setup.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/efi.h>
  11. #include <linux/export.h>
  12. #include <linux/kernel.h>
  13. #include <linux/stddef.h>
  14. #include <linux/ioport.h>
  15. #include <linux/delay.h>
  16. #include <linux/utsname.h>
  17. #include <linux/initrd.h>
  18. #include <linux/console.h>
  19. #include <linux/bootmem.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/screen_info.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/init.h>
  24. #include <linux/kexec.h>
  25. #include <linux/of_fdt.h>
  26. #include <linux/cpu.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/smp.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/memblock.h>
  31. #include <linux/bug.h>
  32. #include <linux/compiler.h>
  33. #include <linux/sort.h>
  34. #include <linux/psci.h>
  35. #include <asm/unified.h>
  36. #include <asm/cp15.h>
  37. #include <asm/cpu.h>
  38. #include <asm/cputype.h>
  39. #include <asm/efi.h>
  40. #include <asm/elf.h>
  41. #include <asm/early_ioremap.h>
  42. #include <asm/fixmap.h>
  43. #include <asm/procinfo.h>
  44. #include <asm/psci.h>
  45. #include <asm/sections.h>
  46. #include <asm/setup.h>
  47. #include <asm/smp_plat.h>
  48. #include <asm/mach-types.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/cachetype.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/xen/hypervisor.h>
  53. #include <asm/prom.h>
  54. #include <asm/mach/arch.h>
  55. #include <asm/mach/irq.h>
  56. #include <asm/mach/time.h>
  57. #include <asm/system_info.h>
  58. #include <asm/system_misc.h>
  59. #include <asm/traps.h>
  60. #include <asm/unwind.h>
  61. #include <asm/memblock.h>
  62. #include <asm/virt.h>
  63. #include "atags.h"
  64. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  65. char fpe_type[8];
  66. static int __init fpe_setup(char *line)
  67. {
  68. memcpy(fpe_type, line, 8);
  69. return 1;
  70. }
  71. __setup("fpe=", fpe_setup);
  72. #endif
  73. extern void init_default_cache_policy(unsigned long);
  74. extern void paging_init(const struct machine_desc *desc);
  75. extern void early_paging_init(const struct machine_desc *);
  76. extern void adjust_lowmem_bounds(void);
  77. extern enum reboot_mode reboot_mode;
  78. extern void setup_dma_zone(const struct machine_desc *desc);
  79. unsigned int processor_id;
  80. EXPORT_SYMBOL(processor_id);
  81. unsigned int __machine_arch_type __read_mostly;
  82. EXPORT_SYMBOL(__machine_arch_type);
  83. unsigned int cacheid __read_mostly;
  84. EXPORT_SYMBOL(cacheid);
  85. unsigned int __atags_pointer __initdata;
  86. unsigned int system_rev;
  87. EXPORT_SYMBOL(system_rev);
  88. const char *system_serial;
  89. EXPORT_SYMBOL(system_serial);
  90. unsigned int system_serial_low;
  91. EXPORT_SYMBOL(system_serial_low);
  92. unsigned int system_serial_high;
  93. EXPORT_SYMBOL(system_serial_high);
  94. unsigned int elf_hwcap __read_mostly;
  95. EXPORT_SYMBOL(elf_hwcap);
  96. unsigned int elf_hwcap2 __read_mostly;
  97. EXPORT_SYMBOL(elf_hwcap2);
  98. #ifdef MULTI_CPU
  99. struct processor processor __ro_after_init;
  100. #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
  101. struct processor *cpu_vtable[NR_CPUS] = {
  102. [0] = &processor,
  103. };
  104. #endif
  105. #endif
  106. #ifdef MULTI_TLB
  107. struct cpu_tlb_fns cpu_tlb __ro_after_init;
  108. #endif
  109. #ifdef MULTI_USER
  110. struct cpu_user_fns cpu_user __ro_after_init;
  111. #endif
  112. #ifdef MULTI_CACHE
  113. struct cpu_cache_fns cpu_cache __ro_after_init;
  114. #endif
  115. #ifdef CONFIG_OUTER_CACHE
  116. struct outer_cache_fns outer_cache __ro_after_init;
  117. EXPORT_SYMBOL(outer_cache);
  118. #endif
  119. /*
  120. * Cached cpu_architecture() result for use by assembler code.
  121. * C code should use the cpu_architecture() function instead of accessing this
  122. * variable directly.
