123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- /**
- * Copyright (C) 2015 Topology LP
- * Copyright (C) 2018 Jakob Petsovits
- * All rights reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
- #ifndef CPPCODEC_DETAIL_DATA_ACCESS
- #define CPPCODEC_DETAIL_DATA_ACCESS
- #include <stdint.h> // for size_t
- #include <string> // for static_assert() checking that string will be optimized
- #include <type_traits> // for std::enable_if, std::remove_reference, and such
- #include <utility> // for std::declval
- #include <vector> // for static_assert() checking that vector will be optimized
- #include "../detail/config.hpp" // for CPPCODEC_ALWAYS_INLINE
- namespace cppcodec {
- namespace data {
- // This file contains a number of templated data accessors that can be
- // implemented in the cppcodec::data namespace for types that don't fulfill
- // the default type requirements:
- // For result types: init(Result&, ResultState&, size_t capacity),
- // put(Result&, ResultState&, char), finish(Result&, State&)
- // For const (read-only) types: char_data(const T&)
- // For both const and result types: size(const T&)
- template <typename T>
- CPPCODEC_ALWAYS_INLINE size_t size(const T& t) { return t.size(); }
- template <typename T, size_t N>
- CPPCODEC_ALWAYS_INLINE constexpr size_t size(const T (&t)[N]) noexcept {
- return (void)t, N * sizeof(t[0]);
- }
- class general_t {};
- class specific_t : public general_t {};
- class empty_result_state {
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void size(const Result& result) { return size(result); }
- };
- // SFINAE: Generic fallback in case no specific state function applies.
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE empty_result_state create_state(Result&, general_t)
- {
- return empty_result_state();
- }
- //
- // Generic templates for containers: Use these init()/put()/finish()
- // implementations if no specialization was found.
- //
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void init(Result& result, empty_result_state&, size_t capacity)
- {
- result.resize(0);
- result.reserve(capacity);
- }
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void finish(Result&, empty_result_state&)
- {
- // Default is to push_back(), which already increases the size.
- }
- // For the put() default implementation, we try calling push_back() with either uint8_t or char,
- // whichever compiles. Scary-fancy template magic from http://stackoverflow.com/a/1386390.
- namespace fallback {
- struct flag { char c[2]; }; // sizeof > 1
- flag put_uint8(...);
- int operator,(flag, flag);
- template <typename T> void operator,(flag, T&); // map everything else to void
- char operator,(int, flag); // sizeof 1
- }
- template <typename Result> inline void put_uint8(Result& result, uint8_t c) { result.push_back(c); }
- template <bool> struct put_impl;
- template <> struct put_impl<true> { // put_uint8() available
- template<typename Result>
- static CPPCODEC_ALWAYS_INLINE void put(Result& result, uint8_t c)
- {
- put_uint8(result, c);
- }
- };
- template <> struct put_impl<false> { // put_uint8() not available
- template<typename Result>
- static CPPCODEC_ALWAYS_INLINE void put(Result& result, uint8_t c)
- {
- result.push_back(static_cast<char>(c));
- }
- };
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void put(Result& result, empty_result_state&, uint8_t c)
- {
- using namespace fallback;
- put_impl<sizeof(fallback::flag(), put_uint8(result, c), fallback::flag()) != 1>::put(result, c);
- }
- //
- // Specialization for container types with direct mutable data access,
- // e.g. std::vector<uint8_t>.
- //
- // The expected way to specialize is to draft a new xyz_result_state type and
- // return an instance of it from a create_state() template specialization.
- // You can then create overloads for init(), put() and finish()
- // for the new result state type.
- //
- // If desired, a non-templated overload for both specific types
- // (result & state) can be added to tailor it to that particular result type.
- //
- template <typename T>
- constexpr auto data_is_mutable(T* t) -> decltype(t->data()[size_t(0)] = 'x', bool())
- {
- return (void)t, true;
- }
- constexpr bool data_is_mutable(...) { return false; }
- template <typename Result>
- class direct_data_access_result_state
- {
- public:
- CPPCODEC_ALWAYS_INLINE void init(Result& result, size_t capacity)
- {
- // reserve() may not actually allocate the storage right away,
- // and it isn't guaranteed that it will be untouched upon the
- //.next resize(). In that light, resize from the start and
- // slightly reduce the size at the end if necessary.
- result.resize(capacity);
- // result.data() may perform a calculation to retrieve the address.
- // E.g. std::string (since C++11) will use small string optimization,
- // so it needs to check if it's using allocated data or (ab)using
- // its own member variables interpreted as char array.
- // (This result_state is used for std::string starting with C++17.)
- // Conditional code paths are slow so we only do it once, at the start.
- m_buffer = result.data();
- }
- CPPCODEC_ALWAYS_INLINE void put(Result&, char c)
- {
- m_buffer[m_offset++] = c;
- }
- CPPCODEC_ALWAYS_INLINE void finish(Result& result)
- {
- result.resize(m_offset);
- }
- CPPCODEC_ALWAYS_INLINE size_t size(const Result&)
- {
- return m_offset;
- }
- private:
- // Make sure to get the mutable buffer decltype by using assignment.
