12345678910111213141516171819202122232425262728293031323334 |
- % Generated by roxygen2: do not edit by hand
- % Please edit documentation in R/importance.R
- \name{getImpXgboost}
- \alias{getImpXgboost}
- \title{Xgboost importance}
- \usage{
- getImpXgboost(x, y, nrounds = 5, verbose = 0, ...)
- }
- \arguments{
- \item{x}{data frame of predictors including shadows.}
- \item{y}{response vector.}
- \item{nrounds}{Number of rounds; passed to the underlying \code{\link[xgboost]{xgboost}} call.}
- \item{verbose}{Verbosity level of xgboost; either 0 (silent) or 1 (progress reports). Passed to the underlying \code{\link[xgboost]{xgboost}} call.}
- \item{...}{other parameters passed to the underlying \code{\link[xgboost]{xgboost}} call.
- Similarly as \code{nrounds} and \code{verbose}, they are relayed from \code{...} of \code{\link{Boruta}}.
- For convenience, this function sets \code{nrounds} to 5 and verbose to 0, but this can be overridden.}
- }
- \description{
- This function is intended to be given to a \code{getImp} argument of \code{\link{Boruta}} function to be called by the Boruta algorithm as an importance source.
- }
- \note{
- Only dense matrix interface is supported; all predictions given to \code{\link{Boruta}} call have to be numeric (not integer).
- Categorical features should be split into indicator attributes.
- This functionality is inspired by the Python package BoostARoota by Chase DeHan.
- I have some doubts whether boosting importance can be used for all relevant selection without hitting substantial false negative rates; please consider this functionality experimental.
- }
- \references{
- \url{https://github.com/chasedehan/BoostARoota}
- }
|