  123. */
  124. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  125. struct stack {
  126. u32 irq[3];
  127. u32 abt[3];
  128. u32 und[3];
  129. u32 fiq[3];
  130. } ____cacheline_aligned;
  131. #ifndef CONFIG_CPU_V7M
  132. static struct stack stacks[NR_CPUS];
  133. #endif
  134. char elf_platform[ELF_PLATFORM_SIZE];
  135. EXPORT_SYMBOL(elf_platform);
  136. static const char *cpu_name;
  137. static const char *machine_name;
  138. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  139. const struct machine_desc *machine_desc __initdata;
  140. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  141. #define ENDIANNESS ((char)endian_test.l)
  142. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  143. /*
  144. * Standard memory resources
  145. */
  146. static struct resource mem_res[] = {
  147. {
  148. .name = "Video RAM",
  149. .start = 0,
  150. .end = 0,
  151. .flags = IORESOURCE_MEM
  152. },
  153. {
  154. .name = "Kernel code",
  155. .start = 0,
  156. .end = 0,
  157. .flags = IORESOURCE_SYSTEM_RAM
  158. },
  159. {
  160. .name = "Kernel data",
  161. .start = 0,
  162. .end = 0,
  163. .flags = IORESOURCE_SYSTEM_RAM
  164. }
  165. };
  166. #define video_ram mem_res[0]
  167. #define kernel_code mem_res[1]
  168. #define kernel_data mem_res[2]
  169. static struct resource io_res[] = {
  170. {
  171. .name = "reserved",
  172. .start = 0x3bc,
  173. .end = 0x3be,
  174. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  175. },
  176. {
  177. .name = "reserved",
  178. .start = 0x378,
  179. .end = 0x37f,
  180. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  181. },
  182. {
  183. .name = "reserved",
  184. .start = 0x278,
  185. .end = 0x27f,
  186. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  187. }
  188. };
  189. #define lp0 io_res[0]
  190. #define lp1 io_res[1]
  191. #define lp2 io_res[2]
  192. static const char *proc_arch[] = {
  193. "undefined/unknown",
  194. "3",
  195. "4",
  196. "4T",
  197. "5",
  198. "5T",
  199. "5TE",
  200. "5TEJ",
  201. "6TEJ",
  202. "7",
  203. "7M",
  204. "?(12)",
  205. "?(13)",
  206. "?(14)",
  207. "?(15)",
  208. "?(16)",
  209. "?(17)",
  210. };
  211. #ifdef CONFIG_CPU_V7M
  212. static int __get_cpu_architecture(void)
  213. {
  214. return CPU_ARCH_ARMv7M;
  215. }
  216. #else
  217. static int __get_cpu_architecture(void)
  218. {
  219. int cpu_arch;
  220. if ((read_cpuid_id() & 0x0008f000) == 0) {
  221. cpu_arch = CPU_ARCH_UNKNOWN;
  222. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  223. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  224. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  225. cpu_arch = (read_cpuid_id() >> 16) & 7;
  226. if (cpu_arch)
  227. cpu_arch += CPU_ARCH_ARMv3;
  228. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  229. /* Revised CPUID format. Read the Memory Model Feature
  230. * Register 0 and check for VMSAv7 or PMSAv7 */
  231. unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
  232. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  233. (mmfr0 & 0x000000f0) >= 0x00000030)
  234. cpu_arch = CPU_ARCH_ARMv7;
  235. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  236. (mmfr0 & 0x000000f0) == 0x00000020)
  237. cpu_arch = CPU_ARCH_ARMv6;
  238. else
  239. cpu_arch = CPU_ARCH_UNKNOWN;
  240. } else
  241. cpu_arch = CPU_ARCH_UNKNOWN;
  242. return cpu_arch;
  243. }
  244. #endif
  245. int __pure cpu_architecture(void)
  246. {
  247. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  248. return __cpu_architecture;
  249. }
  250. static int cpu_has_aliasing_icache(unsigned int arch)
  251. {
  252. int aliasing_icache;
  253. unsigned int id_reg, num_sets, line_size;
  254. /* PIPT caches never alias. */
  255. if (icache_is_pipt())
  256. return 0;
  257. /* arch specifies the register format */
  258. switch (arch) {
  259. case CPU_ARCH_ARMv7:
  260. set_csselr(CSSELR_ICACHE | CSSELR_L1);
  261. isb();
  262. id_reg = read_ccsidr();
  263. line_size = 4 << ((id_reg & 0x7) + 2);
  264. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  265. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  266. break;
  267. case CPU_ARCH_ARMv6:
  268. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  269. break;
  270. default:
  271. /* I-cache aliases will be handled by D-cache aliasing code */
  272. aliasing_icache = 0;
  273. }
  274. return aliasing_icache;
  275. }
  276. static void __init cacheid_init(void)
  277. {
  278. unsigned int arch = cpu_architecture();
  279. if (arch >= CPU_ARCH_ARMv6) {
  280. unsigned int cachetype = read_cpuid_cachetype();
  281. if ((arch == CPU_ARCH_ARMv7M) && !cachetype) {
  282. cacheid = 0;
  283. } else if ((cachetype & (7 << 29)) == 4 << 29) {
  284. /* ARMv7 register format */
  285. arch = CPU_ARCH_ARMv7;
  286. cacheid = CACHEID_VIPT_NONALIASING;
  287. switch (cachetype & (3 << 14)) {
  288. case (1 << 14):
  289. cacheid |= CACHEID_ASID_TAGGED;
  290. break;
  291. case (3 << 14):
  292. cacheid |= CACHEID_PIPT;
  293. break;
  294. }
  295. } else {
  296. arch = CPU_ARCH_ARMv6;
  297. if (cachetype & (1 << 23))
  298. cacheid = CACHEID_VIPT_ALIASING;
  299. else
  300. cacheid = CACHEID_VIPT_NONALIASING;
  301. }
  302. if (cpu_has_aliasing_icache(arch))
  303. cacheid |= CACHEID_VIPT_I_ALIASING;
  304. } else {
  305. cacheid = CACHEID_VIVT;
  306. }
  307. pr_info("CPU: %s data cache, %s instruction cache\n",
  308. cache_is_vivt() ? "VIVT" :
  309. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  310. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  311. cache_is_vivt() ? "VIVT" :
  312. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  313. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  314. icache_is_pipt() ? "PIPT" :
  315. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  316. }
  317. /*
  318. * These functions re-use the assembly code in head.S, which
  319. * already provide the required functionality.
