namespace.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. /* Maximum number of mounts in a mount namespace */
  29. unsigned int sysctl_mount_max __read_mostly = 100000;
  30. static unsigned int m_hash_mask __read_mostly;
  31. static unsigned int m_hash_shift __read_mostly;
  32. static unsigned int mp_hash_mask __read_mostly;
  33. static unsigned int mp_hash_shift __read_mostly;
  34. static __initdata unsigned long mhash_entries;
  35. static int __init set_mhash_entries(char *str)
  36. {
  37. if (!str)
  38. return 0;
  39. mhash_entries = simple_strtoul(str, &str, 0);
  40. return 1;
  41. }
  42. __setup("mhash_entries=", set_mhash_entries);
  43. static __initdata unsigned long mphash_entries;
  44. static int __init set_mphash_entries(char *str)
  45. {
  46. if (!str)
  47. return 0;
  48. mphash_entries = simple_strtoul(str, &str, 0);
  49. return 1;
  50. }
  51. __setup("mphash_entries=", set_mphash_entries);
  52. static u64 event;
  53. static DEFINE_IDA(mnt_id_ida);
  54. static DEFINE_IDA(mnt_group_ida);
  55. static DEFINE_SPINLOCK(mnt_id_lock);
  56. static int mnt_id_start = 0;
  57. static int mnt_group_start = 1;
  58. static struct hlist_head *mount_hashtable __read_mostly;
  59. static struct hlist_head *mountpoint_hashtable __read_mostly;
  60. static struct kmem_cache *mnt_cache __read_mostly;
  61. static DECLARE_RWSEM(namespace_sem);
  62. /* /sys/fs */
  63. struct kobject *fs_kobj;
  64. EXPORT_SYMBOL_GPL(fs_kobj);
  65. /*
  66. * vfsmount lock may be taken for read to prevent changes to the
  67. * vfsmount hash, ie. during mountpoint lookups or walking back
  68. * up the tree.
  69. *
  70. * It should be taken for write in all cases where the vfsmount
  71. * tree or hash is modified or when a vfsmount structure is modified.
  72. */
  73. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  74. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  75. {
  76. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  77. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  78. tmp = tmp + (tmp >> m_hash_shift);
  79. return &mount_hashtable[tmp & m_hash_mask];
  80. }
  81. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  82. {
  83. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  84. tmp = tmp + (tmp >> mp_hash_shift);
  85. return &mountpoint_hashtable[tmp & mp_hash_mask];
  86. }
  87. /*
  88. * allocation is serialized by namespace_sem, but we need the spinlock to
  89. * serialize with freeing.
  90. */
  91. static int mnt_alloc_id(struct mount *mnt)
  92. {
  93. int res;
  94. retry:
  95. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  96. spin_lock(&mnt_id_lock);
  97. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  98. if (!res)
  99. mnt_id_start = mnt->mnt_id + 1;
  100. spin_unlock(&mnt_id_lock);
  101. if (res == -EAGAIN)
  102. goto retry;
  103. return res;
  104. }
  105. static void mnt_free_id(struct mount *mnt)
  106. {
  107. int id = mnt->mnt_id;
  108. spin_lock(&mnt_id_lock);
  109. ida_remove(&mnt_id_ida, id);
  110. if (mnt_id_start > id)
  111. mnt_id_start = id;
  112. spin_unlock(&mnt_id_lock);
  113. }
  114. /*
  115. * Allocate a new peer group ID
  116. *
  117. * mnt_group_ida is protected by namespace_sem
  118. */
  119. static int mnt_alloc_group_id(struct mount *mnt)
  120. {
  121. int res;
  122. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  123. return -ENOMEM;
  124. res = ida_get_new_above(&mnt_group_ida,
  125. mnt_group_start,
  126. &mnt->mnt_group_id);
  127. if (!res)
  128. mnt_group_start = mnt->mnt_group_id + 1;
  129. return res;
  130. }
  131. /*
  132. * Release a peer group ID
  133. */
  134. void mnt_release_group_id(struct mount *mnt)
  135. {
  136. int id = mnt->mnt_group_id;
  137. ida_remove(&mnt_group_ida, id);
  138. if (mnt_group_start > id)
  139. mnt_group_start = id;
  140. mnt->mnt_group_id = 0;
  141. }
  142. /*
  143. * vfsmount lock must be held for read
  144. */
  145. static inline void mnt_add_count(struct mount *mnt, int n)
  146. {
  147. #ifdef CONFIG_SMP
  148. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  149. #else
  150. preempt_disable();
  151. mnt->mnt_count += n;
  152. preempt_enable();
  153. #endif
  154. }
  155. /*
  156. * vfsmount lock must be held for write
  157. */
  158. unsigned int mnt_get_count(struct mount *mnt)
  159. {
  160. #ifdef CONFIG_SMP
  161. unsigned int count = 0;
  162. int cpu;
  163. for_each_possible_cpu(cpu) {
  164. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  165. }
  166. return count;
  167. #else
  168. return mnt->mnt_count;
  169. #endif
  170. }
  171. static void drop_mountpoint(struct fs_pin *p)
  172. {
  173. struct mount *m = container_of(p, struct mount, mnt_umount);
  174. dput(m->mnt_ex_mountpoint);
  175. pin_remove(p);
  176. mntput(&m->mnt);
  177. }
  178. static struct mount *alloc_vfsmnt(const char *name)
  179. {
  180. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  181. if (mnt) {
  182. int err;
  183. err = mnt_alloc_id(mnt);
  184. if (err)
  185. goto out_free_cache;
  186. if (name) {
  187. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  188. if (!mnt->mnt_devname)
  189. goto out_free_id;
  190. }
  191. #ifdef CONFIG_SMP
  192. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  193. if (!mnt->mnt_pcp)
  194. goto out_free_devname;
  195. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  196. #else
  197. mnt->mnt_count = 1;
  198. mnt->mnt_writers = 0;
  199. #endif
  200. INIT_HLIST_NODE(&mnt->mnt_hash);
  201. INIT_LIST_HEAD(&mnt->mnt_child);
  202. INIT_LIST_HEAD(&mnt->mnt_mounts);
  203. INIT_LIST_HEAD(&mnt->mnt_list);
  204. INIT_LIST_HEAD(&mnt->mnt_expire);
  205. INIT_LIST_HEAD(&mnt->mnt_share);
  206. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  207. INIT_LIST_HEAD(&mnt->mnt_slave);
  208. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  209. INIT_LIST_HEAD(&mnt->mnt_umounting);
  210. #ifdef CONFIG_FSNOTIFY
  211. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  212. #endif
  213. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  214. }
  215. return mnt;
  216. #ifdef CONFIG_SMP
  217. out_free_devname:
  218. kfree_const(mnt->mnt_devname);
  219. #endif
  220. out_free_id:
  221. mnt_free_id(mnt);
  222. out_free_cache:
  223. kmem_cache_free(mnt_cache, mnt);
  224. return NULL;
  225. }
  226. /*
  227. * Most r/o checks on a fs are for operations that take
  228. * discrete amounts of time, like a write() or unlink().
  229. * We must keep track of when those operations start
  230. * (for permission checks) and when they end, so that
  231. * we can determine when writes are able to occur to
  232. * a filesystem.
  233. */
  234. /*
  235. * __mnt_is_readonly: check whether a mount is read-only
  236. * @mnt: the mount to check for its write status
  237. *
  238. * This shouldn't be used directly ouside of the VFS.
  239. * It does not guarantee that the filesystem will stay
  240. * r/w, just that it is right *now*. This can not and
  241. * should not be used in place of IS_RDONLY(inode).
  242. * mnt_want/drop_write() will _keep_ the filesystem
  243. * r/w.
  244. */
  245. int __mnt_is_readonly(struct vfsmount *mnt)
  246. {
  247. if (mnt->mnt_flags & MNT_READONLY)
  248. return 1;
  249. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  250. return 1;
  251. return 0;
  252. }
  253. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  254. static inline void mnt_inc_writers(struct mount *mnt)
  255. {
  256. #ifdef CONFIG_SMP
  257. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  258. #else
  259. mnt->mnt_writers++;
  260. #endif
  261. }
  262. static inline void mnt_dec_writers(struct mount *mnt)
  263. {
  264. #ifdef CONFIG_SMP
  265. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  266. #else
  267. mnt->mnt_writers--;
  268. #endif
  269. }
  270. static unsigned int mnt_get_writers(struct mount *mnt)
  271. {
  272. #ifdef CONFIG_SMP
  273. unsigned int count = 0;
  274. int cpu;
  275. for_each_possible_cpu(cpu) {
  276. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  277. }
  278. return count;
  279. #else
  280. return mnt->mnt_writers;
  281. #endif
  282. }
  283. static int mnt_is_readonly(struct vfsmount *mnt)
  284. {
  285. if (mnt->mnt_sb->s_readonly_remount)
  286. return 1;
  287. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  288. smp_rmb();
  289. return __mnt_is_readonly(mnt);
  290. }
  291. /*
  292. * Most r/o & frozen checks on a fs are for operations that take discrete
  293. * amounts of time, like a write() or unlink(). We must keep track of when
  294. * those operations start (for permission checks) and when they end, so that we
  295. * can determine when writes are able to occur to a filesystem.
  296. */
  297. /**
  298. * __mnt_want_write - get write access to a mount without freeze protection
  299. * @m: the mount on which to take a write
  300. *
  301. * This tells the low-level filesystem that a write is about to be performed to
  302. * it, and makes sure that writes are allowed (mnt it read-write) before
  303. * returning success. This operation does not protect against filesystem being
  304. * frozen. When the write operation is finished, __mnt_drop_write() must be
  305. * called. This is effectively a refcount.
  306. */
  307. int __mnt_want_write(struct vfsmount *m)
  308. {
  309. struct mount *mnt = real_mount(m);
  310. int ret = 0;
  311. preempt_disable();
  312. mnt_inc_writers(mnt);
  313. /*
  314. * The store to mnt_inc_writers must be visible before we pass
  315. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  316. * incremented count after it has set MNT_WRITE_HOLD.
  317. */
  318. smp_mb();
  319. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  320. cpu_relax();
  321. /*
  322. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  323. * be set to match its requirements. So we must not load that until
  324. * MNT_WRITE_HOLD is cleared.
  325. */
  326. smp_rmb();
  327. if (mnt_is_readonly(m)) {
  328. mnt_dec_writers(mnt);
  329. ret = -EROFS;
  330. }
  331. preempt_enable();
  332. return ret;
  333. }
  334. /**
  335. * mnt_want_write - get write access to a mount
  336. * @m: the mount on which to take a write
  337. *
  338. * This tells the low-level filesystem that a write is about to be performed to
  339. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  340. * is not frozen) before returning success. When the write operation is
  341. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  342. */
  343. int mnt_want_write(struct vfsmount *m)
  344. {
  345. int ret;
  346. sb_start_write(m->mnt_sb);
  347. ret = __mnt_want_write(m);
  348. if (ret)
  349. sb_end_write(m->mnt_sb);
  350. return ret;
  351. }
  352. EXPORT_SYMBOL_GPL(mnt_want_write);
  353. /**
  354. * mnt_clone_write - get write access to a mount
  355. * @mnt: the mount on which to take a write
  356. *
  357. * This is effectively like mnt_want_write, except
  358. * it must only be used to take an extra write reference
  359. * on a mountpoint that we already know has a write reference
  360. * on it. This allows some optimisation.
  361. *
  362. * After finished, mnt_drop_write must be called as usual to
  363. * drop the reference.
  364. */
  365. int mnt_clone_write(struct vfsmount *mnt)
  366. {
  367. /* superblock may be r/o */
  368. if (__mnt_is_readonly(mnt))
  369. return -EROFS;
  370. preempt_disable();
  371. mnt_inc_writers(real_mount(mnt));
  372. preempt_enable();
  373. return 0;
  374. }
  375. EXPORT_SYMBOL_GPL(mnt_clone_write);
  376. /**
  377. * __mnt_want_write_file - get write access to a file's mount
  378. * @file: the file who's mount on which to take a write
  379. *
  380. * This is like __mnt_want_write, but it takes a file and can
  381. * do some optimisations if the file is open for write already
  382. */
  383. int __mnt_want_write_file(struct file *file)
  384. {
  385. if (!(file->f_mode & FMODE_WRITER))
  386. return __mnt_want_write(file->f_path.mnt);
  387. else
  388. return mnt_clone_write(file->f_path.mnt);
  389. }
  390. /**
  391. * mnt_want_write_file - get write access to a file's mount
  392. * @file: the file who's mount on which to take a write
  393. *
  394. * This is like mnt_want_write, but it takes a file and can
  395. * do some optimisations if the file is open for write already
  396. */
  397. int mnt_want_write_file(struct file *file)
  398. {
  399. int ret;
  400. sb_start_write(file->f_path.mnt->mnt_sb);
  401. ret = __mnt_want_write_file(file);
  402. if (ret)
  403. sb_end_write(file->f_path.mnt->mnt_sb);
  404. return ret;
  405. }
  406. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  407. /**
  408. * __mnt_drop_write - give up write access to a mount
  409. * @mnt: the mount on which to give up write access
  410. *
  411. * Tells the low-level filesystem that we are done
  412. * performing writes to it. Must be matched with
  413. * __mnt_want_write() call above.
