop) {
  889. if (!retval)
  890. retval = put_user(SIGCHLD, &infop->si_signo);
  891. if (!retval)
  892. retval = put_user(0, &infop->si_errno);
  893. if (!retval)
  894. retval = put_user((short)why, &infop->si_code);
  895. if (!retval)
  896. retval = put_user(pid, &infop->si_pid);
  897. if (!retval)
  898. retval = put_user(uid, &infop->si_uid);
  899. if (!retval)
  900. retval = put_user(status, &infop->si_status);
  901. }
  902. if (!retval)
  903. retval = pid;
  904. return retval;
  905. }
  906. /*
  907. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  908. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  909. * the lock and this task is uninteresting. If we return nonzero, we have
  910. * released the lock and the system call should return.
  911. */
  912. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  913. {
  914. int state, retval, status;
  915. pid_t pid = task_pid_vnr(p);
  916. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  917. struct siginfo __user *infop;
  918. if (!likely(wo->wo_flags & WEXITED))
  919. return 0;
  920. if (unlikely(wo->wo_flags & WNOWAIT)) {
  921. int exit_code = p->exit_code;
  922. int why;
  923. get_task_struct(p);
  924. read_unlock(&tasklist_lock);
  925. sched_annotate_sleep();
  926. if ((exit_code & 0x7f) == 0) {
  927. why = CLD_EXITED;
  928. status = exit_code >> 8;
  929. } else {
  930. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  931. status = exit_code & 0x7f;
  932. }
  933. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  934. }
  935. /*
  936. * Move the task's state to DEAD/TRACE, only one thread can do this.
  937. */
  938. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  939. EXIT_TRACE : EXIT_DEAD;
  940. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  941. return 0;
  942. /*
  943. * We own this thread, nobody else can reap it.
  944. */
  945. read_unlock(&tasklist_lock);
  946. sched_annotate_sleep();
  947. /*
  948. * Check thread_group_leader() to exclude the traced sub-threads.
  949. */
  950. if (state == EXIT_DEAD && thread_group_leader(p)) {
  951. struct signal_struct *sig = p->signal;
  952. struct signal_struct *psig = current->signal;
  953. unsigned long maxrss;
  954. cputime_t tgutime, tgstime;
  955. /*
  956. * The resource counters for the group leader are in its
  957. * own task_struct. Those for dead threads in the group
  958. * are in its signal_struct, as are those for the child
  959. * processes it has previously reaped. All these
  960. * accumulate in the parent's signal_struct c* fields.
  961. *
  962. * We don't bother to take a lock here to protect these
  963. * p->signal fields because the whole thread group is dead
  964. * and nobody can change them.
  965. *
  966. * psig->stats_lock also protects us from our sub-theads
  967. * which can reap other children at the same time. Until
  968. * we change k_getrusage()-like users to rely on this lock
  969. * we have to take ->siglock as well.
  970. *
  971. * We use thread_group_cputime_adjusted() to get times for
  972. * the thread group, which consolidates times for all threads
  973. * in the group including the group leader.
  974. */
  975. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  976. spin_lock_irq(&current->sighand->siglock);
  977. write_seqlock(&psig->stats_lock);
  978. psig->cutime += tgutime + sig->cutime;
  979. psig->cstime += tgstime + sig->cstime;
  980. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  981. psig->cmin_flt +=
  982. p->min_flt + sig->min_flt + sig->cmin_flt;
  983. psig->cmaj_flt +=
  984. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  985. psig->cnvcsw +=
  986. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  987. psig->cnivcsw +=
  988. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  989. psig->cinblock +=
  990. task_io_get_inblock(p) +
  991. sig->inblock + sig->cinblock;
  992. psig->coublock +=
  993. task_io_get_oublock(p) +
  994. sig->oublock + sig->coublock;
  995. maxrss = max(sig->maxrss, sig->cmaxrss);
  996. if (psig->cmaxrss < maxrss)
  997. psig->cmaxrss = maxrss;
  998. task_io_accounting_add(&psig->ioac, &p->ioac);
  999. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1000. write_sequnlock(&psig->stats_lock);
  1001. spin_unlock_irq(&current->sighand->siglock);
  1002. }
  1003. retval = wo->wo_rusage
  1004. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1005. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1006. ? p->signal->group_exit_code : p->exit_code;
  1007. if (!retval && wo->wo_stat)
  1008. retval = put_user(status, wo->wo_stat);
  1009. infop = wo->wo_info;
  1010. if (!retval && infop)
  1011. retval = put_user(SIGCHLD, &infop->si_signo);