  320. */
  321. extern struct proc_info_list *lookup_processor_type(unsigned int);
  322. void __init early_print(const char *str, ...)
  323. {
  324. extern void printascii(const char *);
  325. char buf[256];
  326. va_list ap;
  327. va_start(ap, str);
  328. vsnprintf(buf, sizeof(buf), str, ap);
  329. va_end(ap);
  330. #ifdef CONFIG_DEBUG_LL
  331. printascii(buf);
  332. #endif
  333. printk("%s", buf);
  334. }
  335. #ifdef CONFIG_ARM_PATCH_IDIV
  336. static inline u32 __attribute_const__ sdiv_instruction(void)
  337. {
  338. if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
  339. /* "sdiv r0, r0, r1" */
  340. u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
  341. return __opcode_to_mem_thumb32(insn);
  342. }
  343. /* "sdiv r0, r0, r1" */
  344. return __opcode_to_mem_arm(0xe710f110);
  345. }
  346. static inline u32 __attribute_const__ udiv_instruction(void)
  347. {
  348. if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
  349. /* "udiv r0, r0, r1" */
  350. u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
  351. return __opcode_to_mem_thumb32(insn);
  352. }
  353. /* "udiv r0, r0, r1" */
  354. return __opcode_to_mem_arm(0xe730f110);
  355. }
  356. static inline u32 __attribute_const__ bx_lr_instruction(void)
  357. {
  358. if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
  359. /* "bx lr; nop" */
  360. u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
  361. return __opcode_to_mem_thumb32(insn);
  362. }
  363. /* "bx lr" */
  364. return __opcode_to_mem_arm(0xe12fff1e);
  365. }
  366. static void __init patch_aeabi_idiv(void)
  367. {
  368. extern void __aeabi_uidiv(void);
  369. extern void __aeabi_idiv(void);
  370. uintptr_t fn_addr;
  371. unsigned int mask;
  372. mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
  373. if (!(elf_hwcap & mask))
  374. return;
  375. pr_info("CPU: div instructions available: patching division code\n");
  376. fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
  377. asm ("" : "+g" (fn_addr));
  378. ((u32 *)fn_addr)[0] = udiv_instruction();
  379. ((u32 *)fn_addr)[1] = bx_lr_instruction();
  380. flush_icache_range(fn_addr, fn_addr + 8);
  381. fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
  382. asm ("" : "+g" (fn_addr));
  383. ((u32 *)fn_addr)[0] = sdiv_instruction();
  384. ((u32 *)fn_addr)[1] = bx_lr_instruction();
  385. flush_icache_range(fn_addr, fn_addr + 8);
  386. }
  387. #else
  388. static inline void patch_aeabi_idiv(void) { }
  389. #endif
  390. static void __init cpuid_init_hwcaps(void)
  391. {
  392. int block;
  393. u32 isar5;
  394. if (cpu_architecture() < CPU_ARCH_ARMv7)
  395. return;
  396. block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
  397. if (block >= 2)
  398. elf_hwcap |= HWCAP_IDIVA;
  399. if (block >= 1)
  400. elf_hwcap |= HWCAP_IDIVT;
  401. /* LPAE implies atomic ldrd/strd instructions */
  402. block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
  403. if (block >= 5)
  404. elf_hwcap |= HWCAP_LPAE;
  405. /* check for supported v8 Crypto instructions */
  406. isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
  407. block = cpuid_feature_extract_field(isar5, 4);
  408. if (block >= 2)
  409. elf_hwcap2 |= HWCAP2_PMULL;
  410. if (block >= 1)
  411. elf_hwcap2 |= HWCAP2_AES;
  412. block = cpuid_feature_extract_field(isar5, 8);
  413. if (block >= 1)
  414. elf_hwcap2 |= HWCAP2_SHA1;
  415. block = cpuid_feature_extract_field(isar5, 12);
  416. if (block >= 1)
  417. elf_hwcap2 |= HWCAP2_SHA2;
  418. block = cpuid_feature_extract_field(isar5, 16);
  419. if (block >= 1)
  420. elf_hwcap2 |= HWCAP2_CRC32;
  421. }
  422. static void __init elf_hwcap_fixup(void)
  423. {
  424. unsigned id = read_cpuid_id();
  425. /*
  426. * HWCAP_TLS is available only on 1136 r1p0 and later,
  427. * see also kuser_get_tls_init.