  414. */
  415. void __mnt_drop_write(struct vfsmount *mnt)
  416. {
  417. preempt_disable();
  418. mnt_dec_writers(real_mount(mnt));
  419. preempt_enable();
  420. }
  421. /**
  422. * mnt_drop_write - give up write access to a mount
  423. * @mnt: the mount on which to give up write access
  424. *
  425. * Tells the low-level filesystem that we are done performing writes to it and
  426. * also allows filesystem to be frozen again. Must be matched with
  427. * mnt_want_write() call above.
  428. */
  429. void mnt_drop_write(struct vfsmount *mnt)
  430. {
  431. __mnt_drop_write(mnt);
  432. sb_end_write(mnt->mnt_sb);
  433. }
  434. EXPORT_SYMBOL_GPL(mnt_drop_write);
  435. void __mnt_drop_write_file(struct file *file)
  436. {
  437. __mnt_drop_write(file->f_path.mnt);
  438. }
  439. void mnt_drop_write_file(struct file *file)
  440. {
  441. mnt_drop_write(file->f_path.mnt);
  442. }
  443. EXPORT_SYMBOL(mnt_drop_write_file);
  444. static int mnt_make_readonly(struct mount *mnt)
  445. {
  446. int ret = 0;
  447. lock_mount_hash();
  448. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  449. /*
  450. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  451. * should be visible before we do.
  452. */
  453. smp_mb();
  454. /*
  455. * With writers on hold, if this value is zero, then there are
  456. * definitely no active writers (although held writers may subsequently
  457. * increment the count, they'll have to wait, and decrement it after
  458. * seeing MNT_READONLY).
  459. *
  460. * It is OK to have counter incremented on one CPU and decremented on
  461. * another: the sum will add up correctly. The danger would be when we
  462. * sum up each counter, if we read a counter before it is incremented,
  463. * but then read another CPU's count which it has been subsequently
  464. * decremented from -- we would see more decrements than we should.
  465. * MNT_WRITE_HOLD protects against this scenario, because
  466. * mnt_want_write first increments count, then smp_mb, then spins on
  467. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  468. * we're counting up here.
  469. */
  470. if (mnt_get_writers(mnt) > 0)
  471. ret = -EBUSY;
  472. else
  473. mnt->mnt.mnt_flags |= MNT_READONLY;
  474. /*
  475. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  476. * that become unheld will see MNT_READONLY.
  477. */
  478. smp_wmb();
  479. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  480. unlock_mount_hash();
  481. return ret;
  482. }
  483. static void __mnt_unmake_readonly(struct mount *mnt)
  484. {
  485. lock_mount_hash();
  486. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  487. unlock_mount_hash();
  488. }
  489. int sb_prepare_remount_readonly(struct super_block *sb)
  490. {
  491. struct mount *mnt;
  492. int err = 0;
  493. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  494. if (atomic_long_read(&sb->s_remove_count))
  495. return -EBUSY;
  496. lock_mount_hash();
  497. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  498. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  499. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  500. smp_mb();
  501. if (mnt_get_writers(mnt) > 0) {
  502. err = -EBUSY;
  503. break;
  504. }
  505. }
  506. }
  507. if (!err && atomic_long_read(&sb->s_remove_count))
  508. err = -EBUSY;
  509. if (!err) {
  510. sb->s_readonly_remount = 1;
  511. smp_wmb();
  512. }
  513. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  514. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  515. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  516. }
  517. unlock_mount_hash();
  518. return err;
  519. }
  520. static void free_vfsmnt(struct mount *mnt)
  521. {
  522. kfree_const(mnt->mnt_devname);
  523. #ifdef CONFIG_SMP
  524. free_percpu(mnt->mnt_pcp);
  525. #endif
  526. kmem_cache_free(mnt_cache, mnt);
  527. }
  528. static void delayed_free_vfsmnt(struct rcu_head *head)
  529. {
  530. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  531. }
  532. /* call under rcu_read_lock */
  533. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  534. {
  535. struct mount *mnt;
  536. if (read_seqretry(&mount_lock, seq))
  537. return 1;
  538. if (bastard == NULL)
  539. return 0;
  540. mnt = real_mount(bastard);
  541. mnt_add_count(mnt, 1);
  542. smp_mb(); // see mntput_no_expire()
  543. if (likely(!read_seqretry(&mount_lock, seq)))
  544. return 0;
  545. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  546. mnt_add_count(mnt, -1);
  547. return 1;
  548. }
  549. lock_mount_hash();
  550. if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
  551. mnt_add_count(mnt, -1);
  552. unlock_mount_hash();
  553. return 1;
  554. }
  555. unlock_mount_hash();
  556. /* caller will mntput() */
  557. return -1;
  558. }
  559. /* call under rcu_read_lock */
  560. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  561. {
  562. int res = __legitimize_mnt(bastard, seq);
  563. if (likely(!res))
  564. return true;
  565. if (unlikely(res < 0)) {
  566. rcu_read_unlock();
  567. mntput(bastard);
  568. rcu_read_lock();
  569. }
  570. return false;
  571. }
  572. /*
  573. * find the first mount at @dentry on vfsmount @mnt.
  574. * call under rcu_read_lock()
  575. */
  576. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  577. {
  578. struct hlist_head *head = m_hash(mnt, dentry);
  579. struct mount *p;
  580. hlist_for_each_entry_rcu(p, head, mnt_hash)
  581. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  582. return p;
  583. return NULL;
  584. }
  585. /*
  586. * lookup_mnt - Return the first child mount mounted at path
  587. *
  588. * "First" means first mounted chronologically. If you create the
  589. * following mounts:
  590. *
  591. * mount /dev/sda1 /mnt
  592. * mount /dev/sda2 /mnt
  593. * mount /dev/sda3 /mnt
  594. *
  595. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  596. * return successively the root dentry and vfsmount of /dev/sda1, then
  597. * /dev/sda2, then /dev/sda3, then NULL.
  598. *
  599. * lookup_mnt takes a reference to the found vfsmount.
  600. */
  601. struct vfsmount *lookup_mnt(struct path *path)
  602. {
  603. struct mount *child_mnt;
  604. struct vfsmount *m;
  605. unsigned seq;
  606. rcu_read_lock();
  607. do {
  608. seq = read_seqbegin(&mount_lock);
  609. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  610. m = child_mnt ? &child_mnt->mnt : NULL;
  611. } while (!legitimize_mnt(m, seq));
  612. rcu_read_unlock();
  613. return m;
  614. }
  615. /*
  616. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  617. * current mount namespace.
  618. *
  619. * The common case is dentries are not mountpoints at all and that
  620. * test is handled inline. For the slow case when we are actually
  621. * dealing with a mountpoint of some kind, walk through all of the
  622. * mounts in the current mount namespace and test to see if the dentry
  623. * is a mountpoint.
  624. *
  625. * The mount_hashtable is not usable in the context because we
  626. * need to identify all mounts that may be in the current mount
  627. * namespace not just a mount that happens to have some specified
  628. * parent mount.
  629. */
  630. bool __is_local_mountpoint(struct dentry *dentry)
  631. {
  632. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  633. struct mount *mnt;
  634. bool is_covered = false;
  635. if (!d_mountpoint(dentry))
  636. goto out;
  637. down_read(&namespace_sem);
  638. list_for_each_entry(mnt, &ns->list, mnt_list) {
  639. is_covered = (mnt->mnt_mountpoint == dentry);
  640. if (is_covered)
  641. break;
  642. }
  643. up_read(&namespace_sem);
  644. out:
  645. return is_covered;
  646. }
  647. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  648. {
  649. struct hlist_head *chain = mp_hash(dentry);
  650. struct mountpoint *mp;
  651. hlist_for_each_entry(mp, chain, m_hash) {
  652. if (mp->m_dentry == dentry) {
  653. /* might be worth a WARN_ON() */
  654. if (d_unlinked(dentry))
  655. return ERR_PTR(-ENOENT);
  656. mp->m_count++;
  657. return mp;
  658. }
  659. }
  660. return NULL;
  661. }
  662. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  663. {
  664. struct mountpoint *mp, *new = NULL;
  665. int ret;
  666. if (d_mountpoint(dentry)) {
  667. mountpoint:
  668. read_seqlock_excl(&mount_lock);
  669. mp = lookup_mountpoint(dentry);
  670. read_sequnlock_excl(&mount_lock);
  671. if (mp)
  672. goto done;
  673. }
  674. if (!new)
  675. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  676. if (!new)
  677. return ERR_PTR(-ENOMEM);
  678. /* Exactly one processes may set d_mounted */
  679. ret = d_set_mounted(dentry);
  680. /* Someone else set d_mounted? */
  681. if (ret == -EBUSY)
  682. goto mountpoint;
  683. /* The dentry is not available as a mountpoint? */
  684. mp = ERR_PTR(ret);
  685. if (ret)
  686. goto done;
  687. /* Add the new mountpoint to the hash table */
  688. read_seqlock_excl(&mount_lock);
  689. new->m_dentry = dentry;
  690. new->m_count = 1;
  691. hlist_add_head(&new->m_hash, mp_hash(dentry));
  692. INIT_HLIST_HEAD(&new->m_list);
  693. read_sequnlock_excl(&mount_lock);
  694. mp = new;
  695. new = NULL;
  696. done:
  697. kfree(new);
  698. return mp;
  699. }
  700. static void put_mountpoint(struct mountpoint *mp)
  701. {
  702. if (!--mp->m_count) {
  703. struct dentry *dentry = mp->m_dentry;
  704. BUG_ON(!hlist_empty(&mp->m_list));
  705. spin_lock(&dentry->d_lock);
  706. dentry->d_flags &= ~DCACHE_MOUNTED;
  707. spin_unlock(&dentry->d_lock);
  708. hlist_del(&mp->m_hash);
  709. kfree(mp);
  710. }
  711. }
  712. static inline int check_mnt(struct mount *mnt)
  713. {
  714. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  715. }
  716. /*
  717. * vfsmount lock must be held for write
  718. */
  719. static void touch_mnt_namespace(struct mnt_namespace *ns)
  720. {
  721. if (ns) {
  722. ns->event = ++event;
  723. wake_up_interruptible(&ns->poll);
  724. }
  725. }
  726. /*
  727. * vfsmount lock must be held for write
  728. */
  729. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  730. {
  731. if (ns && ns->event != event) {
  732. ns->event = event;
  733. wake_up_interruptible(&ns->poll);
  734. }
  735. }
  736. /*
  737. * vfsmount lock must be held for write
  738. */
  739. static void unhash_mnt(struct mount *mnt)
  740. {
  741. mnt->mnt_parent = mnt;
  742. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  743. list_del_init(&mnt->mnt_child);
  744. hlist_del_init_rcu(&mnt->mnt_hash);
  745. hlist_del_init(&mnt->mnt_mp_list);
  746. put_mountpoint(mnt->mnt_mp);
  747. mnt->mnt_mp = NULL;
  748. }
  749. /*
  750. * vfsmount lock must be held for write
  751. */
  752. static void detach_mnt(struct mount *mnt, struct path *old_path)
  753. {
  754. old_path->dentry = mnt->mnt_mountpoint;
  755. old_path->mnt = &mnt->mnt_parent->mnt;
  756. unhash_mnt(mnt);
  757. }
  758. /*
  759. * vfsmount lock must be held for write
  760. */
  761. static void umount_mnt(struct mount *mnt)
  762. {
  763. /* old mountpoint will be dropped when we can do that */
  764. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  765. unhash_mnt(mnt);
  766. }
  767. /*
  768. * vfsmount lock must be held for write
  769. */
  770. void mnt_set_mountpoint(struct mount *mnt,
  771. struct mountpoint *mp,
  772. struct mount *child_mnt)
  773. {
  774. mp->m_count++;
  775. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  776. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  777. child_mnt->mnt_parent = mnt;
  778. child_mnt->mnt_mp = mp;
  779. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  780. }
  781. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  782. {
  783. hlist_add_head_rcu(&mnt->mnt_hash,
  784. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  785. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  786. }
  787. /*
  788. * vfsmount lock must be held for write
  789. */
  790. static void attach_mnt(struct mount *mnt,
  791. struct mount *parent,
  792. struct mountpoint *mp)
  793. {
  794. mnt_set_mountpoint(parent, mp, mnt);
  795. __attach_mnt(mnt, parent);
  796. }
  797. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  798. {
  799. struct mountpoint *old_mp = mnt->mnt_mp;
  800. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  801. struct mount *old_parent = mnt->mnt_parent;
  802. list_del_init(&mnt->mnt_child);
  803. hlist_del_init(&mnt->mnt_mp_list);
  804. hlist_del_init_rcu(&mnt->mnt_hash);
  805. attach_mnt(mnt, parent, mp);
  806. put_mountpoint(old_mp);
  807. /*
  808. * Safely avoid even the suggestion this code might sleep or
  809. * lock the mount hash by taking advantage of the knowledge that
  810. * mnt_change_mountpoint will not release the final reference
  811. * to a mountpoint.
