123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- /*
- * Copyright (C) 2013 ARM Ltd.
- * Copyright (C) 2013 Linaro.
- *
- * This code is based on glibc cortex strings work originally authored by Linaro
- * and re-licensed under GPLv2 for the Linux kernel. The original code can
- * be found @
- *
- * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
- * files/head:/src/aarch64/
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- #include <linux/linkage.h>
- #include <asm/assembler.h>
- /*
- * determine the length of a fixed-size string
- *
- * Parameters:
- * x0 - const string pointer
- * x1 - maximal string length
- * Returns:
- * x0 - the return length of specific string
- */
- /* Arguments and results. */
- srcin .req x0
- len .req x0
- limit .req x1
- /* Locals and temporaries. */
- src .req x2
- data1 .req x3
- data2 .req x4
- data2a .req x5
- has_nul1 .req x6
- has_nul2 .req x7
- tmp1 .req x8
- tmp2 .req x9
- tmp3 .req x10
- tmp4 .req x11
- zeroones .req x12
- pos .req x13
- limit_wd .req x14
- #define REP8_01 0x0101010101010101
- #define REP8_7f 0x7f7f7f7f7f7f7f7f
- #define REP8_80 0x8080808080808080
- ENTRY(strnlen)
- cbz limit, .Lhit_limit
- mov zeroones, #REP8_01
- bic src, srcin, #15
- ands tmp1, srcin, #15
- b.ne .Lmisaligned
- /* Calculate the number of full and partial words -1. */
- sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */
- lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */
- /*
- * NUL detection works on the principle that (X - 1) & (~X) & 0x80
- * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
- * can be done in parallel across the entire word.
- */
- /*
- * The inner loop deals with two Dwords at a time. This has a
- * slightly higher start-up cost, but we should win quite quickly,
- * especially on cores with a high number of issue slots per
- * cycle, as we get much better parallelism out of the operations.
- */
- .Lloop:
- ldp data1, data2, [src], #16
- .Lrealigned:
- sub tmp1, data1, zeroones
- orr tmp2, data1, #REP8_7f
- sub tmp3, data2, zeroones
- orr tmp4, data2, #REP8_7f
- bic has_nul1, tmp1, tmp2
- bic has_nul2, tmp3, tmp4
- subs limit_wd, limit_wd, #1
- orr tmp1, has_nul1, has_nul2
- ccmp tmp1, #0, #0, pl /* NZCV = 0000 */
- b.eq .Lloop
- cbz tmp1, .Lhit_limit /* No null in final Qword. */
- /*
- * We know there's a null in the final Qword. The easiest thing
- * to do now is work out the length of the string and return
- * MIN (len, limit).
- */
- sub len, src, srcin
- cbz has_nul1, .Lnul_in_data2
- CPU_BE( mov data2, data1 ) /*perpare data to re-calculate the syndrome*/
- sub len, len, #8
- mov has_nul2, has_nul1
- .Lnul_in_data2:
- /*
- * For big-endian, carry propagation (if the final byte in the
- * string is 0x01) means we cannot use has_nul directly. The
- * easiest way to get the correct byte is to byte-swap the data
- * and calculate the syndrome a second time.
- */
- CPU_BE( rev data2, data2 )
- CPU_BE( sub tmp1, data2, zeroones )
- CPU_BE( orr tmp2, data2, #REP8_7f )
- CPU_BE( bic has_nul2, tmp1, tmp2 )
- sub len, len, #8
- rev has_nul2, has_nul2
- clz pos, has_nul2
- add len, len, pos, lsr #3 /* Bits to bytes. */
- cmp len, limit
- csel len, len, limit, ls /* Return the lower value. */
- ret
- .Lmisaligned:
- /*
- * Deal with a partial first word.
- * We're doing two things in parallel here;
- * 1) Calculate the number of words (but avoiding overflow if
- * limit is near ULONG_MAX) - to do this we need to work out
- * limit + tmp1 - 1 as a 65-bit value before shifting it;
- * 2) Load and mask the initial data words - we force the bytes
- * before the ones we are interested in to 0xff - this ensures
- * early bytes will not hit any zero detection.
- */
- ldp data1, data2, [src], #16
- sub limit_wd, limit, #1
- and tmp3, limit_wd, #15
- lsr limit_wd, limit_wd, #4
- add tmp3, tmp3, tmp1
- add limit_wd, limit_wd, tmp3, lsr #4
- neg tmp4, tmp1
- lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */
- mov tmp2, #~0
- /* Big-endian. Early bytes are at MSB. */
- CPU_BE( lsl tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
- /* Little-endian. Early bytes are at LSB. */
- CPU_LE( lsr tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
- cmp tmp1, #8
- orr data1, data1, tmp2
- orr data2a, data2, tmp2
- csinv data1, data1, xzr, le
- csel data2, data2, data2a, le
- b .Lrealigned
- .Lhit_limit:
- mov len, limit
- ret
- ENDPIPROC(strnlen)
|