  428. */
  429. if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
  430. ((id >> 20) & 3) == 0) {
  431. elf_hwcap &= ~HWCAP_TLS;
  432. return;
  433. }
  434. /* Verify if CPUID scheme is implemented */
  435. if ((id & 0x000f0000) != 0x000f0000)
  436. return;
  437. /*
  438. * If the CPU supports LDREX/STREX and LDREXB/STREXB,
  439. * avoid advertising SWP; it may not be atomic with
  440. * multiprocessing cores.
  441. */
  442. if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
  443. (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
  444. cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
  445. elf_hwcap &= ~HWCAP_SWP;
  446. }
  447. /*
  448. * cpu_init - initialise one CPU.
  449. *
  450. * cpu_init sets up the per-CPU stacks.
  451. */
  452. void notrace cpu_init(void)
  453. {
  454. #ifndef CONFIG_CPU_V7M
  455. unsigned int cpu = smp_processor_id();
  456. struct stack *stk = &stacks[cpu];
  457. if (cpu >= NR_CPUS) {
  458. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  459. BUG();
  460. }
  461. /*
  462. * This only works on resume and secondary cores. For booting on the
  463. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  464. */
  465. set_my_cpu_offset(per_cpu_offset(cpu));
  466. cpu_proc_init();
  467. /*
  468. * Define the placement constraint for the inline asm directive below.
  469. * In Thumb-2, msr with an immediate value is not allowed.
  470. */
  471. #ifdef CONFIG_THUMB2_KERNEL
  472. #define PLC "r"
  473. #else
  474. #define PLC "I"
  475. #endif
  476. /*
  477. * setup stacks for re-entrant exception handlers
  478. */
  479. __asm__ (
  480. "msr cpsr_c, %1\n\t"
  481. "add r14, %0, %2\n\t"
  482. "mov sp, r14\n\t"
  483. "msr cpsr_c, %3\n\t"
  484. "add r14, %0, %4\n\t"
  485. "mov sp, r14\n\t"
  486. "msr cpsr_c, %5\n\t"
  487. "add r14, %0, %6\n\t"
  488. "mov sp, r14\n\t"
  489. "msr cpsr_c, %7\n\t"
  490. "add r14, %0, %8\n\t"
  491. "mov sp, r14\n\t"
  492. "msr cpsr_c, %9"
  493. :
  494. : "r" (stk),
  495. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  496. "I" (offsetof(struct stack, irq[0])),
  497. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  498. "I" (offsetof(struct stack, abt[0])),
  499. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  500. "I" (offsetof(struct stack, und[0])),
  501. PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
  502. "I" (offsetof(struct stack, fiq[0])),
  503. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  504. : "r14");
  505. #endif
  506. }
  507. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  508. void __init smp_setup_processor_id(void)
  509. {
  510. int i;
  511. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  512. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  513. cpu_logical_map(0) = cpu;
  514. for (i = 1; i < nr_cpu_ids; ++i)
  515. cpu_logical_map(i) = i == cpu ? 0 : i;
  516. /*
  517. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  518. * using percpu variable early, for example, lockdep will
  519. * access percpu variable inside lock_release
  520. */
  521. set_my_cpu_offset(0);
  522. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  523. }
  524. struct mpidr_hash mpidr_hash;
  525. #ifdef CONFIG_SMP
  526. /**
  527. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  528. * level in order to build a linear index from an
  529. * MPIDR value. Resulting algorithm is a collision
  530. * free hash carried out through shifting and ORing
  531. */
  532. static void __init smp_build_mpidr_hash(void)
  533. {
  534. u32 i, affinity;
  535. u32 fs[3], bits[3], ls, mask = 0;
  536. /*
  537. * Pre-scan the list of MPIDRS and filter out bits that do
  538. * not contribute to affinity levels, ie they never toggle.
  539. */
  540. for_each_possible_cpu(i)
  541. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  542. pr_debug("mask of set bits 0x%x\n", mask);
  543. /*
  544. * Find and stash the last and first bit set at all affinity levels to
  545. * check how many bits are required to represent them.
  546. */
  547. for (i = 0; i < 3; i++) {
  548. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  549. /*
  550. * Find the MSB bit and LSB bits position
  551. * to determine how many bits are required
  552. * to express the affinity level.