  812. *
  813. * During mounting, the mount passed in as the parent mount will
  814. * continue to use the old mountpoint and during unmounting, the
  815. * old mountpoint will continue to exist until namespace_unlock,
  816. * which happens well after mnt_change_mountpoint.
  817. */
  818. spin_lock(&old_mountpoint->d_lock);
  819. old_mountpoint->d_lockref.count--;
  820. spin_unlock(&old_mountpoint->d_lock);
  821. mnt_add_count(old_parent, -1);
  822. }
  823. /*
  824. * vfsmount lock must be held for write
  825. */
  826. static void commit_tree(struct mount *mnt)
  827. {
  828. struct mount *parent = mnt->mnt_parent;
  829. struct mount *m;
  830. LIST_HEAD(head);
  831. struct mnt_namespace *n = parent->mnt_ns;
  832. BUG_ON(parent == mnt);
  833. list_add_tail(&head, &mnt->mnt_list);
  834. list_for_each_entry(m, &head, mnt_list)
  835. m->mnt_ns = n;
  836. list_splice(&head, n->list.prev);
  837. n->mounts += n->pending_mounts;
  838. n->pending_mounts = 0;
  839. __attach_mnt(mnt, parent);
  840. touch_mnt_namespace(n);
  841. }
  842. static struct mount *next_mnt(struct mount *p, struct mount *root)
  843. {
  844. struct list_head *next = p->mnt_mounts.next;
  845. if (next == &p->mnt_mounts) {
  846. while (1) {
  847. if (p == root)
  848. return NULL;
  849. next = p->mnt_child.next;
  850. if (next != &p->mnt_parent->mnt_mounts)
  851. break;
  852. p = p->mnt_parent;
  853. }
  854. }
  855. return list_entry(next, struct mount, mnt_child);
  856. }
  857. static struct mount *skip_mnt_tree(struct mount *p)
  858. {
  859. struct list_head *prev = p->mnt_mounts.prev;
  860. while (prev != &p->mnt_mounts) {
  861. p = list_entry(prev, struct mount, mnt_child);
  862. prev = p->mnt_mounts.prev;
  863. }
  864. return p;
  865. }
  866. struct vfsmount *
  867. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  868. {
  869. struct mount *mnt;
  870. struct dentry *root;
  871. if (!type)
  872. return ERR_PTR(-ENODEV);
  873. mnt = alloc_vfsmnt(name);
  874. if (!mnt)
  875. return ERR_PTR(-ENOMEM);
  876. if (flags & MS_KERNMOUNT)
  877. mnt->mnt.mnt_flags = MNT_INTERNAL;
  878. root = mount_fs(type, flags, name, data);
  879. if (IS_ERR(root)) {
  880. mnt_free_id(mnt);
  881. free_vfsmnt(mnt);
  882. return ERR_CAST(root);
  883. }
  884. mnt->mnt.mnt_root = root;
  885. mnt->mnt.mnt_sb = root->d_sb;
  886. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  887. mnt->mnt_parent = mnt;
  888. lock_mount_hash();
  889. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  890. unlock_mount_hash();
  891. return &mnt->mnt;
  892. }
  893. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  894. struct vfsmount *
  895. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  896. const char *name, void *data)
  897. {
  898. /* Until it is worked out how to pass the user namespace
  899. * through from the parent mount to the submount don't support
  900. * unprivileged mounts with submounts.
  901. */
  902. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  903. return ERR_PTR(-EPERM);
  904. return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
  905. }
  906. EXPORT_SYMBOL_GPL(vfs_submount);
  907. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  908. int flag)
  909. {
  910. struct super_block *sb = old->mnt.mnt_sb;
  911. struct mount *mnt;
  912. int err;
  913. mnt = alloc_vfsmnt(old->mnt_devname);
  914. if (!mnt)
  915. return ERR_PTR(-ENOMEM);
  916. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  917. mnt->mnt_group_id = 0; /* not a peer of original */
  918. else
  919. mnt->mnt_group_id = old->mnt_group_id;
  920. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  921. err = mnt_alloc_group_id(mnt);
  922. if (err)
  923. goto out_free;
  924. }
  925. mnt->mnt.mnt_flags = old->mnt.mnt_flags;
  926. mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
  927. /* Don't allow unprivileged users to change mount flags */
  928. if (flag & CL_UNPRIVILEGED) {
  929. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  930. if (mnt->mnt.mnt_flags & MNT_READONLY)
  931. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  932. if (mnt->mnt.mnt_flags & MNT_NODEV)
  933. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  934. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  935. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  936. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  937. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  938. }
  939. /* Don't allow unprivileged users to reveal what is under a mount */
  940. if ((flag & CL_UNPRIVILEGED) &&
  941. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  942. mnt->mnt.mnt_flags |= MNT_LOCKED;
  943. atomic_inc(&sb->s_active);
  944. mnt->mnt.mnt_sb = sb;
  945. mnt->mnt.mnt_root = dget(root);
  946. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  947. mnt->mnt_parent = mnt;
  948. lock_mount_hash();
  949. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  950. unlock_mount_hash();
  951. if ((flag & CL_SLAVE) ||
  952. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  953. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  954. mnt->mnt_master = old;
  955. CLEAR_MNT_SHARED(mnt);
  956. } else if (!(flag & CL_PRIVATE)) {
  957. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  958. list_add(&mnt->mnt_share, &old->mnt_share);
  959. if (IS_MNT_SLAVE(old))
  960. list_add(&mnt->mnt_slave, &old->mnt_slave);
  961. mnt->mnt_master = old->mnt_master;
  962. }
  963. if (flag & CL_MAKE_SHARED)
  964. set_mnt_shared(mnt);
  965. /* stick the duplicate mount on the same expiry list
  966. * as the original if that was on one */
  967. if (flag & CL_EXPIRE) {
  968. if (!list_empty(&old->mnt_expire))
  969. list_add(&mnt->mnt_expire, &old->mnt_expire);
  970. }
  971. return mnt;
  972. out_free:
  973. mnt_free_id(mnt);
  974. free_vfsmnt(mnt);
  975. return ERR_PTR(err);
  976. }
  977. static void cleanup_mnt(struct mount *mnt)
  978. {
  979. /*
  980. * This probably indicates that somebody messed
  981. * up a mnt_want/drop_write() pair. If this
  982. * happens, the filesystem was probably unable
  983. * to make r/w->r/o transitions.
  984. */
  985. /*
  986. * The locking used to deal with mnt_count decrement provides barriers,
  987. * so mnt_get_writers() below is safe.
  988. */
  989. WARN_ON(mnt_get_writers(mnt));
  990. if (unlikely(mnt->mnt_pins.first))
  991. mnt_pin_kill(mnt);
  992. fsnotify_vfsmount_delete(&mnt->mnt);
  993. dput(mnt->mnt.mnt_root);
  994. deactivate_super(mnt->mnt.mnt_sb);
  995. mnt_free_id(mnt);
  996. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  997. }
  998. static void __cleanup_mnt(struct rcu_head *head)
  999. {
  1000. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  1001. }
  1002. static LLIST_HEAD(delayed_mntput_list);
  1003. static void delayed_mntput(struct work_struct *unused)
  1004. {
  1005. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  1006. struct llist_node *next;
  1007. for (; node; node = next) {
  1008. next = llist_next(node);
  1009. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  1010. }
  1011. }
  1012. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1013. static void mntput_no_expire(struct mount *mnt)
  1014. {
  1015. rcu_read_lock();
  1016. if (likely(READ_ONCE(mnt->mnt_ns))) {
  1017. /*
  1018. * Since we don't do lock_mount_hash() here,
  1019. * ->mnt_ns can change under us. However, if it's
  1020. * non-NULL, then there's a reference that won't
  1021. * be dropped until after an RCU delay done after
  1022. * turning ->mnt_ns NULL. So if we observe it
  1023. * non-NULL under rcu_read_lock(), the reference
  1024. * we are dropping is not the final one.
  1025. */
  1026. mnt_add_count(mnt, -1);
  1027. rcu_read_unlock();
  1028. return;
  1029. }
  1030. lock_mount_hash();
  1031. /*
  1032. * make sure that if __legitimize_mnt() has not seen us grab
  1033. * mount_lock, we'll see their refcount increment here.
  1034. */
  1035. smp_mb();
  1036. mnt_add_count(mnt, -1);
  1037. if (mnt_get_count(mnt)) {
  1038. rcu_read_unlock();
  1039. unlock_mount_hash();
  1040. return;
  1041. }
  1042. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1043. rcu_read_unlock();
  1044. unlock_mount_hash();
  1045. return;
  1046. }
  1047. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1048. rcu_read_unlock();
  1049. list_del(&mnt->mnt_instance);
  1050. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1051. struct mount *p, *tmp;
  1052. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1053. umount_mnt(p);
  1054. }
  1055. }
  1056. unlock_mount_hash();
  1057. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1058. struct task_struct *task = current;
  1059. if (likely(!(task->flags & PF_KTHREAD))) {
  1060. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1061. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1062. return;
  1063. }
  1064. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1065. schedule_delayed_work(&delayed_mntput_work, 1);
  1066. return;
  1067. }
  1068. cleanup_mnt(mnt);
  1069. }
  1070. void mntput(struct vfsmount *mnt)
  1071. {
  1072. if (mnt) {
  1073. struct mount *m = real_mount(mnt);
  1074. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1075. if (unlikely(m->mnt_expiry_mark))
  1076. m->mnt_expiry_mark = 0;
  1077. mntput_no_expire(m);
  1078. }
  1079. }
  1080. EXPORT_SYMBOL(mntput);
  1081. struct vfsmount *mntget(struct vfsmount *mnt)
  1082. {
  1083. if (mnt)
  1084. mnt_add_count(real_mount(mnt), 1);
  1085. return mnt;
  1086. }
  1087. EXPORT_SYMBOL(mntget);
  1088. struct vfsmount *mnt_clone_internal(struct path *path)
  1089. {
  1090. struct mount *p;
  1091. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1092. if (IS_ERR(p))
  1093. return ERR_CAST(p);
  1094. p->mnt.mnt_flags |= MNT_INTERNAL;
  1095. return &p->mnt;
  1096. }
  1097. static inline void mangle(struct seq_file *m, const char *s)
  1098. {
  1099. seq_escape(m, s, " \t\n\\");
  1100. }
  1101. /*
  1102. * Simple .show_options callback for filesystems which don't want to
  1103. * implement more complex mount option showing.
  1104. *
  1105. * See also save_mount_options().
  1106. */
  1107. int generic_show_options(struct seq_file *m, struct dentry *root)
  1108. {
  1109. const char *options;
  1110. rcu_read_lock();
  1111. options = rcu_dereference(root->d_sb->s_options);
  1112. if (options != NULL && options[0]) {
  1113. seq_putc(m, ',');
  1114. mangle(m, options);
  1115. }
  1116. rcu_read_unlock();
  1117. return 0;
  1118. }
  1119. EXPORT_SYMBOL(generic_show_options);
  1120. /*
  1121. * If filesystem uses generic_show_options(), this function should be
  1122. * called from the fill_super() callback.
  1123. *
  1124. * The .remount_fs callback usually needs to be handled in a special
  1125. * way, to make sure, that previous options are not overwritten if the
  1126. * remount fails.
  1127. *
  1128. * Also note, that if the filesystem's .remount_fs function doesn't
  1129. * reset all options to their default value, but changes only newly
  1130. * given options, then the displayed options will not reflect reality
  1131. * any more.
  1132. */
  1133. void save_mount_options(struct super_block *sb, char *options)
  1134. {
  1135. BUG_ON(sb->s_options);
  1136. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1137. }
  1138. EXPORT_SYMBOL(save_mount_options);
  1139. void replace_mount_options(struct super_block *sb, char *options)
  1140. {
  1141. char *old = sb->s_options;
  1142. rcu_assign_pointer(sb->s_options, options);
  1143. if (old) {
  1144. synchronize_rcu();
  1145. kfree(old);
  1146. }
  1147. }
  1148. EXPORT_SYMBOL(replace_mount_options);
  1149. #ifdef CONFIG_PROC_FS
  1150. /* iterator; we want it to have access to namespace_sem, thus here... */
  1151. static void *m_start(struct seq_file *m, loff_t *pos)
  1152. {
  1153. struct proc_mounts *p = m->private;
  1154. down_read(&namespace_sem);
  1155. if (p->cached_event == p->ns->event) {
  1156. void *v = p->cached_mount;
  1157. if (*pos == p->cached_index)
  1158. return v;
  1159. if (*pos == p->cached_index + 1) {
  1160. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1161. return p->cached_mount = v;
  1162. }
  1163. }
  1164. p->cached_event = p->ns->event;
  1165. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1166. p->cached_index = *pos;
  1167. return p->cached_mount;
  1168. }
  1169. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1170. {
  1171. struct proc_mounts *p = m->private;
  1172. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1173. p->cached_index = *pos;
  1174. return p->cached_mount;
  1175. }
  1176. static void m_stop(struct seq_file *m, void *v)
  1177. {
  1178. up_read(&namespace_sem);
  1179. }
  1180. static int m_show(struct seq_file *m, void *v)
  1181. {
  1182. struct proc_mounts *p = m->private;
  1183. struct mount *r = list_entry(v, struct mount, mnt_list);
  1184. return p->show(m, &r->mnt);
  1185. }
  1186. const struct seq_operations mounts_op = {
  1187. .start = m_start,
  1188. .next = m_next,
  1189. .stop = m_stop,
  1190. .show = m_show,
  1191. };
  1192. #endif /* CONFIG_PROC_FS */
  1193. /**
  1194. * may_umount_tree - check if a mount tree is busy
  1195. * @mnt: root of mount tree
  1196. *
  1197. * This is called to check if a tree of mounts has any
  1198. * open files, pwds, chroots or sub mounts that are
  1199. * busy.