  1012. if (!retval && infop)
  1013. retval = put_user(0, &infop->si_errno);
  1014. if (!retval && infop) {
  1015. int why;
  1016. if ((status & 0x7f) == 0) {
  1017. why = CLD_EXITED;
  1018. status >>= 8;
  1019. } else {
  1020. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1021. status &= 0x7f;
  1022. }
  1023. retval = put_user((short)why, &infop->si_code);
  1024. if (!retval)
  1025. retval = put_user(status, &infop->si_status);
  1026. }
  1027. if (!retval && infop)
  1028. retval = put_user(pid, &infop->si_pid);
  1029. if (!retval && infop)
  1030. retval = put_user(uid, &infop->si_uid);
  1031. if (!retval)
  1032. retval = pid;
  1033. if (state == EXIT_TRACE) {
  1034. write_lock_irq(&tasklist_lock);
  1035. /* We dropped tasklist, ptracer could die and untrace */
  1036. ptrace_unlink(p);
  1037. /* If parent wants a zombie, don't release it now */
  1038. state = EXIT_ZOMBIE;
  1039. if (do_notify_parent(p, p->exit_signal))
  1040. state = EXIT_DEAD;
  1041. p->exit_state = state;
  1042. write_unlock_irq(&tasklist_lock);
  1043. }
  1044. if (state == EXIT_DEAD)
  1045. release_task(p);
  1046. return retval;
  1047. }
  1048. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1049. {
  1050. if (ptrace) {
  1051. if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
  1052. return &p->exit_code;
  1053. } else {
  1054. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1055. return &p->signal->group_exit_code;
  1056. }
  1057. return NULL;
  1058. }
  1059. /**
  1060. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1061. * @wo: wait options
  1062. * @ptrace: is the wait for ptrace
  1063. * @p: task to wait for
  1064. *
  1065. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1066. *
  1067. * CONTEXT:
  1068. * read_lock(&tasklist_lock), which is released if return value is
  1069. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1070. *
  1071. * RETURNS:
  1072. * 0 if wait condition didn't exist and search for other wait conditions
  1073. * should continue. Non-zero return, -errno on failure and @p's pid on
  1074. * success, implies that tasklist_lock is released and wait condition
  1075. * search should terminate.
  1076. */
  1077. static int wait_task_stopped(struct wait_opts *wo,
  1078. int ptrace, struct task_struct *p)
  1079. {
  1080. struct siginfo __user *infop;
  1081. int retval, exit_code, *p_code, why;
  1082. uid_t uid = 0; /* unneeded, required by compiler */
  1083. pid_t pid;
  1084. /*
  1085. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1086. */
  1087. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1088. return 0;
  1089. if (!task_stopped_code(p, ptrace))
  1090. return 0;
  1091. exit_code = 0;
  1092. spin_lock_irq(&p->sighand->siglock);
  1093. p_code = task_stopped_code(p, ptrace);
  1094. if (unlikely(!p_code))
  1095. goto unlock_sig;
  1096. exit_code = *p_code;
  1097. if (!exit_code)
  1098. goto unlock_sig;
  1099. if (!unlikely(wo->wo_flags & WNOWAIT))
  1100. *p_code = 0;
  1101. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1102. unlock_sig:
  1103. spin_unlock_irq(&p->sighand->siglock);
  1104. if (!exit_code)
  1105. return 0;
  1106. /*
  1107. * Now we are pretty sure this task is interesting.
  1108. * Make sure it doesn't get reaped out from under us while we
  1109. * give up the lock and then examine it below. We don't want to
  1110. * keep holding onto the tasklist_lock while we call getrusage and
  1111. * possibly take page faults for user memory.
  1112. */
  1113. get_task_struct(p);
  1114. pid = task_pid_vnr(p);
  1115. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1116. read_unlock(&tasklist_lock);
  1117. sched_annotate_sleep();
  1118. if (unlikely(wo->wo_flags & WNOWAIT))
  1119. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1120. retval = wo->wo_rusage
  1121. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1122. if (!retval && wo->wo_stat)
  1123. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1124. infop = wo->wo_info;
  1125. if (!retval && infop)
  1126. retval = put_user(SIGCHLD, &infop->si_signo);
  1127. if (!retval && infop)
  1128. retval = put_user(0, &infop->si_errno);
  1129. if (!retval && infop)
  1130. retval = put_user((short)why, &infop->si_code);
  1131. if (!retval && infop)
  1132. retval = put_user(exit_code, &infop->si_status);
  1133. if (!retval && infop)
  1134. retval = put_user(pid, &infop->si_pid);
  1135. if (!retval && infop)
  1136. retval = put_user(uid, &infop->si_uid);
  1137. if (!retval)
  1138. retval = pid;
  1139. put_task_struct(p);
  1140. BUG_ON(!retval);
  1141. return retval;
  1142. }
  1143. /*
  1144. * Handle do_wait work for one task in a live, non-stopped state.