  553. */
  554. ls = fls(affinity);
  555. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  556. bits[i] = ls - fs[i];
  557. }
  558. /*
  559. * An index can be created from the MPIDR by isolating the
  560. * significant bits at each affinity level and by shifting
  561. * them in order to compress the 24 bits values space to a
  562. * compressed set of values. This is equivalent to hashing
  563. * the MPIDR through shifting and ORing. It is a collision free
  564. * hash though not minimal since some levels might contain a number
  565. * of CPUs that is not an exact power of 2 and their bit
  566. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  567. */
  568. mpidr_hash.shift_aff[0] = fs[0];
  569. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  570. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  571. (bits[1] + bits[0]);
  572. mpidr_hash.mask = mask;
  573. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  574. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  575. mpidr_hash.shift_aff[0],
  576. mpidr_hash.shift_aff[1],
  577. mpidr_hash.shift_aff[2],
  578. mpidr_hash.mask,
  579. mpidr_hash.bits);
  580. /*
  581. * 4x is an arbitrary value used to warn on a hash table much bigger
  582. * than expected on most systems.
  583. */
  584. if (mpidr_hash_size() > 4 * num_possible_cpus())
  585. pr_warn("Large number of MPIDR hash buckets detected\n");
  586. sync_cache_w(&mpidr_hash);
  587. }
  588. #endif
  589. /*
  590. * locate processor in the list of supported processor types. The linker
  591. * builds this table for us from the entries in arch/arm/mm/proc-*.S
  592. */
  593. struct proc_info_list *lookup_processor(u32 midr)
  594. {
  595. struct proc_info_list *list = lookup_processor_type(midr);
  596. if (!list) {
  597. pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
  598. smp_processor_id(), midr);
  599. while (1)
  600. /* can't use cpu_relax() here as it may require MMU setup */;
  601. }
  602. return list;
  603. }
  604. static void __init setup_processor(void)
  605. {
  606. unsigned int midr = read_cpuid_id();
  607. struct proc_info_list *list = lookup_processor(midr);
  608. cpu_name = list->cpu_name;
  609. __cpu_architecture = __get_cpu_architecture();
  610. init_proc_vtable(list->proc);
  611. #ifdef MULTI_TLB
  612. cpu_tlb = *list->tlb;
  613. #endif
  614. #ifdef MULTI_USER
  615. cpu_user = *list->user;
  616. #endif
  617. #ifdef MULTI_CACHE
  618. cpu_cache = *list->cache;
  619. #endif
  620. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  621. list->cpu_name, midr, midr & 15,
  622. proc_arch[cpu_architecture()], get_cr());
  623. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  624. list->arch_name, ENDIANNESS);
  625. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  626. list->elf_name, ENDIANNESS);
  627. elf_hwcap = list->elf_hwcap;
  628. cpuid_init_hwcaps();
  629. patch_aeabi_idiv();
  630. #ifndef CONFIG_ARM_THUMB
  631. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  632. #endif
  633. #ifdef CONFIG_MMU
  634. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  635. #endif
  636. erratum_a15_798181_init();
  637. elf_hwcap_fixup();
  638. cacheid_init();
  639. cpu_init();
  640. }
  641. void __init dump_machine_table(void)
  642. {
  643. const struct machine_desc *p;
  644. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  645. for_each_machine_desc(p)
  646. early_print("%08x\t%s\n", p->nr, p->name);
  647. early_print("\nPlease check your kernel config and/or bootloader.\n");
  648. while (true)
  649. /* can't use cpu_relax() here as it may require MMU setup */;
  650. }
  651. int __init arm_add_memory(u64 start, u64 size)
  652. {
  653. u64 aligned_start;
  654. /*
  655. * Ensure that start/size are aligned to a page boundary.
  656. * Size is rounded down, start is rounded up.
  657. */
  658. aligned_start = PAGE_ALIGN(start);
  659. if (aligned_start > start + size)
  660. size = 0;
  661. else
  662. size -= aligned_start - start;
  663. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  664. if (aligned_start > ULONG_MAX) {
  665. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  666. (long long)start);
  667. return -EINVAL;
  668. }
  669. if (aligned_start + size > ULONG_MAX) {
  670. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  671. (long long)start);
  672. /*
  673. * To ensure bank->start + bank->size is representable in
  674. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  675. * This means we lose a page after masking.
  676. */
  677. size = ULONG_MAX - aligned_start;
  678. }
  679. #endif
  680. if (aligned_start < PHYS_OFFSET) {
  681. if (aligned_start + size <= PHYS_OFFSET) {
  682. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  683. aligned_start, aligned_start + size);
  684. return -EINVAL;
  685. }
  686. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  687. aligned_start, (u64)PHYS_OFFSET);
  688. size -= PHYS_OFFSET - aligned_start;
  689. aligned_start = PHYS_OFFSET;
  690. }
  691. start = aligned_start;
  692. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  693. /*
  694. * Check whether this memory region has non-zero size or
  695. * invalid node number.
  696. */
  697. if (size == 0)
  698. return -EINVAL;
  699. memblock_add(start, size);
  700. return 0;
  701. }
  702. /*
  703. * Pick out the memory size. We look for mem=size@start,
  704. * where start and size are "size[KkMm]"
  705. */
  706. static int __init early_mem(char *p)
  707. {
  708. static int usermem __initdata = 0;
  709. u64 size;
  710. u64 start;
  711. char *endp;
  712. /*
  713. * If the user specifies memory size, we
  714. * blow away any automatically generated
  715. * size.