  1200. */
  1201. int may_umount_tree(struct vfsmount *m)
  1202. {
  1203. struct mount *mnt = real_mount(m);
  1204. int actual_refs = 0;
  1205. int minimum_refs = 0;
  1206. struct mount *p;
  1207. BUG_ON(!m);
  1208. /* write lock needed for mnt_get_count */
  1209. lock_mount_hash();
  1210. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1211. actual_refs += mnt_get_count(p);
  1212. minimum_refs += 2;
  1213. }
  1214. unlock_mount_hash();
  1215. if (actual_refs > minimum_refs)
  1216. return 0;
  1217. return 1;
  1218. }
  1219. EXPORT_SYMBOL(may_umount_tree);
  1220. /**
  1221. * may_umount - check if a mount point is busy
  1222. * @mnt: root of mount
  1223. *
  1224. * This is called to check if a mount point has any
  1225. * open files, pwds, chroots or sub mounts. If the
  1226. * mount has sub mounts this will return busy
  1227. * regardless of whether the sub mounts are busy.
  1228. *
  1229. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1230. * give false negatives. The main reason why it's here is that we need
  1231. * a non-destructive way to look for easily umountable filesystems.
  1232. */
  1233. int may_umount(struct vfsmount *mnt)
  1234. {
  1235. int ret = 1;
  1236. down_read(&namespace_sem);
  1237. lock_mount_hash();
  1238. if (propagate_mount_busy(real_mount(mnt), 2))
  1239. ret = 0;
  1240. unlock_mount_hash();
  1241. up_read(&namespace_sem);
  1242. return ret;
  1243. }
  1244. EXPORT_SYMBOL(may_umount);
  1245. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1246. static void namespace_unlock(void)
  1247. {
  1248. struct hlist_head head;
  1249. hlist_move_list(&unmounted, &head);
  1250. up_write(&namespace_sem);
  1251. if (likely(hlist_empty(&head)))
  1252. return;
  1253. synchronize_rcu();
  1254. group_pin_kill(&head);
  1255. }
  1256. static inline void namespace_lock(void)
  1257. {
  1258. down_write(&namespace_sem);
  1259. }
  1260. enum umount_tree_flags {
  1261. UMOUNT_SYNC = 1,
  1262. UMOUNT_PROPAGATE = 2,
  1263. UMOUNT_CONNECTED = 4,
  1264. };
  1265. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1266. {
  1267. /* Leaving mounts connected is only valid for lazy umounts */
  1268. if (how & UMOUNT_SYNC)
  1269. return true;
  1270. /* A mount without a parent has nothing to be connected to */
  1271. if (!mnt_has_parent(mnt))
  1272. return true;
  1273. /* Because the reference counting rules change when mounts are
  1274. * unmounted and connected, umounted mounts may not be
  1275. * connected to mounted mounts.
  1276. */
  1277. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1278. return true;
  1279. /* Has it been requested that the mount remain connected? */
  1280. if (how & UMOUNT_CONNECTED)
  1281. return false;
  1282. /* Is the mount locked such that it needs to remain connected? */
  1283. if (IS_MNT_LOCKED(mnt))
  1284. return false;
  1285. /* By default disconnect the mount */
  1286. return true;
  1287. }
  1288. /*
  1289. * mount_lock must be held
  1290. * namespace_sem must be held for write
  1291. */
  1292. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1293. {
  1294. LIST_HEAD(tmp_list);
  1295. struct mount *p;
  1296. if (how & UMOUNT_PROPAGATE)
  1297. propagate_mount_unlock(mnt);
  1298. /* Gather the mounts to umount */
  1299. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1300. p->mnt.mnt_flags |= MNT_UMOUNT;
  1301. list_move(&p->mnt_list, &tmp_list);
  1302. }
  1303. /* Hide the mounts from mnt_mounts */
  1304. list_for_each_entry(p, &tmp_list, mnt_list) {
  1305. list_del_init(&p->mnt_child);
  1306. }
  1307. /* Add propogated mounts to the tmp_list */
  1308. if (how & UMOUNT_PROPAGATE)
  1309. propagate_umount(&tmp_list);
  1310. while (!list_empty(&tmp_list)) {
  1311. struct mnt_namespace *ns;
  1312. bool disconnect;
  1313. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1314. list_del_init(&p->mnt_expire);
  1315. list_del_init(&p->mnt_list);
  1316. ns = p->mnt_ns;
  1317. if (ns) {
  1318. ns->mounts--;
  1319. __touch_mnt_namespace(ns);
  1320. }
  1321. p->mnt_ns = NULL;
  1322. if (how & UMOUNT_SYNC)
  1323. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1324. disconnect = disconnect_mount(p, how);
  1325. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1326. disconnect ? &unmounted : NULL);
  1327. if (mnt_has_parent(p)) {
  1328. mnt_add_count(p->mnt_parent, -1);
  1329. if (!disconnect) {
  1330. /* Don't forget about p */
  1331. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1332. } else {
  1333. umount_mnt(p);
  1334. }
  1335. }
  1336. change_mnt_propagation(p, MS_PRIVATE);
  1337. }
  1338. }
  1339. static void shrink_submounts(struct mount *mnt);
  1340. static int do_umount(struct mount *mnt, int flags)
  1341. {
  1342. struct super_block *sb = mnt->mnt.mnt_sb;
  1343. int retval;
  1344. retval = security_sb_umount(&mnt->mnt, flags);
  1345. if (retval)
  1346. return retval;
  1347. /*
  1348. * Allow userspace to request a mountpoint be expired rather than
  1349. * unmounting unconditionally. Unmount only happens if:
  1350. * (1) the mark is already set (the mark is cleared by mntput())
  1351. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1352. */
  1353. if (flags & MNT_EXPIRE) {
  1354. if (&mnt->mnt == current->fs->root.mnt ||
  1355. flags & (MNT_FORCE | MNT_DETACH))
  1356. return -EINVAL;
  1357. /*
  1358. * probably don't strictly need the lock here if we examined
  1359. * all race cases, but it's a slowpath.
  1360. */
  1361. lock_mount_hash();
  1362. if (mnt_get_count(mnt) != 2) {
  1363. unlock_mount_hash();
  1364. return -EBUSY;
  1365. }
  1366. unlock_mount_hash();
  1367. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1368. return -EAGAIN;
  1369. }
  1370. /*
  1371. * If we may have to abort operations to get out of this
  1372. * mount, and they will themselves hold resources we must
  1373. * allow the fs to do things. In the Unix tradition of
  1374. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1375. * might fail to complete on the first run through as other tasks
  1376. * must return, and the like. Thats for the mount program to worry
  1377. * about for the moment.
  1378. */
  1379. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1380. sb->s_op->umount_begin(sb);
  1381. }
  1382. /*
  1383. * No sense to grab the lock for this test, but test itself looks
  1384. * somewhat bogus. Suggestions for better replacement?
  1385. * Ho-hum... In principle, we might treat that as umount + switch
  1386. * to rootfs. GC would eventually take care of the old vfsmount.
  1387. * Actually it makes sense, especially if rootfs would contain a
  1388. * /reboot - static binary that would close all descriptors and
  1389. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1390. */
  1391. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1392. /*
  1393. * Special case for "unmounting" root ...
  1394. * we just try to remount it readonly.
  1395. */
  1396. if (!capable(CAP_SYS_ADMIN))
  1397. return -EPERM;
  1398. down_write(&sb->s_umount);
  1399. if (!(sb->s_flags & MS_RDONLY))
  1400. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1401. up_write(&sb->s_umount);
  1402. return retval;
  1403. }
  1404. namespace_lock();
  1405. lock_mount_hash();
  1406. /* Recheck MNT_LOCKED with the locks held */
  1407. retval = -EINVAL;
  1408. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1409. goto out;
  1410. event++;
  1411. if (flags & MNT_DETACH) {
  1412. if (!list_empty(&mnt->mnt_list))
  1413. umount_tree(mnt, UMOUNT_PROPAGATE);
  1414. retval = 0;
  1415. } else {
  1416. shrink_submounts(mnt);
  1417. retval = -EBUSY;
  1418. if (!propagate_mount_busy(mnt, 2)) {
  1419. if (!list_empty(&mnt->mnt_list))
  1420. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1421. retval = 0;
  1422. }
  1423. }
  1424. out:
  1425. unlock_mount_hash();
  1426. namespace_unlock();
  1427. return retval;
  1428. }
  1429. /*
  1430. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1431. *
  1432. * During unlink, rmdir, and d_drop it is possible to loose the path
  1433. * to an existing mountpoint, and wind up leaking the mount.
  1434. * detach_mounts allows lazily unmounting those mounts instead of
  1435. * leaking them.
  1436. *
  1437. * The caller may hold dentry->d_inode->i_mutex.
  1438. */
  1439. void __detach_mounts(struct dentry *dentry)
  1440. {
  1441. struct mountpoint *mp;
  1442. struct mount *mnt;
  1443. namespace_lock();
  1444. lock_mount_hash();
  1445. mp = lookup_mountpoint(dentry);
  1446. if (IS_ERR_OR_NULL(mp))
  1447. goto out_unlock;
  1448. event++;
  1449. while (!hlist_empty(&mp->m_list)) {
  1450. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1451. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1452. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1453. umount_mnt(mnt);
  1454. }
  1455. else umount_tree(mnt, UMOUNT_CONNECTED);
  1456. }
  1457. put_mountpoint(mp);
  1458. out_unlock:
  1459. unlock_mount_hash();
  1460. namespace_unlock();
  1461. }
  1462. /*
  1463. * Is the caller allowed to modify his namespace?
  1464. */
  1465. static inline bool may_mount(void)
  1466. {
  1467. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1468. }
  1469. static inline bool may_mandlock(void)
  1470. {
  1471. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1472. return false;
  1473. #endif
  1474. return capable(CAP_SYS_ADMIN);
  1475. }
  1476. /*
  1477. * Now umount can handle mount points as well as block devices.
  1478. * This is important for filesystems which use unnamed block devices.
  1479. *
  1480. * We now support a flag for forced unmount like the other 'big iron'
  1481. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1482. */
  1483. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1484. {
  1485. struct path path;
  1486. struct mount *mnt;
  1487. int retval;
  1488. int lookup_flags = 0;
  1489. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1490. return -EINVAL;
  1491. if (!may_mount())
  1492. return -EPERM;
  1493. if (!(flags & UMOUNT_NOFOLLOW))
  1494. lookup_flags |= LOOKUP_FOLLOW;
  1495. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1496. if (retval)
  1497. goto out;
  1498. mnt = real_mount(path.mnt);
  1499. retval = -EINVAL;
  1500. if (path.dentry != path.mnt->mnt_root)
  1501. goto dput_and_out;
  1502. if (!check_mnt(mnt))
  1503. goto dput_and_out;
  1504. if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
  1505. goto dput_and_out;
  1506. retval = -EPERM;
  1507. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1508. goto dput_and_out;
  1509. retval = do_umount(mnt, flags);
  1510. dput_and_out:
  1511. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1512. dput(path.dentry);
  1513. mntput_no_expire(mnt);
  1514. out:
  1515. return retval;
  1516. }
  1517. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1518. /*
  1519. * The 2.0 compatible umount. No flags.
  1520. */
  1521. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1522. {
  1523. return sys_umount(name, 0);
  1524. }
  1525. #endif
  1526. static bool is_mnt_ns_file(struct dentry *dentry)
  1527. {
  1528. /* Is this a proxy for a mount namespace? */
  1529. return dentry->d_op == &ns_dentry_operations &&
  1530. dentry->d_fsdata == &mntns_operations;
  1531. }
  1532. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1533. {
  1534. return container_of(ns, struct mnt_namespace, ns);
  1535. }
  1536. static bool mnt_ns_loop(struct dentry *dentry)
  1537. {
  1538. /* Could bind mounting the mount namespace inode cause a
  1539. * mount namespace loop?