  1145. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1146. * the lock and this task is uninteresting. If we return nonzero, we have
  1147. * released the lock and the system call should return.
  1148. */
  1149. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1150. {
  1151. int retval;
  1152. pid_t pid;
  1153. uid_t uid;
  1154. if (!unlikely(wo->wo_flags & WCONTINUED))
  1155. return 0;
  1156. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1157. return 0;
  1158. spin_lock_irq(&p->sighand->siglock);
  1159. /* Re-check with the lock held. */
  1160. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1161. spin_unlock_irq(&p->sighand->siglock);
  1162. return 0;
  1163. }
  1164. if (!unlikely(wo->wo_flags & WNOWAIT))
  1165. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1166. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1167. spin_unlock_irq(&p->sighand->siglock);
  1168. pid = task_pid_vnr(p);
  1169. get_task_struct(p);
  1170. read_unlock(&tasklist_lock);
  1171. sched_annotate_sleep();
  1172. if (!wo->wo_info) {
  1173. retval = wo->wo_rusage
  1174. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1175. put_task_struct(p);
  1176. if (!retval && wo->wo_stat)
  1177. retval = put_user(0xffff, wo->wo_stat);
  1178. if (!retval)
  1179. retval = pid;
  1180. } else {
  1181. retval = wait_noreap_copyout(wo, p, pid, uid,
  1182. CLD_CONTINUED, SIGCONT);
  1183. BUG_ON(retval == 0);
  1184. }
  1185. return retval;
  1186. }
  1187. /*
  1188. * Consider @p for a wait by @parent.
  1189. *
  1190. * -ECHILD should be in ->notask_error before the first call.
  1191. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1192. * Returns zero if the search for a child should continue;
  1193. * then ->notask_error is 0 if @p is an eligible child,
  1194. * or another error from security_task_wait(), or still -ECHILD.
  1195. */
  1196. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1197. struct task_struct *p)
  1198. {
  1199. /*
  1200. * We can race with wait_task_zombie() from another thread.
  1201. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
  1202. * can't confuse the checks below.
  1203. */
  1204. int exit_state = ACCESS_ONCE(p->exit_state);
  1205. int ret;
  1206. if (unlikely(exit_state == EXIT_DEAD))
  1207. return 0;
  1208. ret = eligible_child(wo, ptrace, p);
  1209. if (!ret)
  1210. return ret;
  1211. ret = security_task_wait(p);
  1212. if (unlikely(ret < 0)) {
  1213. /*
  1214. * If we have not yet seen any eligible child,
  1215. * then let this error code replace -ECHILD.
  1216. * A permission error will give the user a clue
  1217. * to look for security policy problems, rather
  1218. * than for mysterious wait bugs.
  1219. */
  1220. if (wo->notask_error)
  1221. wo->notask_error = ret;
  1222. return 0;
  1223. }
  1224. if (unlikely(exit_state == EXIT_TRACE)) {
  1225. /*
  1226. * ptrace == 0 means we are the natural parent. In this case
  1227. * we should clear notask_error, debugger will notify us.
  1228. */
  1229. if (likely(!ptrace))
  1230. wo->notask_error = 0;
  1231. return 0;
  1232. }
  1233. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1234. /*
  1235. * If it is traced by its real parent's group, just pretend
  1236. * the caller is ptrace_do_wait() and reap this child if it
  1237. * is zombie.
  1238. *
  1239. * This also hides group stop state from real parent; otherwise
  1240. * a single stop can be reported twice as group and ptrace stop.
  1241. * If a ptracer wants to distinguish these two events for its
  1242. * own children it should create a separate process which takes
  1243. * the role of real parent.