  716. */
  717. if (usermem == 0) {
  718. usermem = 1;
  719. memblock_remove(memblock_start_of_DRAM(),
  720. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  721. }
  722. start = PHYS_OFFSET;
  723. size = memparse(p, &endp);
  724. if (*endp == '@')
  725. start = memparse(endp + 1, NULL);
  726. arm_add_memory(start, size);
  727. return 0;
  728. }
  729. early_param("mem", early_mem);
  730. static void __init request_standard_resources(const struct machine_desc *mdesc)
  731. {
  732. struct memblock_region *region;
  733. struct resource *res;
  734. kernel_code.start = virt_to_phys(_text);
  735. kernel_code.end = virt_to_phys(__init_begin - 1);
  736. kernel_data.start = virt_to_phys(_sdata);
  737. kernel_data.end = virt_to_phys(_end - 1);
  738. for_each_memblock(memory, region) {
  739. phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  740. phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  741. unsigned long boot_alias_start;
  742. /*
  743. * Some systems have a special memory alias which is only
  744. * used for booting. We need to advertise this region to
  745. * kexec-tools so they know where bootable RAM is located.
  746. */
  747. boot_alias_start = phys_to_idmap(start);
  748. if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
  749. res = memblock_virt_alloc(sizeof(*res), 0);
  750. res->name = "System RAM (boot alias)";
  751. res->start = boot_alias_start;
  752. res->end = phys_to_idmap(end);
  753. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  754. request_resource(&iomem_resource, res);
  755. }
  756. res = memblock_virt_alloc(sizeof(*res), 0);
  757. res->name = "System RAM";
  758. res->start = start;
  759. res->end = end;
  760. res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
  761. request_resource(&iomem_resource, res);
  762. if (kernel_code.start >= res->start &&
  763. kernel_code.end <= res->end)
  764. request_resource(res, &kernel_code);
  765. if (kernel_data.start >= res->start &&
  766. kernel_data.end <= res->end)
  767. request_resource(res, &kernel_data);
  768. }
  769. if (mdesc->video_start) {
  770. video_ram.start = mdesc->video_start;
  771. video_ram.end = mdesc->video_end;
  772. request_resource(&iomem_resource, &video_ram);
  773. }
  774. /*
  775. * Some machines don't have the possibility of ever
  776. * possessing lp0, lp1 or lp2
  777. */
  778. if (mdesc->reserve_lp0)
  779. request_resource(&ioport_resource, &lp0);
  780. if (mdesc->reserve_lp1)
  781. request_resource(&ioport_resource, &lp1);
  782. if (mdesc->reserve_lp2)
  783. request_resource(&ioport_resource, &lp2);
  784. }
  785. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
  786. defined(CONFIG_EFI)
  787. struct screen_info screen_info = {
  788. .orig_video_lines = 30,
  789. .orig_video_cols = 80,
  790. .orig_video_mode = 0,
  791. .orig_video_ega_bx = 0,
  792. .orig_video_isVGA = 1,
  793. .orig_video_points = 8
  794. };
  795. #endif
  796. static int __init customize_machine(void)
  797. {
  798. /*
  799. * customizes platform devices, or adds new ones
  800. * On DT based machines, we fall back to populating the
  801. * machine from the device tree, if no callback is provided,
  802. * otherwise we would always need an init_machine callback.
  803. */
  804. if (machine_desc->init_machine)
  805. machine_desc->init_machine();
  806. return 0;
  807. }
  808. arch_initcall(customize_machine);
  809. static int __init init_machine_late(void)
  810. {
  811. struct device_node *root;
  812. int ret;
  813. if (machine_desc->init_late)
  814. machine_desc->init_late();
  815. root = of_find_node_by_path("/");
  816. if (root) {
  817. ret = of_property_read_string(root, "serial-number",
  818. &system_serial);
  819. if (ret)
  820. system_serial = NULL;
  821. }
  822. if (!system_serial)
  823. system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
  824. system_serial_high,
  825. system_serial_low);
  826. return 0;
  827. }
  828. late_initcall(init_machine_late);
  829. #ifdef CONFIG_KEXEC
  830. /*
  831. * The crash region must be aligned to 128MB to avoid
  832. * zImage relocating below the reserved region.
  833. */
  834. #define CRASH_ALIGN (128 << 20)
  835. static inline unsigned long long get_total_mem(void)
  836. {
  837. unsigned long total;
  838. total = max_low_pfn - min_low_pfn;
  839. return total << PAGE_SHIFT;
  840. }
  841. /**
  842. * reserve_crashkernel() - reserves memory are for crash kernel
  843. *
  844. * This function reserves memory area given in "crashkernel=" kernel command
  845. * line parameter. The memory reserved is used by a dump capture kernel when
  846. * primary kernel is crashing.