  1540. */
  1541. struct mnt_namespace *mnt_ns;
  1542. if (!is_mnt_ns_file(dentry))
  1543. return false;
  1544. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1545. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1546. }
  1547. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1548. int flag)
  1549. {
  1550. struct mount *res, *p, *q, *r, *parent;
  1551. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1552. return ERR_PTR(-EINVAL);
  1553. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1554. return ERR_PTR(-EINVAL);
  1555. res = q = clone_mnt(mnt, dentry, flag);
  1556. if (IS_ERR(q))
  1557. return q;
  1558. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1559. p = mnt;
  1560. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1561. struct mount *s;
  1562. if (!is_subdir(r->mnt_mountpoint, dentry))
  1563. continue;
  1564. for (s = r; s; s = next_mnt(s, r)) {
  1565. if (!(flag & CL_COPY_UNBINDABLE) &&
  1566. IS_MNT_UNBINDABLE(s)) {
  1567. if (s->mnt.mnt_flags & MNT_LOCKED) {
  1568. /* Both unbindable and locked. */
  1569. q = ERR_PTR(-EPERM);
  1570. goto out;
  1571. } else {
  1572. s = skip_mnt_tree(s);
  1573. continue;
  1574. }
  1575. }
  1576. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1577. is_mnt_ns_file(s->mnt.mnt_root)) {
  1578. s = skip_mnt_tree(s);
  1579. continue;
  1580. }
  1581. while (p != s->mnt_parent) {
  1582. p = p->mnt_parent;
  1583. q = q->mnt_parent;
  1584. }
  1585. p = s;
  1586. parent = q;
  1587. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1588. if (IS_ERR(q))
  1589. goto out;
  1590. lock_mount_hash();
  1591. list_add_tail(&q->mnt_list, &res->mnt_list);
  1592. attach_mnt(q, parent, p->mnt_mp);
  1593. unlock_mount_hash();
  1594. }
  1595. }
  1596. return res;
  1597. out:
  1598. if (res) {
  1599. lock_mount_hash();
  1600. umount_tree(res, UMOUNT_SYNC);
  1601. unlock_mount_hash();
  1602. }
  1603. return q;
  1604. }
  1605. /* Caller should check returned pointer for errors */
  1606. struct vfsmount *collect_mounts(struct path *path)
  1607. {
  1608. struct mount *tree;
  1609. namespace_lock();
  1610. if (!check_mnt(real_mount(path->mnt)))
  1611. tree = ERR_PTR(-EINVAL);
  1612. else
  1613. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1614. CL_COPY_ALL | CL_PRIVATE);
  1615. namespace_unlock();
  1616. if (IS_ERR(tree))
  1617. return ERR_CAST(tree);
  1618. return &tree->mnt;
  1619. }
  1620. void drop_collected_mounts(struct vfsmount *mnt)
  1621. {
  1622. namespace_lock();
  1623. lock_mount_hash();
  1624. umount_tree(real_mount(mnt), 0);
  1625. unlock_mount_hash();
  1626. namespace_unlock();
  1627. }
  1628. /**
  1629. * clone_private_mount - create a private clone of a path
  1630. *
  1631. * This creates a new vfsmount, which will be the clone of @path. The new will
  1632. * not be attached anywhere in the namespace and will be private (i.e. changes
  1633. * to the originating mount won't be propagated into this).
  1634. *
  1635. * Release with mntput().
  1636. */
  1637. struct vfsmount *clone_private_mount(struct path *path)
  1638. {
  1639. struct mount *old_mnt = real_mount(path->mnt);
  1640. struct mount *new_mnt;
  1641. if (IS_MNT_UNBINDABLE(old_mnt))
  1642. return ERR_PTR(-EINVAL);
  1643. down_read(&namespace_sem);
  1644. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1645. up_read(&namespace_sem);
  1646. if (IS_ERR(new_mnt))
  1647. return ERR_CAST(new_mnt);
  1648. return &new_mnt->mnt;
  1649. }
  1650. EXPORT_SYMBOL_GPL(clone_private_mount);
  1651. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1652. struct vfsmount *root)
  1653. {
  1654. struct mount *mnt;
  1655. int res = f(root, arg);
  1656. if (res)
  1657. return res;
  1658. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1659. res = f(&mnt->mnt, arg);
  1660. if (res)
  1661. return res;
  1662. }
  1663. return 0;
  1664. }
  1665. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1666. {
  1667. struct mount *p;
  1668. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1669. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1670. mnt_release_group_id(p);
  1671. }
  1672. }
  1673. static int invent_group_ids(struct mount *mnt, bool recurse)
  1674. {
  1675. struct mount *p;
  1676. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1677. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1678. int err = mnt_alloc_group_id(p);
  1679. if (err) {
  1680. cleanup_group_ids(mnt, p);
  1681. return err;
  1682. }
  1683. }
  1684. }
  1685. return 0;
  1686. }
  1687. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1688. {
  1689. unsigned int max = READ_ONCE(sysctl_mount_max);
  1690. unsigned int mounts = 0, old, pending, sum;
  1691. struct mount *p;
  1692. for (p = mnt; p; p = next_mnt(p, mnt))
  1693. mounts++;
  1694. old = ns->mounts;
  1695. pending = ns->pending_mounts;
  1696. sum = old + pending;
  1697. if ((old > sum) ||
  1698. (pending > sum) ||
  1699. (max < sum) ||
  1700. (mounts > (max - sum)))
  1701. return -ENOSPC;
  1702. ns->pending_mounts = pending + mounts;
  1703. return 0;
  1704. }
  1705. /*
  1706. * @source_mnt : mount tree to be attached
  1707. * @nd : place the mount tree @source_mnt is attached
  1708. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1709. * store the parent mount and mountpoint dentry.
  1710. * (done when source_mnt is moved)
  1711. *
  1712. * NOTE: in the table below explains the semantics when a source mount
  1713. * of a given type is attached to a destination mount of a given type.
  1714. * ---------------------------------------------------------------------------
  1715. * | BIND MOUNT OPERATION |
  1716. * |**************************************************************************
  1717. * | source-->| shared | private | slave | unbindable |
  1718. * | dest | | | | |
  1719. * | | | | | | |
  1720. * | v | | | | |
  1721. * |**************************************************************************
  1722. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1723. * | | | | | |
  1724. * |non-shared| shared (+) | private | slave (*) | invalid |
  1725. * ***************************************************************************
  1726. * A bind operation clones the source mount and mounts the clone on the
  1727. * destination mount.
  1728. *
  1729. * (++) the cloned mount is propagated to all the mounts in the propagation
  1730. * tree of the destination mount and the cloned mount is added to
  1731. * the peer group of the source mount.
  1732. * (+) the cloned mount is created under the destination mount and is marked
  1733. * as shared. The cloned mount is added to the peer group of the source
  1734. * mount.
  1735. * (+++) the mount is propagated to all the mounts in the propagation tree
  1736. * of the destination mount and the cloned mount is made slave
  1737. * of the same master as that of the source mount. The cloned mount
  1738. * is marked as 'shared and slave'.
  1739. * (*) the cloned mount is made a slave of the same master as that of the
  1740. * source mount.
  1741. *
  1742. * ---------------------------------------------------------------------------
  1743. * | MOVE MOUNT OPERATION |
  1744. * |**************************************************************************
  1745. * | source-->| shared | private | slave | unbindable |
  1746. * | dest | | | | |
  1747. * | | | | | | |
  1748. * | v | | | | |
  1749. * |**************************************************************************
  1750. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1751. * | | | | | |
  1752. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1753. * ***************************************************************************
  1754. *
  1755. * (+) the mount is moved to the destination. And is then propagated to
  1756. * all the mounts in the propagation tree of the destination mount.
  1757. * (+*) the mount is moved to the destination.
  1758. * (+++) the mount is moved to the destination and is then propagated to
  1759. * all the mounts belonging to the destination mount's propagation tree.
  1760. * the mount is marked as 'shared and slave'.
  1761. * (*) the mount continues to be a slave at the new location.
  1762. *
  1763. * if the source mount is a tree, the operations explained above is
  1764. * applied to each mount in the tree.
  1765. * Must be called without spinlocks held, since this function can sleep
  1766. * in allocations.
  1767. */
  1768. static int attach_recursive_mnt(struct mount *source_mnt,
  1769. struct mount *dest_mnt,
  1770. struct mountpoint *dest_mp,
  1771. struct path *parent_path)
  1772. {
  1773. HLIST_HEAD(tree_list);
  1774. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1775. struct mountpoint *smp;
  1776. struct mount *child, *p;
  1777. struct hlist_node *n;
  1778. int err;
  1779. /* Preallocate a mountpoint in case the new mounts need
  1780. * to be tucked under other mounts.
  1781. */
  1782. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1783. if (IS_ERR(smp))
  1784. return PTR_ERR(smp);
  1785. /* Is there space to add these mounts to the mount namespace? */
  1786. if (!parent_path) {
  1787. err = count_mounts(ns, source_mnt);
  1788. if (err)
  1789. goto out;
  1790. }
  1791. if (IS_MNT_SHARED(dest_mnt)) {
  1792. err = invent_group_ids(source_mnt, true);
  1793. if (err)
  1794. goto out;
  1795. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1796. lock_mount_hash();
  1797. if (err)
  1798. goto out_cleanup_ids;
  1799. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1800. set_mnt_shared(p);
  1801. } else {
  1802. lock_mount_hash();
  1803. }
  1804. if (parent_path) {
  1805. detach_mnt(source_mnt, parent_path);
  1806. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1807. touch_mnt_namespace(source_mnt->mnt_ns);
  1808. } else {
  1809. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1810. commit_tree(source_mnt);
  1811. }
  1812. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1813. struct mount *q;
  1814. hlist_del_init(&child->mnt_hash);
  1815. q = __lookup_mnt(&child->mnt_parent->mnt,
  1816. child->mnt_mountpoint);
  1817. if (q)
  1818. mnt_change_mountpoint(child, smp, q);
  1819. commit_tree(child);
  1820. }
  1821. put_mountpoint(smp);
  1822. unlock_mount_hash();
  1823. return 0;
  1824. out_cleanup_ids:
  1825. while (!hlist_empty(&tree_list)) {
  1826. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1827. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1828. umount_tree(child, UMOUNT_SYNC);
  1829. }
  1830. unlock_mount_hash();
  1831. cleanup_group_ids(source_mnt, NULL);
  1832. out:
  1833. ns->pending_mounts = 0;
  1834. read_seqlock_excl(&mount_lock);
  1835. put_mountpoint(smp);
  1836. read_sequnlock_excl(&mount_lock);
  1837. return err;
  1838. }
  1839. static struct mountpoint *lock_mount(struct path *path)
  1840. {
  1841. struct vfsmount *mnt;
  1842. struct dentry *dentry = path->dentry;
  1843. retry:
  1844. inode_lock(dentry->d_inode);
  1845. if (unlikely(cant_mount(dentry))) {
  1846. inode_unlock(dentry->d_inode);
  1847. return ERR_PTR(-ENOENT);
  1848. }
  1849. namespace_lock();
  1850. mnt = lookup_mnt(path);
  1851. if (likely(!mnt)) {
  1852. struct mountpoint *mp = get_mountpoint(dentry);
  1853. if (IS_ERR(mp)) {
  1854. namespace_unlock();
  1855. inode_unlock(dentry->d_inode);
  1856. return mp;
  1857. }
  1858. return mp;
  1859. }
  1860. namespace_unlock();
  1861. inode_unlock(path->dentry->d_inode);
  1862. path_put(path);
  1863. path->mnt = mnt;
  1864. dentry = path->dentry = dget(mnt->mnt_root);
  1865. goto retry;
  1866. }
  1867. static void unlock_mount(struct mountpoint *where)
  1868. {
  1869. struct dentry *dentry = where->m_dentry;
  1870. read_seqlock_excl(&mount_lock);
  1871. put_mountpoint(where);
  1872. read_sequnlock_excl(&mount_lock);
  1873. namespace_unlock();
  1874. inode_unlock(dentry->d_inode);
  1875. }
  1876. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1877. {
  1878. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1879. return -EINVAL;
  1880. if (d_is_dir(mp->m_dentry) !=
  1881. d_is_dir(mnt->mnt.mnt_root))
  1882. return -ENOTDIR;
  1883. return attach_recursive_mnt(mnt, p, mp, NULL);
  1884. }
  1885. /*
  1886. * Sanity check the flags to change_mnt_propagation.
  1887. */
  1888. static int flags_to_propagation_type(int flags)
  1889. {
  1890. int type = flags & ~(MS_REC | MS_SILENT);
  1891. /* Fail if any non-propagation flags are set */
  1892. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1893. return 0;
  1894. /* Only one propagation flag should be set */
  1895. if (!is_power_of_2(type))
  1896. return 0;
  1897. return type;
  1898. }
  1899. /*
  1900. * recursively change the type of the mountpoint.
