notes.tex 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615
  1. \documentclass[leqno, openany]{memoir}
  2. \setulmarginsandblock{3.5cm}{3.5cm}{*}
  3. \setlrmarginsandblock{3cm}{3.5cm}{*}
  4. \checkandfixthelayout
  5. \usepackage{amsmath}
  6. \usepackage{amssymb}
  7. \usepackage{amsthm}
  8. %\usepackage{MnSymbol}
  9. \usepackage{bm}
  10. \usepackage{accents}
  11. \usepackage{mathtools}
  12. \usepackage{tikz}
  13. \usetikzlibrary{calc}
  14. \usetikzlibrary{automata,positioning}
  15. \usepackage{tikz-cd}
  16. \usepackage{forest}
  17. \usepackage{braket}
  18. \usepackage{listings}
  19. \usepackage{mdframed}
  20. \usepackage{verbatim}
  21. \usepackage{physics}
  22. \usepackage{stmaryrd}
  23. \usepackage{mathrsfs}
  24. \usepackage[normalem]{ulem}
  25. \usepackage{stackengine}
  26. %\usepackage{/home/patrickl/homework/macaulay2}
  27. %font
  28. \usepackage[sc]{mathpazo}
  29. \usepackage{eulervm}
  30. \usepackage[scaled=0.86]{berasans}
  31. \usepackage{inconsolata}
  32. \usepackage{microtype}
  33. %CS packages
  34. \usepackage{algorithmicx}
  35. \usepackage{algpseudocode}
  36. \usepackage{algorithm}
  37. % typeset and bib
  38. \usepackage[english]{babel}
  39. \usepackage[utf8]{inputenc}
  40. \usepackage[T1]{fontenc}
  41. \usepackage[bookmarks, colorlinks, breaklinks]{hyperref}
  42. \hypersetup{linkcolor=blue,citecolor=magenta,filecolor=black,urlcolor=blue}
  43. \usepackage{cleveref}
  44. \usepackage[backend=biber,style=alphabetic,maxalphanames=4,maxnames=5,hyperref,backref=true,backrefstyle=none]{biblatex}
  45. \usepackage{xpatch}
  46. \xpatchbibmacro{pageref}{parens}{backrefparens}{}{}
  47. % other formatting packages
  48. \usepackage{float}
  49. \usepackage{booktabs}
  50. \usepackage[shortlabels]{enumitem}
  51. \usepackage{csquotes}
  52. \usepackage{titlesec}
  53. \usepackage{titling}
  54. \usepackage{parskip}
  55. \usepackage{graphicx}
  56. \graphicspath{{./}}
  57. \usepackage{lipsum}
  58. % delimiters
  59. \DeclarePairedDelimiter{\gen}{\langle}{\rangle}
  60. \DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
  61. \DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
  62. \newtheorem{thm}{Theorem}[section]
  63. \newtheorem{cor}[thm]{Corollary}
  64. \newtheorem{prop}[thm]{Proposition}
  65. \newtheorem{lem}[thm]{Lemma}
  66. \newtheorem{conj}[thm]{Conjecture}
  67. \newtheorem{quest}[thm]{Question}
  68. \newtheorem{prob}[thm]{Problem}
  69. \theoremstyle{definition}
  70. \newtheorem{defn}[thm]{Definition}
  71. \newtheorem{defns}[thm]{Definitions}
  72. \newtheorem{con}[thm]{Construction}
  73. \newtheorem{exm}[thm]{Example}
  74. \newtheorem{exms}[thm]{Examples}
  75. \newtheorem{notn}[thm]{Notation}
  76. \newtheorem{notns}[thm]{Notations}
  77. \newtheorem{addm}[thm]{Addendum}
  78. \newtheorem{exer}[thm]{Exercise}
  79. \theoremstyle{remark}
  80. \newtheorem{rmk}[thm]{Remark}
  81. \newtheorem{rmks}[thm]{Remarks}
  82. \newtheorem{warn}[thm]{Warning}
  83. \newtheorem{sch}[thm]{Scholium}
  84. % unnumbered theorems
  85. \theoremstyle{plain}