  847. */
  848. static void __init reserve_crashkernel(void)
  849. {
  850. unsigned long long crash_size, crash_base;
  851. unsigned long long total_mem;
  852. int ret;
  853. total_mem = get_total_mem();
  854. ret = parse_crashkernel(boot_command_line, total_mem,
  855. &crash_size, &crash_base);
  856. if (ret)
  857. return;
  858. if (crash_base <= 0) {
  859. unsigned long long crash_max = idmap_to_phys((u32)~0);
  860. crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
  861. crash_size, CRASH_ALIGN);
  862. if (!crash_base) {
  863. pr_err("crashkernel reservation failed - No suitable area found.\n");
  864. return;
  865. }
  866. } else {
  867. unsigned long long start;
  868. start = memblock_find_in_range(crash_base,
  869. crash_base + crash_size,
  870. crash_size, SECTION_SIZE);
  871. if (start != crash_base) {
  872. pr_err("crashkernel reservation failed - memory is in use.\n");
  873. return;
  874. }
  875. }
  876. ret = memblock_reserve(crash_base, crash_size);
  877. if (ret < 0) {
  878. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  879. (unsigned long)crash_base);
  880. return;
  881. }
  882. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  883. (unsigned long)(crash_size >> 20),
  884. (unsigned long)(crash_base >> 20),
  885. (unsigned long)(total_mem >> 20));
  886. /* The crashk resource must always be located in normal mem */
  887. crashk_res.start = crash_base;
  888. crashk_res.end = crash_base + crash_size - 1;
  889. insert_resource(&iomem_resource, &crashk_res);
  890. if (arm_has_idmap_alias()) {
  891. /*
  892. * If we have a special RAM alias for use at boot, we
  893. * need to advertise to kexec tools where the alias is.
  894. */
  895. static struct resource crashk_boot_res = {
  896. .name = "Crash kernel (boot alias)",
  897. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  898. };
  899. crashk_boot_res.start = phys_to_idmap(crash_base);
  900. crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
  901. insert_resource(&iomem_resource, &crashk_boot_res);
  902. }
  903. }
  904. #else
  905. static inline void reserve_crashkernel(void) {}
  906. #endif /* CONFIG_KEXEC */
  907. void __init hyp_mode_check(void)
  908. {
  909. #ifdef CONFIG_ARM_VIRT_EXT
  910. sync_boot_mode();
  911. if (is_hyp_mode_available()) {
  912. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  913. pr_info("CPU: Virtualization extensions available.\n");
  914. } else if (is_hyp_mode_mismatched()) {
  915. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  916. __boot_cpu_mode & MODE_MASK);
  917. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  918. } else
  919. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  920. #endif
  921. }
  922. void __init setup_arch(char **cmdline_p)
  923. {
  924. const struct machine_desc *mdesc;
  925. setup_processor();
  926. mdesc = setup_machine_fdt(__atags_pointer);
  927. if (!mdesc)
  928. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  929. machine_desc = mdesc;
  930. machine_name = mdesc->name;
  931. dump_stack_set_arch_desc("%s", mdesc->name);
  932. if (mdesc->reboot_mode != REBOOT_HARD)
  933. reboot_mode = mdesc->reboot_mode;
  934. init_mm.start_code = (unsigned long) _text;
  935. init_mm.end_code = (unsigned long) _etext;
  936. init_mm.end_data = (unsigned long) _edata;
  937. init_mm.brk = (unsigned long) _end;
  938. /* populate cmd_line too for later use, preserving boot_command_line */
  939. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  940. *cmdline_p = cmd_line;
  941. early_fixmap_init();
  942. early_ioremap_init();
  943. parse_early_param();
  944. #ifdef CONFIG_MMU
  945. early_paging_init(mdesc);
  946. #endif
  947. setup_dma_zone(mdesc);
  948. xen_early_init();
  949. efi_init();
  950. /*
  951. * Make sure the calculation for lowmem/highmem is set appropriately
  952. * before reserving/allocating any mmeory
  953. */
  954. adjust_lowmem_bounds();
  955. arm_memblock_init(mdesc);
  956. /* Memory may have been removed so recalculate the bounds. */
  957. adjust_lowmem_bounds();
  958. early_ioremap_reset();
  959. paging_init(mdesc);
  960. request_standard_resources(mdesc);
  961. if (mdesc->restart)
  962. arm_pm_restart = mdesc->restart;
  963. unflatten_device_tree();
  964. arm_dt_init_cpu_maps();
  965. psci_dt_init();
  966. #ifdef CONFIG_SMP
  967. if (is_smp()) {
  968. if (!mdesc->smp_init || !mdesc->smp_init()) {
  969. if (psci_smp_available())