  1901. */
  1902. static int do_change_type(struct path *path, int flag)
  1903. {
  1904. struct mount *m;
  1905. struct mount *mnt = real_mount(path->mnt);
  1906. int recurse = flag & MS_REC;
  1907. int type;
  1908. int err = 0;
  1909. if (path->dentry != path->mnt->mnt_root)
  1910. return -EINVAL;
  1911. type = flags_to_propagation_type(flag);
  1912. if (!type)
  1913. return -EINVAL;
  1914. namespace_lock();
  1915. if (type == MS_SHARED) {
  1916. err = invent_group_ids(mnt, recurse);
  1917. if (err)
  1918. goto out_unlock;
  1919. }
  1920. lock_mount_hash();
  1921. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1922. change_mnt_propagation(m, type);
  1923. unlock_mount_hash();
  1924. out_unlock:
  1925. namespace_unlock();
  1926. return err;
  1927. }
  1928. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1929. {
  1930. struct mount *child;
  1931. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1932. if (!is_subdir(child->mnt_mountpoint, dentry))
  1933. continue;
  1934. if (child->mnt.mnt_flags & MNT_LOCKED)
  1935. return true;
  1936. }
  1937. return false;
  1938. }
  1939. /*
  1940. * do loopback mount.
  1941. */
  1942. static int do_loopback(struct path *path, const char *old_name,
  1943. int recurse)
  1944. {
  1945. struct path old_path;
  1946. struct mount *mnt = NULL, *old, *parent;
  1947. struct mountpoint *mp;
  1948. int err;
  1949. if (!old_name || !*old_name)
  1950. return -EINVAL;
  1951. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1952. if (err)
  1953. return err;
  1954. err = -EINVAL;
  1955. if (mnt_ns_loop(old_path.dentry))
  1956. goto out;
  1957. mp = lock_mount(path);
  1958. err = PTR_ERR(mp);
  1959. if (IS_ERR(mp))
  1960. goto out;
  1961. old = real_mount(old_path.mnt);
  1962. parent = real_mount(path->mnt);
  1963. err = -EINVAL;
  1964. if (IS_MNT_UNBINDABLE(old))
  1965. goto out2;
  1966. if (!check_mnt(parent))
  1967. goto out2;
  1968. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1969. goto out2;
  1970. if (!recurse && has_locked_children(old, old_path.dentry))
  1971. goto out2;
  1972. if (recurse)
  1973. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1974. else
  1975. mnt = clone_mnt(old, old_path.dentry, 0);
  1976. if (IS_ERR(mnt)) {
  1977. err = PTR_ERR(mnt);
  1978. goto out2;
  1979. }
  1980. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1981. err = graft_tree(mnt, parent, mp);
  1982. if (err) {
  1983. lock_mount_hash();
  1984. umount_tree(mnt, UMOUNT_SYNC);
  1985. unlock_mount_hash();
  1986. }
  1987. out2:
  1988. unlock_mount(mp);
  1989. out:
  1990. path_put(&old_path);
  1991. return err;
  1992. }
  1993. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1994. {
  1995. int error = 0;
  1996. int readonly_request = 0;
  1997. if (ms_flags & MS_RDONLY)
  1998. readonly_request = 1;
  1999. if (readonly_request == __mnt_is_readonly(mnt))
  2000. return 0;
  2001. if (readonly_request)
  2002. error = mnt_make_readonly(real_mount(mnt));
  2003. else
  2004. __mnt_unmake_readonly(real_mount(mnt));
  2005. return error;
  2006. }
  2007. /*
  2008. * change filesystem flags. dir should be a physical root of filesystem.
  2009. * If you've mounted a non-root directory somewhere and want to do remount
  2010. * on it - tough luck.
  2011. */
  2012. static int do_remount(struct path *path, int flags, int mnt_flags,
  2013. void *data)
  2014. {
  2015. int err;
  2016. struct super_block *sb = path->mnt->mnt_sb;
  2017. struct mount *mnt = real_mount(path->mnt);
  2018. if (!check_mnt(mnt))
  2019. return -EINVAL;
  2020. if (path->dentry != path->mnt->mnt_root)
  2021. return -EINVAL;
  2022. /* Don't allow changing of locked mnt flags.
  2023. *
  2024. * No locks need to be held here while testing the various
  2025. * MNT_LOCK flags because those flags can never be cleared
  2026. * once they are set.
  2027. */
  2028. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2029. !(mnt_flags & MNT_READONLY)) {
  2030. return -EPERM;
  2031. }
  2032. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2033. !(mnt_flags & MNT_NODEV)) {
  2034. return -EPERM;
  2035. }
  2036. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2037. !(mnt_flags & MNT_NOSUID)) {
  2038. return -EPERM;
  2039. }
  2040. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2041. !(mnt_flags & MNT_NOEXEC)) {
  2042. return -EPERM;
  2043. }
  2044. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2045. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2046. return -EPERM;
  2047. }
  2048. err = security_sb_remount(sb, data);
  2049. if (err)
  2050. return err;
  2051. down_write(&sb->s_umount);
  2052. if (flags & MS_BIND)
  2053. err = change_mount_flags(path->mnt, flags);
  2054. else if (!capable(CAP_SYS_ADMIN))
  2055. err = -EPERM;
  2056. else
  2057. err = do_remount_sb(sb, flags, data, 0);
  2058. if (!err) {
  2059. lock_mount_hash();
  2060. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2061. mnt->mnt.mnt_flags = mnt_flags;
  2062. touch_mnt_namespace(mnt->mnt_ns);
  2063. unlock_mount_hash();
  2064. }
  2065. up_write(&sb->s_umount);
  2066. return err;
  2067. }
  2068. static inline int tree_contains_unbindable(struct mount *mnt)
  2069. {
  2070. struct mount *p;
  2071. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2072. if (IS_MNT_UNBINDABLE(p))
  2073. return 1;
  2074. }
  2075. return 0;
  2076. }
  2077. static int do_move_mount(struct path *path, const char *old_name)
  2078. {
  2079. struct path old_path, parent_path;
  2080. struct mount *p;
  2081. struct mount *old;
  2082. struct mountpoint *mp;
  2083. int err;
  2084. if (!old_name || !*old_name)
  2085. return -EINVAL;
  2086. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2087. if (err)
  2088. return err;
  2089. mp = lock_mount(path);
  2090. err = PTR_ERR(mp);
  2091. if (IS_ERR(mp))
  2092. goto out;
  2093. old = real_mount(old_path.mnt);
  2094. p = real_mount(path->mnt);
  2095. err = -EINVAL;
  2096. if (!check_mnt(p) || !check_mnt(old))
  2097. goto out1;
  2098. if (old->mnt.mnt_flags & MNT_LOCKED)
  2099. goto out1;
  2100. err = -EINVAL;
  2101. if (old_path.dentry != old_path.mnt->mnt_root)
  2102. goto out1;
  2103. if (!mnt_has_parent(old))
  2104. goto out1;
  2105. if (d_is_dir(path->dentry) !=
  2106. d_is_dir(old_path.dentry))
  2107. goto out1;
  2108. /*
  2109. * Don't move a mount residing in a shared parent.
  2110. */
  2111. if (IS_MNT_SHARED(old->mnt_parent))
  2112. goto out1;
  2113. /*
  2114. * Don't move a mount tree containing unbindable mounts to a destination
  2115. * mount which is shared.
  2116. */
  2117. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2118. goto out1;
  2119. err = -ELOOP;
  2120. for (; mnt_has_parent(p); p = p->mnt_parent)
  2121. if (p == old)
  2122. goto out1;
  2123. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2124. if (err)
  2125. goto out1;
  2126. /* if the mount is moved, it should no longer be expire
  2127. * automatically */
  2128. list_del_init(&old->mnt_expire);
  2129. out1:
  2130. unlock_mount(mp);
  2131. out:
  2132. if (!err)
  2133. path_put(&parent_path);
  2134. path_put(&old_path);
  2135. return err;
  2136. }
  2137. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2138. {
  2139. int err;
  2140. const char *subtype = strchr(fstype, '.');
  2141. if (subtype) {
  2142. subtype++;
  2143. err = -EINVAL;
  2144. if (!subtype[0])
  2145. goto err;
  2146. } else
  2147. subtype = "";
  2148. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2149. err = -ENOMEM;
  2150. if (!mnt->mnt_sb->s_subtype)
  2151. goto err;
  2152. return mnt;
  2153. err:
  2154. mntput(mnt);
  2155. return ERR_PTR(err);
  2156. }
  2157. /*
  2158. * add a mount into a namespace's mount tree
  2159. */
  2160. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2161. {
  2162. struct mountpoint *mp;
  2163. struct mount *parent;
  2164. int err;
  2165. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2166. mp = lock_mount(path);
  2167. if (IS_ERR(mp))
  2168. return PTR_ERR(mp);
  2169. parent = real_mount(path->mnt);
  2170. err = -EINVAL;
  2171. if (unlikely(!check_mnt(parent))) {
  2172. /* that's acceptable only for automounts done in private ns */
  2173. if (!(mnt_flags & MNT_SHRINKABLE))
  2174. goto unlock;
  2175. /* ... and for those we'd better have mountpoint still alive */
  2176. if (!parent->mnt_ns)
  2177. goto unlock;
  2178. }
  2179. /* Refuse the same filesystem on the same mount point */
  2180. err = -EBUSY;
  2181. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2182. path->mnt->mnt_root == path->dentry)
  2183. goto unlock;
  2184. err = -EINVAL;
  2185. if (d_is_symlink(newmnt->mnt.mnt_root))
  2186. goto unlock;
  2187. newmnt->mnt.mnt_flags = mnt_flags;
  2188. err = graft_tree(newmnt, parent, mp);
  2189. unlock:
  2190. unlock_mount(mp);
  2191. return err;
  2192. }
  2193. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2194. /*
  2195. * create a new mount for userspace and request it to be added into the
  2196. * namespace's tree
  2197. */
  2198. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2199. int mnt_flags, const char *name, void *data)
  2200. {
  2201. struct file_system_type *type;
  2202. struct vfsmount *mnt;
  2203. int err;
  2204. if (!fstype)
  2205. return -EINVAL;
  2206. type = get_fs_type(fstype);
  2207. if (!type)
  2208. return -ENODEV;
  2209. mnt = vfs_kern_mount(type, flags, name, data);
  2210. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2211. !mnt->mnt_sb->s_subtype)
  2212. mnt = fs_set_subtype(mnt, fstype);
  2213. put_filesystem(type);
  2214. if (IS_ERR(mnt))
  2215. return PTR_ERR(mnt);
  2216. if (mount_too_revealing(mnt, &mnt_flags)) {
  2217. mntput(mnt);
  2218. return -EPERM;
  2219. }
  2220. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2221. if (err)
  2222. mntput(mnt);
  2223. return err;
  2224. }
  2225. int finish_automount(struct vfsmount *m, struct path *path)
  2226. {
  2227. struct mount *mnt = real_mount(m);
  2228. int err;
  2229. /* The new mount record should have at least 2 refs to prevent it being
  2230. * expired before we get a chance to add it
  2231. */
  2232. BUG_ON(mnt_get_count(mnt) < 2);
  2233. if (m->mnt_sb == path->mnt->mnt_sb &&
  2234. m->mnt_root == path->dentry) {
  2235. err = -ELOOP;
  2236. goto fail;
  2237. }
  2238. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2239. if (!err)
  2240. return 0;
  2241. fail:
  2242. /* remove m from any expiration list it may be on */
  2243. if (!list_empty(&mnt->mnt_expire)) {
  2244. namespace_lock();
  2245. list_del_init(&mnt->mnt_expire);
  2246. namespace_unlock();
  2247. }
  2248. mntput(m);
  2249. mntput(m);
  2250. return err;
  2251. }
  2252. /**
  2253. * mnt_set_expiry - Put a mount on an expiration list
  2254. * @mnt: The mount to list.
  2255. * @expiry_list: The list to add the mount to.
  2256. */
  2257. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2258. {
  2259. namespace_lock();
  2260. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2261. namespace_unlock();
  2262. }
  2263. EXPORT_SYMBOL(mnt_set_expiry);
  2264. /*
  2265. * process a list of expirable mountpoints with the intent of discarding any
  2266. * mountpoints that aren't in use and haven't been touched since last we came
  2267. * here
  2268. */
  2269. void mark_mounts_for_expiry(struct list_head *mounts)
  2270. {
  2271. struct mount *mnt, *next;
  2272. LIST_HEAD(graveyard);
  2273. if (list_empty(mounts))
  2274. return;
  2275. namespace_lock();
  2276. lock_mount_hash();
  2277. /* extract from the expiration list every vfsmount that matches the
  2278. * following criteria:
  2279. * - only referenced by its parent vfsmount
  2280. * - still marked for expiry (marked on the last call here; marks are
  2281. * cleared by mntput())
  2282. */
  2283. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2284. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2285. propagate_mount_busy(mnt, 1))
  2286. continue;
  2287. list_move(&mnt->mnt_expire, &graveyard);
  2288. }
  2289. while (!list_empty(&graveyard)) {
  2290. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2291. touch_mnt_namespace(mnt->mnt_ns);
  2292. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2293. }
  2294. unlock_mount_hash();
  2295. namespace_unlock();
  2296. }
  2297. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2298. /*
  2299. * Ripoff of 'select_parent()'
  2300. *
  2301. * search the list of submounts for a given mountpoint, and move any
  2302. * shrinkable submounts to the 'graveyard' list.