- typename std::remove_reference<
- decltype(std::declval<Result>().data()[size_t(0)] = 'x')>::type* m_buffer;
- size_t m_offset = 0;
- };
- // SFINAE: Select a specific state based on the result type and possible result state type.
- // Implement this if direct data access (`result.data()[0] = 'x') isn't already possible
- // and you want to specialize it for your own result type.
- // Note: The enable_if should ideally be part of the class declaration,
- // but Visual Studio C++ will not compile it that way.
- // Have it here in the factory function instead.
- template <typename Result,
- typename = typename std::enable_if<
- data_is_mutable(static_cast<Result*>(nullptr))>::type>
- CPPCODEC_ALWAYS_INLINE direct_data_access_result_state<Result> create_state(Result&, specific_t)
- {
- return direct_data_access_result_state<Result>();
- }
- static_assert(std::is_same<
- decltype(create_state(*static_cast<std::vector<uint8_t>*>(nullptr), specific_t())),
- direct_data_access_result_state<std::vector<uint8_t>>>::value,
- "std::vector<uint8_t> must be handled by direct_data_access_result_state");
- // Specialized init(), put() and finish() functions for direct_data_access_result_state.
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void init(Result& result, direct_data_access_result_state<Result>& state, size_t capacity)
- {
- state.init(result, capacity);
- }
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void put(Result& result, direct_data_access_result_state<Result>& state, char c)
- {
- state.put(result, c);
- }
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void finish(Result& result, direct_data_access_result_state<Result>& state)
- {
- state.finish(result);
- }
- //
- // Specialization for container types with direct mutable array access,
- // e.g. std::string. This is generally faster because bound checks are
- // minimal and operator[] is more likely noexcept. In addition,
- // std::string::push_back() needs to write a null character on every
- // expansion, which should be more efficient when done in bulk by resize().
- //
- // Compared to the above, tracking an extra offset variable is cheap.
- //
- template <typename T>
- constexpr auto array_access_is_mutable(T* t) -> decltype((*t)[size_t(0)] = 'x', bool())
- {
- return (void)t, true;
- }
- constexpr bool array_access_is_mutable(...) { return false; }
- template <typename Result>
- class array_access_result_state
- {
- public:
- CPPCODEC_ALWAYS_INLINE void init(Result& result, size_t capacity)
- {
- // reserve() may not actually allocate the storage right away,
- // and it isn't guaranteed that it will be untouched upon the
- //.next resize(). In that light, resize from the start and
- // slightly reduce the size at the end if necessary.
- result.resize(capacity);
- }
- CPPCODEC_ALWAYS_INLINE void put(Result& result, char c)
- {
- result[m_offset++] = c;
- }
- CPPCODEC_ALWAYS_INLINE void finish(Result& result)
- {
- result.resize(m_offset);
- }
- CPPCODEC_ALWAYS_INLINE size_t size(const Result&)
- {
- return m_offset;
- }
- private:
- size_t m_offset = 0;
- };
- // SFINAE: Select a specific state based on the result type and possible result state type.
- // Note: The enable_if should ideally be part of the class declaration,
- // but Visual Studio C++ will not compile it that way.
- // Have it here in the factory function instead.
- template <typename Result,
- typename = typename std::enable_if<
- !data_is_mutable(static_cast<Result*>(nullptr)) // no more than one template option
- && array_access_is_mutable(static_cast<Result*>(nullptr))>::type>
- CPPCODEC_ALWAYS_INLINE array_access_result_state<Result> create_state(Result&, specific_t)
- {
- return array_access_result_state<Result>();
- }
- #if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG > 201703L)
- static_assert(std::is_same<
- decltype(create_state(*static_cast<std::string*>(nullptr), specific_t())),
- direct_data_access_result_state<std::string>>::value,
- "std::string (C++17 and later) must be handled by direct_data_access_result_state");
- #elif __cplusplus < 201703 && !defined(_MSVC_LANG) // we can't trust MSVC to set this right
- static_assert(std::is_same<
- decltype(create_state(*static_cast<std::string*>(nullptr), specific_t())),
- array_access_result_state<std::string>>::value,
- "std::string (pre-C++17) must be handled by array_access_result_state");
- #endif
- // Specialized init(), put() and finish() functions for array_access_result_state.
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void init(Result& result, array_access_result_state<Result>& state, size_t capacity)
- {
- state.init(result, capacity);
- }
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void put(Result& result, array_access_result_state<Result>& state, char c)
- {
- state.put(result, c);
- }
- template <typename Result>
- CPPCODEC_ALWAYS_INLINE void finish(Result& result, array_access_result_state<Result>& state)
- {
- state.finish(result);
- }
- // char_data() is only used to read, not for result buffers.
- template <typename T> inline const char* char_data(const T& t)
- {
- return reinterpret_cast<const char*>(t.data());
- }
- template <typename T, size_t N> inline const char* char_data(const T (&t)[N]) noexcept
- {
- return reinterpret_cast<const char*>(&(t[0]));
- }
- template <typename T> inline const uint8_t* uchar_data(const T& t)
- {
- return reinterpret_cast<const uint8_t*>(char_data(t));
- }
- } // namespace data
- } // namespace cppcodec
- #endif
|