  970. smp_set_ops(&psci_smp_ops);
  971. else if (mdesc->smp)
  972. smp_set_ops(mdesc->smp);
  973. }
  974. smp_init_cpus();
  975. smp_build_mpidr_hash();
  976. }
  977. #endif
  978. if (!is_smp())
  979. hyp_mode_check();
  980. reserve_crashkernel();
  981. #ifdef CONFIG_MULTI_IRQ_HANDLER
  982. handle_arch_irq = mdesc->handle_irq;
  983. #endif
  984. #ifdef CONFIG_VT
  985. #if defined(CONFIG_VGA_CONSOLE)
  986. conswitchp = &vga_con;
  987. #elif defined(CONFIG_DUMMY_CONSOLE)
  988. conswitchp = &dummy_con;
  989. #endif
  990. #endif
  991. if (mdesc->init_early)
  992. mdesc->init_early();
  993. }
  994. static int __init topology_init(void)
  995. {
  996. int cpu;
  997. for_each_possible_cpu(cpu) {
  998. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  999. cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
  1000. register_cpu(&cpuinfo->cpu, cpu);
  1001. }
  1002. return 0;
  1003. }
  1004. subsys_initcall(topology_init);
  1005. #ifdef CONFIG_HAVE_PROC_CPU
  1006. static int __init proc_cpu_init(void)
  1007. {
  1008. struct proc_dir_entry *res;
  1009. res = proc_mkdir("cpu", NULL);
  1010. if (!res)
  1011. return -ENOMEM;
  1012. return 0;
  1013. }
  1014. fs_initcall(proc_cpu_init);
  1015. #endif
  1016. static const char *hwcap_str[] = {
  1017. "swp",
  1018. "half",
  1019. "thumb",
  1020. "26bit",
  1021. "fastmult",
  1022. "fpa",
  1023. "vfp",
  1024. "edsp",
  1025. "java",
  1026. "iwmmxt",
  1027. "crunch",
  1028. "thumbee",
  1029. "neon",
  1030. "vfpv3",
  1031. "vfpv3d16",
  1032. "tls",
  1033. "vfpv4",
  1034. "idiva",
  1035. "idivt",
  1036. "vfpd32",
  1037. "lpae",
  1038. "evtstrm",
  1039. NULL
  1040. };
  1041. static const char *hwcap2_str[] = {
  1042. "aes",
  1043. "pmull",
  1044. "sha1",
  1045. "sha2",
  1046. "crc32",
  1047. NULL
  1048. };
  1049. static int c_show(struct seq_file *m, void *v)
  1050. {
  1051. int i, j;
  1052. u32 cpuid;
  1053. for_each_online_cpu(i) {
  1054. /*
  1055. * glibc reads /proc/cpuinfo to determine the number of
  1056. * online processors, looking for lines beginning with
  1057. * "processor". Give glibc what it expects.
  1058. */
  1059. seq_printf(m, "processor\t: %d\n", i);
  1060. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  1061. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  1062. cpu_name, cpuid & 15, elf_platform);
  1063. #if defined(CONFIG_SMP)
  1064. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  1065. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  1066. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  1067. #else
  1068. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  1069. loops_per_jiffy / (500000/HZ),
  1070. (loops_per_jiffy / (5000/HZ)) % 100);
  1071. #endif
  1072. /* dump out the processor features */
  1073. seq_puts(m, "Features\t: ");
  1074. for (j = 0; hwcap_str[j]; j++)
  1075. if (elf_hwcap & (1 << j))
  1076. seq_printf(m, "%s ", hwcap_str[j]);
  1077. for (j = 0; hwcap2_str[j]; j++)
  1078. if (elf_hwcap2 & (1 << j))
  1079. seq_printf(m, "%s ", hwcap2_str[j]);
  1080. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  1081. seq_printf(m, "CPU architecture: %s\n",
  1082. proc_arch[cpu_architecture()]);
  1083. if ((cpuid & 0x0008f000) == 0x00000000) {
  1084. /* pre-ARM7 */
  1085. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  1086. } else {
  1087. if ((cpuid & 0x0008f000) == 0x00007000) {
  1088. /* ARM7 */
  1089. seq_printf(m, "CPU variant\t: 0x%02x\n",
  1090. (cpuid >> 16) & 127);
  1091. } else {
  1092. /* post-ARM7 */
  1093. seq_printf(m, "CPU variant\t: 0x%x\n",
  1094. (cpuid >> 20) & 15);
  1095. }
  1096. seq_printf(m, "CPU part\t: 0x%03x\n",
  1097. (cpuid >> 4) & 0xfff);
  1098. }
  1099. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  1100. }
  1101. seq_printf(m, "Hardware\t: %s\n", machine_name);
  1102. seq_printf(m, "Revision\t: %04x\n", system_rev);
  1103. seq_printf(m, "Serial\t\t: %s\n", system_serial);
  1104. return 0;
  1105. }
  1106. static void *c_start(struct seq_file *m, loff_t *pos)
  1107. {
  1108. return *pos < 1 ? (void *)1 : NULL;
  1109. }
  1110. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1111. {
  1112. ++*pos;
  1113. return NULL;
  1114. }
  1115. static void c_stop(struct seq_file *m, void *v)
  1116. {
  1117. }
  1118. const struct seq_operations cpuinfo_op = {
  1119. .start = c_start,
  1120. .next = c_next,
  1121. .stop = c_stop,
  1122. .show = c_show
  1123. };