  2303. */
  2304. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2305. {
  2306. struct mount *this_parent = parent;
  2307. struct list_head *next;
  2308. int found = 0;
  2309. repeat:
  2310. next = this_parent->mnt_mounts.next;
  2311. resume:
  2312. while (next != &this_parent->mnt_mounts) {
  2313. struct list_head *tmp = next;
  2314. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2315. next = tmp->next;
  2316. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2317. continue;
  2318. /*
  2319. * Descend a level if the d_mounts list is non-empty.
  2320. */
  2321. if (!list_empty(&mnt->mnt_mounts)) {
  2322. this_parent = mnt;
  2323. goto repeat;
  2324. }
  2325. if (!propagate_mount_busy(mnt, 1)) {
  2326. list_move_tail(&mnt->mnt_expire, graveyard);
  2327. found++;
  2328. }
  2329. }
  2330. /*
  2331. * All done at this level ... ascend and resume the search
  2332. */
  2333. if (this_parent != parent) {
  2334. next = this_parent->mnt_child.next;
  2335. this_parent = this_parent->mnt_parent;
  2336. goto resume;
  2337. }
  2338. return found;
  2339. }
  2340. /*
  2341. * process a list of expirable mountpoints with the intent of discarding any
  2342. * submounts of a specific parent mountpoint
  2343. *
  2344. * mount_lock must be held for write
  2345. */
  2346. static void shrink_submounts(struct mount *mnt)
  2347. {
  2348. LIST_HEAD(graveyard);
  2349. struct mount *m;
  2350. /* extract submounts of 'mountpoint' from the expiration list */
  2351. while (select_submounts(mnt, &graveyard)) {
  2352. while (!list_empty(&graveyard)) {
  2353. m = list_first_entry(&graveyard, struct mount,
  2354. mnt_expire);
  2355. touch_mnt_namespace(m->mnt_ns);
  2356. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2357. }
  2358. }
  2359. }
  2360. /*
  2361. * Some copy_from_user() implementations do not return the exact number of
  2362. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2363. * Note that this function differs from copy_from_user() in that it will oops
  2364. * on bad values of `to', rather than returning a short copy.
  2365. */
  2366. static long exact_copy_from_user(void *to, const void __user * from,
  2367. unsigned long n)
  2368. {
  2369. char *t = to;
  2370. const char __user *f = from;
  2371. char c;
  2372. if (!access_ok(VERIFY_READ, from, n))
  2373. return n;
  2374. while (n) {
  2375. if (__get_user(c, f)) {
  2376. memset(t, 0, n);
  2377. break;
  2378. }
  2379. *t++ = c;
  2380. f++;
  2381. n--;
  2382. }
  2383. return n;
  2384. }
  2385. void *copy_mount_options(const void __user * data)
  2386. {
  2387. int i;
  2388. unsigned long size;
  2389. char *copy;
  2390. if (!data)
  2391. return NULL;
  2392. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2393. if (!copy)
  2394. return ERR_PTR(-ENOMEM);
  2395. /* We only care that *some* data at the address the user
  2396. * gave us is valid. Just in case, we'll zero
  2397. * the remainder of the page.
  2398. */
  2399. /* copy_from_user cannot cross TASK_SIZE ! */
  2400. size = TASK_SIZE - (unsigned long)data;
  2401. if (size > PAGE_SIZE)
  2402. size = PAGE_SIZE;
  2403. i = size - exact_copy_from_user(copy, data, size);
  2404. if (!i) {
  2405. kfree(copy);
  2406. return ERR_PTR(-EFAULT);
  2407. }
  2408. if (i != PAGE_SIZE)
  2409. memset(copy + i, 0, PAGE_SIZE - i);
  2410. return copy;
  2411. }
  2412. char *copy_mount_string(const void __user *data)
  2413. {
  2414. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2415. }
  2416. /*
  2417. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2418. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2419. *
  2420. * data is a (void *) that can point to any structure up to
  2421. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2422. * information (or be NULL).
  2423. *
  2424. * Pre-0.97 versions of mount() didn't have a flags word.
  2425. * When the flags word was introduced its top half was required
  2426. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2427. * Therefore, if this magic number is present, it carries no information
  2428. * and must be discarded.
  2429. */
  2430. long do_mount(const char *dev_name, const char __user *dir_name,
  2431. const char *type_page, unsigned long flags, void *data_page)
  2432. {
  2433. struct path path;
  2434. int retval = 0;
  2435. int mnt_flags = 0;
  2436. /* Discard magic */
  2437. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2438. flags &= ~MS_MGC_MSK;
  2439. /* Basic sanity checks */
  2440. if (data_page)
  2441. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2442. /* ... and get the mountpoint */
  2443. retval = user_path(dir_name, &path);
  2444. if (retval)
  2445. return retval;
  2446. retval = security_sb_mount(dev_name, &path,
  2447. type_page, flags, data_page);
  2448. if (!retval && !may_mount())
  2449. retval = -EPERM;
  2450. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2451. retval = -EPERM;
  2452. if (retval)
  2453. goto dput_out;
  2454. /* Default to relatime unless overriden */
  2455. if (!(flags & MS_NOATIME))
  2456. mnt_flags |= MNT_RELATIME;
  2457. /* Separate the per-mountpoint flags */
  2458. if (flags & MS_NOSUID)
  2459. mnt_flags |= MNT_NOSUID;
  2460. if (flags & MS_NODEV)
  2461. mnt_flags |= MNT_NODEV;
  2462. if (flags & MS_NOEXEC)
  2463. mnt_flags |= MNT_NOEXEC;
  2464. if (flags & MS_NOATIME)
  2465. mnt_flags |= MNT_NOATIME;
  2466. if (flags & MS_NODIRATIME)
  2467. mnt_flags |= MNT_NODIRATIME;
  2468. if (flags & MS_STRICTATIME)
  2469. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2470. if (flags & MS_RDONLY)
  2471. mnt_flags |= MNT_READONLY;
  2472. /* The default atime for remount is preservation */
  2473. if ((flags & MS_REMOUNT) &&
  2474. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2475. MS_STRICTATIME)) == 0)) {
  2476. mnt_flags &= ~MNT_ATIME_MASK;
  2477. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2478. }
  2479. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2480. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2481. MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
  2482. if (flags & MS_REMOUNT)
  2483. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2484. data_page);
  2485. else if (flags & MS_BIND)
  2486. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2487. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2488. retval = do_change_type(&path, flags);
  2489. else if (flags & MS_MOVE)
  2490. retval = do_move_mount(&path, dev_name);
  2491. else
  2492. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2493. dev_name, data_page);
  2494. dput_out:
  2495. path_put(&path);
  2496. return retval;
  2497. }
  2498. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2499. {
  2500. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2501. }
  2502. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2503. {
  2504. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2505. }
  2506. static void free_mnt_ns(struct mnt_namespace *ns)
  2507. {
  2508. ns_free_inum(&ns->ns);
  2509. dec_mnt_namespaces(ns->ucounts);
  2510. put_user_ns(ns->user_ns);
  2511. kfree(ns);
  2512. }
  2513. /*
  2514. * Assign a sequence number so we can detect when we attempt to bind
  2515. * mount a reference to an older mount namespace into the current
  2516. * mount namespace, preventing reference counting loops. A 64bit
  2517. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2518. * is effectively never, so we can ignore the possibility.
  2519. */
  2520. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2521. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2522. {
  2523. struct mnt_namespace *new_ns;
  2524. struct ucounts *ucounts;
  2525. int ret;
  2526. ucounts = inc_mnt_namespaces(user_ns);
  2527. if (!ucounts)
  2528. return ERR_PTR(-ENOSPC);
  2529. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2530. if (!new_ns) {
  2531. dec_mnt_namespaces(ucounts);
  2532. return ERR_PTR(-ENOMEM);
  2533. }
  2534. ret = ns_alloc_inum(&new_ns->ns);
  2535. if (ret) {
  2536. kfree(new_ns);
  2537. dec_mnt_namespaces(ucounts);
  2538. return ERR_PTR(ret);
  2539. }
  2540. new_ns->ns.ops = &mntns_operations;
  2541. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2542. atomic_set(&new_ns->count, 1);
  2543. new_ns->root = NULL;
  2544. INIT_LIST_HEAD(&new_ns->list);
  2545. init_waitqueue_head(&new_ns->poll);
  2546. new_ns->event = 0;
  2547. new_ns->user_ns = get_user_ns(user_ns);
  2548. new_ns->ucounts = ucounts;
  2549. new_ns->mounts = 0;
  2550. new_ns->pending_mounts = 0;
  2551. return new_ns;
  2552. }
  2553. __latent_entropy
  2554. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2555. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2556. {
  2557. struct mnt_namespace *new_ns;
  2558. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2559. struct mount *p, *q;
  2560. struct mount *old;
  2561. struct mount *new;
  2562. int copy_flags;
  2563. BUG_ON(!ns);
  2564. if (likely(!(flags & CLONE_NEWNS))) {
  2565. get_mnt_ns(ns);
  2566. return ns;
  2567. }
  2568. old = ns->root;
  2569. new_ns = alloc_mnt_ns(user_ns);
  2570. if (IS_ERR(new_ns))
  2571. return new_ns;
  2572. namespace_lock();
  2573. /* First pass: copy the tree topology */
  2574. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2575. if (user_ns != ns->user_ns)
  2576. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2577. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2578. if (IS_ERR(new)) {
  2579. namespace_unlock();
  2580. free_mnt_ns(new_ns);
  2581. return ERR_CAST(new);
  2582. }
  2583. new_ns->root = new;
  2584. list_add_tail(&new_ns->list, &new->mnt_list);
  2585. /*
  2586. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2587. * as belonging to new namespace. We have already acquired a private
  2588. * fs_struct, so tsk->fs->lock is not needed.
  2589. */
  2590. p = old;
  2591. q = new;
  2592. while (p) {
  2593. q->mnt_ns = new_ns;
  2594. new_ns->mounts++;
  2595. if (new_fs) {
  2596. if (&p->mnt == new_fs->root.mnt) {
  2597. new_fs->root.mnt = mntget(&q->mnt);
  2598. rootmnt = &p->mnt;
  2599. }
  2600. if (&p->mnt == new_fs->pwd.mnt) {
  2601. new_fs->pwd.mnt = mntget(&q->mnt);
  2602. pwdmnt = &p->mnt;
  2603. }
  2604. }
  2605. p = next_mnt(p, old);
  2606. q = next_mnt(q, new);
  2607. if (!q)
  2608. break;
  2609. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2610. p = next_mnt(p, old);
  2611. }
  2612. namespace_unlock();
  2613. if (rootmnt)
  2614. mntput(rootmnt);
  2615. if (pwdmnt)
  2616. mntput(pwdmnt);
  2617. return new_ns;
  2618. }
  2619. /**
  2620. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2621. * @mnt: pointer to the new root filesystem mountpoint
  2622. */
  2623. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2624. {
  2625. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2626. if (!IS_ERR(new_ns)) {
  2627. struct mount *mnt = real_mount(m);
  2628. mnt->mnt_ns = new_ns;
  2629. new_ns->root = mnt;
  2630. new_ns->mounts++;
  2631. list_add(&mnt->mnt_list, &new_ns->list);
  2632. } else {
  2633. mntput(m);
  2634. }
  2635. return new_ns;
  2636. }
  2637. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2638. {
  2639. struct mnt_namespace *ns;
  2640. struct super_block *s;
  2641. struct path path;
  2642. int err;
  2643. ns = create_mnt_ns(mnt);
  2644. if (IS_ERR(ns))
  2645. return ERR_CAST(ns);
  2646. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2647. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2648. put_mnt_ns(ns);
  2649. if (err)
  2650. return ERR_PTR(err);
  2651. /* trade a vfsmount reference for active sb one */
  2652. s = path.mnt->mnt_sb;
  2653. atomic_inc(&s->s_active);
  2654. mntput(path.mnt);
  2655. /* lock the sucker */
  2656. down_write(&s->s_umount);
  2657. /* ... and return the root of (sub)tree on it */
  2658. return path.dentry;
  2659. }
  2660. EXPORT_SYMBOL(mount_subtree);
  2661. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2662. char __user *, type, unsigned long, flags, void __user *, data)
  2663. {
  2664. int ret;
  2665. char *kernel_type;
  2666. char *kernel_dev;
  2667. void *options;
  2668. kernel_type = copy_mount_string(type);
  2669. ret = PTR_ERR(kernel_type);
  2670. if (IS_ERR(kernel_type))
  2671. goto out_type;
  2672. kernel_dev = copy_mount_string(dev_name);
  2673. ret = PTR_ERR(kernel_dev);
  2674. if (IS_ERR(kernel_dev))
  2675. goto out_dev;
  2676. options = copy_mount_options(data);
  2677. ret = PTR_ERR(options);
  2678. if (IS_ERR(options))
  2679. goto out_data;
  2680. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2681. kfree(options);
  2682. out_data:
  2683. kfree(kernel_dev);
  2684. out_dev:
  2685. kfree(kernel_type);
  2686. out_type:
  2687. return ret;
  2688. }
  2689. /*
  2690. * Return true if path is reachable from root
  2691. *
  2692. * namespace_sem or mount_lock is held
  2693. */
  2694. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2695. const struct path *root)
  2696. {
  2697. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2698. dentry = mnt->mnt_mountpoint;
  2699. mnt = mnt->mnt_parent;
  2700. }
  2701. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2702. }
  2703. bool path_is_under(struct path *path1, struct path *path2)
  2704. {
  2705. bool res;
  2706. read_seqlock_excl(&mount_lock);
  2707. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2708. read_sequnlock_excl(&mount_lock);
  2709. return res;
  2710. }
  2711. EXPORT_SYMBOL(path_is_under);
  2712. /*
  2713. * pivot_root Semantics:
  2714. * Moves the root file system of the current process to the directory put_old,
  2715. * makes new_root as the new root file system of the current process, and sets
  2716. * root/cwd of all processes which had them on the current root to new_root.