  1244. */
  1245. if (!ptrace_reparented(p))
  1246. ptrace = 1;
  1247. }
  1248. /* slay zombie? */
  1249. if (exit_state == EXIT_ZOMBIE) {
  1250. /* we don't reap group leaders with subthreads */
  1251. if (!delay_group_leader(p)) {
  1252. /*
  1253. * A zombie ptracee is only visible to its ptracer.
  1254. * Notification and reaping will be cascaded to the
  1255. * real parent when the ptracer detaches.
  1256. */
  1257. if (unlikely(ptrace) || likely(!p->ptrace))
  1258. return wait_task_zombie(wo, p);
  1259. }
  1260. /*
  1261. * Allow access to stopped/continued state via zombie by
  1262. * falling through. Clearing of notask_error is complex.
  1263. *
  1264. * When !@ptrace:
  1265. *
  1266. * If WEXITED is set, notask_error should naturally be
  1267. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1268. * so, if there are live subthreads, there are events to
  1269. * wait for. If all subthreads are dead, it's still safe
  1270. * to clear - this function will be called again in finite
  1271. * amount time once all the subthreads are released and
  1272. * will then return without clearing.
  1273. *
  1274. * When @ptrace:
  1275. *
  1276. * Stopped state is per-task and thus can't change once the
  1277. * target task dies. Only continued and exited can happen.
  1278. * Clear notask_error if WCONTINUED | WEXITED.
  1279. */
  1280. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1281. wo->notask_error = 0;
  1282. } else {
  1283. /*
  1284. * @p is alive and it's gonna stop, continue or exit, so
  1285. * there always is something to wait for.
  1286. */
  1287. wo->notask_error = 0;
  1288. }
  1289. /*
  1290. * Wait for stopped. Depending on @ptrace, different stopped state
  1291. * is used and the two don't interact with each other.
  1292. */
  1293. ret = wait_task_stopped(wo, ptrace, p);
  1294. if (ret)
  1295. return ret;
  1296. /*
  1297. * Wait for continued. There's only one continued state and the
  1298. * ptracer can consume it which can confuse the real parent. Don't
  1299. * use WCONTINUED from ptracer. You don't need or want it.
  1300. */
  1301. return wait_task_continued(wo, p);
  1302. }
  1303. /*
  1304. * Do the work of do_wait() for one thread in the group, @tsk.
  1305. *
  1306. * -ECHILD should be in ->notask_error before the first call.
  1307. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1308. * Returns zero if the search for a child should continue; then
  1309. * ->notask_error is 0 if there were any eligible children,
  1310. * or another error from security_task_wait(), or still -ECHILD.
  1311. */
  1312. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1313. {
  1314. struct task_struct *p;
  1315. list_for_each_entry(p, &tsk->children, sibling) {
  1316. int ret = wait_consider_task(wo, 0, p);
  1317. if (ret)
  1318. return ret;
  1319. }
  1320. return 0;
  1321. }
  1322. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1323. {
  1324. struct task_struct *p;
  1325. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1326. int ret = wait_consider_task(wo, 1, p);
  1327. if (ret)
  1328. return ret;
  1329. }
  1330. return 0;
  1331. }
  1332. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1333. int sync, void *key)
  1334. {
  1335. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1336. child_wait);
  1337. struct task_struct *p = key;
  1338. if (!eligible_pid(wo, p))
  1339. return 0;
  1340. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1341. return 0;
  1342. return default_wake_function(wait, mode, sync, key);
  1343. }
  1344. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1345. {
  1346. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1347. TASK_INTERRUPTIBLE, 1, p);
  1348. }
  1349. static long do_wait(struct wait_opts *wo)
  1350. {
  1351. struct task_struct *tsk;
  1352. int retval;
  1353. trace_sched_process_wait(wo->wo_pid);
  1354. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1355. wo->child_wait.private = current;
  1356. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1357. repeat:
  1358. /*
  1359. * If there is nothing that can match our criteria, just get out.
  1360. * We will clear ->notask_error to zero if we see any child that
  1361. * might later match our criteria, even if we are not able to reap
  1362. * it yet.