  2717. *
  2718. * Restrictions:
  2719. * The new_root and put_old must be directories, and must not be on the
  2720. * same file system as the current process root. The put_old must be
  2721. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2722. * pointed to by put_old must yield the same directory as new_root. No other
  2723. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2724. *
  2725. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2726. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2727. * in this situation.
  2728. *
  2729. * Notes:
  2730. * - we don't move root/cwd if they are not at the root (reason: if something
  2731. * cared enough to change them, it's probably wrong to force them elsewhere)
  2732. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2733. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2734. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2735. * first.
  2736. */
  2737. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2738. const char __user *, put_old)
  2739. {
  2740. struct path new, old, parent_path, root_parent, root;
  2741. struct mount *new_mnt, *root_mnt, *old_mnt;
  2742. struct mountpoint *old_mp, *root_mp;
  2743. int error;
  2744. if (!may_mount())
  2745. return -EPERM;
  2746. error = user_path_dir(new_root, &new);
  2747. if (error)
  2748. goto out0;
  2749. error = user_path_dir(put_old, &old);
  2750. if (error)
  2751. goto out1;
  2752. error = security_sb_pivotroot(&old, &new);
  2753. if (error)
  2754. goto out2;
  2755. get_fs_root(current->fs, &root);
  2756. old_mp = lock_mount(&old);
  2757. error = PTR_ERR(old_mp);
  2758. if (IS_ERR(old_mp))
  2759. goto out3;
  2760. error = -EINVAL;
  2761. new_mnt = real_mount(new.mnt);
  2762. root_mnt = real_mount(root.mnt);
  2763. old_mnt = real_mount(old.mnt);
  2764. if (IS_MNT_SHARED(old_mnt) ||
  2765. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2766. IS_MNT_SHARED(root_mnt->mnt_parent))
  2767. goto out4;
  2768. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2769. goto out4;
  2770. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2771. goto out4;
  2772. error = -ENOENT;
  2773. if (d_unlinked(new.dentry))
  2774. goto out4;
  2775. error = -EBUSY;
  2776. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2777. goto out4; /* loop, on the same file system */
  2778. error = -EINVAL;
  2779. if (root.mnt->mnt_root != root.dentry)
  2780. goto out4; /* not a mountpoint */
  2781. if (!mnt_has_parent(root_mnt))
  2782. goto out4; /* not attached */
  2783. root_mp = root_mnt->mnt_mp;
  2784. if (new.mnt->mnt_root != new.dentry)
  2785. goto out4; /* not a mountpoint */
  2786. if (!mnt_has_parent(new_mnt))
  2787. goto out4; /* not attached */
  2788. /* make sure we can reach put_old from new_root */
  2789. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2790. goto out4;
  2791. /* make certain new is below the root */
  2792. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2793. goto out4;
  2794. root_mp->m_count++; /* pin it so it won't go away */
  2795. lock_mount_hash();
  2796. detach_mnt(new_mnt, &parent_path);
  2797. detach_mnt(root_mnt, &root_parent);
  2798. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2799. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2800. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2801. }
  2802. /* mount old root on put_old */
  2803. attach_mnt(root_mnt, old_mnt, old_mp);
  2804. /* mount new_root on / */
  2805. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2806. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2807. /* A moved mount should not expire automatically */
  2808. list_del_init(&new_mnt->mnt_expire);
  2809. put_mountpoint(root_mp);
  2810. unlock_mount_hash();
  2811. chroot_fs_refs(&root, &new);
  2812. error = 0;
  2813. out4:
  2814. unlock_mount(old_mp);
  2815. if (!error) {
  2816. path_put(&root_parent);
  2817. path_put(&parent_path);
  2818. }
  2819. out3:
  2820. path_put(&root);
  2821. out2:
  2822. path_put(&old);
  2823. out1:
  2824. path_put(&new);
  2825. out0:
  2826. return error;
  2827. }
  2828. static void __init init_mount_tree(void)
  2829. {
  2830. struct vfsmount *mnt;
  2831. struct mnt_namespace *ns;
  2832. struct path root;
  2833. struct file_system_type *type;
  2834. type = get_fs_type("rootfs");
  2835. if (!type)
  2836. panic("Can't find rootfs type");
  2837. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2838. put_filesystem(type);
  2839. if (IS_ERR(mnt))
  2840. panic("Can't create rootfs");
  2841. ns = create_mnt_ns(mnt);
  2842. if (IS_ERR(ns))
  2843. panic("Can't allocate initial namespace");
  2844. init_task.nsproxy->mnt_ns = ns;
  2845. get_mnt_ns(ns);
  2846. root.mnt = mnt;
  2847. root.dentry = mnt->mnt_root;
  2848. mnt->mnt_flags |= MNT_LOCKED;
  2849. set_fs_pwd(current->fs, &root);
  2850. set_fs_root(current->fs, &root);
  2851. }
  2852. void __init mnt_init(void)
  2853. {
  2854. unsigned u;
  2855. int err;
  2856. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2857. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2858. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2859. sizeof(struct hlist_head),
  2860. mhash_entries, 19,
  2861. 0,
  2862. &m_hash_shift, &m_hash_mask, 0, 0);
  2863. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2864. sizeof(struct hlist_head),
  2865. mphash_entries, 19,
  2866. 0,
  2867. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2868. if (!mount_hashtable || !mountpoint_hashtable)
  2869. panic("Failed to allocate mount hash table\n");
  2870. for (u = 0; u <= m_hash_mask; u++)
  2871. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2872. for (u = 0; u <= mp_hash_mask; u++)
  2873. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2874. kernfs_init();
  2875. err = sysfs_init();
  2876. if (err)
  2877. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2878. __func__, err);
  2879. fs_kobj = kobject_create_and_add("fs", NULL);
  2880. if (!fs_kobj)
  2881. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2882. init_rootfs();
  2883. init_mount_tree();
  2884. }
  2885. void put_mnt_ns(struct mnt_namespace *ns)
  2886. {
  2887. if (!atomic_dec_and_test(&ns->count))
  2888. return;
  2889. drop_collected_mounts(&ns->root->mnt);
  2890. free_mnt_ns(ns);
  2891. }
  2892. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2893. {
  2894. struct vfsmount *mnt;
  2895. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2896. if (!IS_ERR(mnt)) {
  2897. /*
  2898. * it is a longterm mount, don't release mnt until
  2899. * we unmount before file sys is unregistered
  2900. */
  2901. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2902. }
  2903. return mnt;
  2904. }
  2905. EXPORT_SYMBOL_GPL(kern_mount_data);
  2906. void kern_unmount(struct vfsmount *mnt)
  2907. {
  2908. /* release long term mount so mount point can be released */
  2909. if (!IS_ERR_OR_NULL(mnt)) {
  2910. real_mount(mnt)->mnt_ns = NULL;
  2911. synchronize_rcu(); /* yecchhh... */
  2912. mntput(mnt);
  2913. }
  2914. }
  2915. EXPORT_SYMBOL(kern_unmount);
  2916. bool our_mnt(struct vfsmount *mnt)
  2917. {
  2918. return check_mnt(real_mount(mnt));
  2919. }
  2920. bool current_chrooted(void)
  2921. {
  2922. /* Does the current process have a non-standard root */
  2923. struct path ns_root;
  2924. struct path fs_root;
  2925. bool chrooted;
  2926. /* Find the namespace root */
  2927. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2928. ns_root.dentry = ns_root.mnt->mnt_root;
  2929. path_get(&ns_root);
  2930. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2931. ;
  2932. get_fs_root(current->fs, &fs_root);
  2933. chrooted = !path_equal(&fs_root, &ns_root);
  2934. path_put(&fs_root);
  2935. path_put(&ns_root);
  2936. return chrooted;
  2937. }
  2938. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2939. int *new_mnt_flags)
  2940. {
  2941. int new_flags = *new_mnt_flags;
  2942. struct mount *mnt;
  2943. bool visible = false;
  2944. down_read(&namespace_sem);
  2945. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2946. struct mount *child;
  2947. int mnt_flags;
  2948. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2949. continue;
  2950. /* This mount is not fully visible if it's root directory
  2951. * is not the root directory of the filesystem.
  2952. */
  2953. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2954. continue;
  2955. /* A local view of the mount flags */
  2956. mnt_flags = mnt->mnt.mnt_flags;
  2957. /* Don't miss readonly hidden in the superblock flags */
  2958. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2959. mnt_flags |= MNT_LOCK_READONLY;
  2960. /* Verify the mount flags are equal to or more permissive
  2961. * than the proposed new mount.
  2962. */
  2963. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2964. !(new_flags & MNT_READONLY))
  2965. continue;
  2966. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2967. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2968. continue;
  2969. /* This mount is not fully visible if there are any
  2970. * locked child mounts that cover anything except for
  2971. * empty directories.
  2972. */
  2973. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2974. struct inode *inode = child->mnt_mountpoint->d_inode;
  2975. /* Only worry about locked mounts */
  2976. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2977. continue;
  2978. /* Is the directory permanetly empty? */
  2979. if (!is_empty_dir_inode(inode))
  2980. goto next;
  2981. }
  2982. /* Preserve the locked attributes */
  2983. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2984. MNT_LOCK_ATIME);
  2985. visible = true;
  2986. goto found;
  2987. next: ;
  2988. }
  2989. found:
  2990. up_read(&namespace_sem);
  2991. return visible;
  2992. }
  2993. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2994. {
  2995. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2996. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2997. unsigned long s_iflags;
  2998. if (ns->user_ns == &init_user_ns)
  2999. return false;
  3000. /* Can this filesystem be too revealing? */
  3001. s_iflags = mnt->mnt_sb->s_iflags;
  3002. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  3003. return false;
  3004. if ((s_iflags & required_iflags) != required_iflags) {
  3005. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  3006. required_iflags);
  3007. return true;
  3008. }
  3009. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  3010. }
  3011. bool mnt_may_suid(struct vfsmount *mnt)
  3012. {
  3013. /*
  3014. * Foreign mounts (accessed via fchdir or through /proc
  3015. * symlinks) are always treated as if they are nosuid. This
  3016. * prevents namespaces from trusting potentially unsafe
  3017. * suid/sgid bits, file caps, or security labels that originate
  3018. * in other namespaces.
  3019. */
  3020. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  3021. current_in_userns(mnt->mnt_sb->s_user_ns);
  3022. }
  3023. static struct ns_common *mntns_get(struct task_struct *task)
  3024. {
  3025. struct ns_common *ns = NULL;
  3026. struct nsproxy *nsproxy;
  3027. task_lock(task);
  3028. nsproxy = task->nsproxy;
  3029. if (nsproxy) {
  3030. ns = &nsproxy->mnt_ns->ns;
  3031. get_mnt_ns(to_mnt_ns(ns));
  3032. }
  3033. task_unlock(task);
  3034. return ns;
  3035. }
  3036. static void mntns_put(struct ns_common *ns)
  3037. {
  3038. put_mnt_ns(to_mnt_ns(ns));
  3039. }
  3040. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3041. {
  3042. struct fs_struct *fs = current->fs;
  3043. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  3044. struct path root;
  3045. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3046. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3047. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3048. return -EPERM;
  3049. if (fs->users != 1)
  3050. return -EINVAL;
  3051. get_mnt_ns(mnt_ns);
  3052. put_mnt_ns(nsproxy->mnt_ns);
  3053. nsproxy->mnt_ns = mnt_ns;
  3054. /* Find the root */
  3055. root.mnt = &mnt_ns->root->mnt;
  3056. root.dentry = mnt_ns->root->mnt.mnt_root;
  3057. path_get(&root);
  3058. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  3059. ;
  3060. /* Update the pwd and root */
  3061. set_fs_pwd(fs, &root);
  3062. set_fs_root(fs, &root);
  3063. path_put(&root);
  3064. return 0;
  3065. }
  3066. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3067. {
  3068. return to_mnt_ns(ns)->user_ns;
  3069. }
  3070. const struct proc_ns_operations mntns_operations = {
  3071. .name = "mnt",
  3072. .type = CLONE_NEWNS,
  3073. .get = mntns_get,
  3074. .put = mntns_put,
  3075. .install = mntns_install,
  3076. .owner = mntns_owner,
  3077. };