  1363. */
  1364. wo->notask_error = -ECHILD;
  1365. if ((wo->wo_type < PIDTYPE_MAX) &&
  1366. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1367. goto notask;
  1368. set_current_state(TASK_INTERRUPTIBLE);
  1369. read_lock(&tasklist_lock);
  1370. tsk = current;
  1371. do {
  1372. retval = do_wait_thread(wo, tsk);
  1373. if (retval)
  1374. goto end;
  1375. retval = ptrace_do_wait(wo, tsk);
  1376. if (retval)
  1377. goto end;
  1378. if (wo->wo_flags & __WNOTHREAD)
  1379. break;
  1380. } while_each_thread(current, tsk);
  1381. read_unlock(&tasklist_lock);
  1382. notask:
  1383. retval = wo->notask_error;
  1384. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1385. retval = -ERESTARTSYS;
  1386. if (!signal_pending(current)) {
  1387. schedule();
  1388. goto repeat;
  1389. }
  1390. }
  1391. end:
  1392. __set_current_state(TASK_RUNNING);
  1393. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1394. return retval;
  1395. }
  1396. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1397. infop, int, options, struct rusage __user *, ru)
  1398. {
  1399. struct wait_opts wo;
  1400. struct pid *pid = NULL;
  1401. enum pid_type type;
  1402. long ret;
  1403. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
  1404. __WNOTHREAD|__WCLONE|__WALL))
  1405. return -EINVAL;
  1406. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1407. return -EINVAL;
  1408. switch (which) {
  1409. case P_ALL:
  1410. type = PIDTYPE_MAX;
  1411. break;
  1412. case P_PID:
  1413. type = PIDTYPE_PID;
  1414. if (upid <= 0)
  1415. return -EINVAL;
  1416. break;
  1417. case P_PGID:
  1418. type = PIDTYPE_PGID;
  1419. if (upid <= 0)
  1420. return -EINVAL;
  1421. break;
  1422. default:
  1423. return -EINVAL;
  1424. }
  1425. if (type < PIDTYPE_MAX)
  1426. pid = find_get_pid(upid);
  1427. wo.wo_type = type;
  1428. wo.wo_pid = pid;
  1429. wo.wo_flags = options;
  1430. wo.wo_info = infop;
  1431. wo.wo_stat = NULL;
  1432. wo.wo_rusage = ru;
  1433. ret = do_wait(&wo);
  1434. if (ret > 0) {
  1435. ret = 0;
  1436. } else if (infop) {
  1437. /*
  1438. * For a WNOHANG return, clear out all the fields
  1439. * we would set so the user can easily tell the
  1440. * difference.
  1441. */
  1442. if (!ret)
  1443. ret = put_user(0, &infop->si_signo);
  1444. if (!ret)
  1445. ret = put_user(0, &infop->si_errno);
  1446. if (!ret)
  1447. ret = put_user(0, &infop->si_code);
  1448. if (!ret)
  1449. ret = put_user(0, &infop->si_pid);
  1450. if (!ret)
  1451. ret = put_user(0, &infop->si_uid);
  1452. if (!ret)
  1453. ret = put_user(0, &infop->si_status);
  1454. }
  1455. put_pid(pid);
  1456. return ret;
  1457. }
  1458. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1459. int, options, struct rusage __user *, ru)
  1460. {
  1461. struct wait_opts wo;
  1462. struct pid *pid = NULL;
  1463. enum pid_type type;
  1464. long ret;
  1465. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1466. __WNOTHREAD|__WCLONE|__WALL))
  1467. return -EINVAL;
  1468. /* -INT_MIN is not defined */
  1469. if (upid == INT_MIN)
  1470. return -ESRCH;
  1471. if (upid == -1)
  1472. type = PIDTYPE_MAX;
  1473. else if (upid < 0) {
  1474. type = PIDTYPE_PGID;
  1475. pid = find_get_pid(-upid);
  1476. } else if (upid == 0) {
  1477. type = PIDTYPE_PGID;
  1478. pid = get_task_pid(current, PIDTYPE_PGID);
  1479. } else /* upid > 0 */ {
  1480. type = PIDTYPE_PID;
  1481. pid = find_get_pid(upid);
  1482. }
  1483. wo.wo_type = type;
  1484. wo.wo_pid = pid;
  1485. wo.wo_flags = options | WEXITED;
  1486. wo.wo_info = NULL;
  1487. wo.wo_stat = stat_addr;
  1488. wo.wo_rusage = ru;
  1489. ret = do_wait(&wo);
  1490. put_pid(pid);
  1491. return ret;
  1492. }
  1493. #ifdef __ARCH_WANT_SYS_WAITPID
  1494. /*
  1495. * sys_waitpid() remains for compatibility. waitpid() should be
  1496. * implemented by calling sys_wait4() from libc.a.
  1497. */
  1498. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1499. {
  1500. return sys_wait4(pid, stat_addr, options, NULL);
  1501. }
  1502. #endif