  86. \newtheorem*{thm*}{Theorem}
  87. \newtheorem*{prop*}{Proposition}
  88. \newtheorem*{lem*}{Lemma}
  89. \newtheorem*{cor*}{Corollary}
  90. \newtheorem*{conj*}{Conjecture}
  91. % unnumbered definitions
  92. \theoremstyle{definition}
  93. \newtheorem*{defn*}{Definition}
  94. \newtheorem*{exer*}{Exercise}
  95. \newtheorem*{defns*}{Definitions}
  96. \newtheorem*{con*}{Construction}
  97. \newtheorem*{exm*}{Example}
  98. \newtheorem*{exms*}{Examples}
  99. \newtheorem*{notn*}{Notation}
  100. \newtheorem*{notns*}{Notations}
  101. \newtheorem*{addm*}{Addendum}
  102. \theoremstyle{remark}
  103. \newtheorem*{rmk*}{Remark}
  104. % shortcuts
  105. \newcommand{\Ima}{\mathrm{Im}}
  106. \newcommand{\A}{\mathbb{A}}
  107. \newcommand{\F}{\mathbb{F}}
  108. \newcommand{\E}{\mathbb{E}}
  109. \newcommand{\G}{\mathbb{G}}
  110. \newcommand{\N}{\mathbb{N}}
  111. \newcommand{\R}{\mathbb{R}}
  112. \newcommand{\C}{\mathbb{C}}
  113. \newcommand{\Z}{\mathbb{Z}}
  114. \newcommand{\Q}{\mathbb{Q}}
  115. \renewcommand{\k}{\Bbbk}
  116. \renewcommand{\L}{\mathbb{L}}
  117. \renewcommand{\P}{\mathbb{P}}
  118. \newcommand{\M}{\overline{M}}
  119. \newcommand{\g}{\mathfrak{g}}
  120. \newcommand{\h}{\mathfrak{h}}
  121. \newcommand{\n}{\mathfrak{n}}
  122. \renewcommand{\b}{\mathfrak{b}}
  123. \newcommand{\ep}{\varepsilon}
  124. \newcommand*{\dt}[1]{%
  125. \accentset{\mbox{\Huge\bfseries .}}{#1}}
  126. \renewcommand{\abstractname}{Official Description}
  127. \newcommand{\mc}[1]{\mathcal{#1}}
  128. \newcommand{\T}{\mathbb{T}}
  129. \newcommand{\mf}[1]{\mathfrak{#1}}
  130. \newcommand{\mr}[1]{\mathrm{#1}}
  131. \newcommand{\ms}[1]{\mathsf{#1}}
  132. \newcommand{\mt}[1]{\mathtt{#1}}
  133. \newcommand{\on}[1]{\operatorname{#1}}
  134. \newcommand{\ol}[1]{\overline{#1}}
  135. \newcommand{\ul}[1]{\underline{#1}}
  136. \newcommand{\wt}[1]{\widetilde{#1}}
  137. \newcommand{\wh}[1]{\widehat{#1}}
  138. \renewcommand{\div}{\operatorname{div}}
  139. \newcommand{\bir}{\sim_{\mr{bir}}}
  140. \newcommand{\stacks}[1]{\href{https://stacks.math.columbia.edu/tag/#1}{#1}}
  141. \newcommand{\ostar}{\stackMath\mathbin{\stackinset{c}{0ex}{c}{0ex}{\star}{\bigcirc}}}
  142. \DeclareMathOperator{\Der}{Der}
  143. \DeclareMathOperator{\Def}{Def}
  144. \DeclareMathOperator{\Bl}{Bl}
  145. \DeclareMathOperator{\NE}{NE}
  146. \DeclareMathOperator{\Tor}{Tor}
  147. \DeclareMathOperator{\Hom}{Hom}
  148. \DeclareMathOperator{\Ext}{Ext}
  149. \DeclareMathOperator{\End}{End}
  150. \DeclareMathOperator{\ad}{ad}
  151. \DeclareMathOperator{\Aut}{Aut}
  152. \DeclareMathOperator{\Rad}{Rad}
  153. \DeclareMathOperator{\Pic}{Pic}
  154. \DeclareMathOperator{\supp}{supp}
  155. \DeclareMathOperator{\Supp}{Supp}
  156. \DeclareMathOperator{\sgn}{sgn}
  157. \DeclareMathOperator{\spec}{Spec}
  158. \DeclareMathOperator{\Spec}{Spec}
  159. \DeclareMathOperator{\proj}{Proj}
  160. \DeclareMathOperator{\Proj}{Proj}
  161. \DeclareMathOperator{\ord}{ord}
  162. \DeclareMathOperator{\Div}{Div}
  163. \DeclareMathOperator{\depth}{depth}
  164. \DeclareMathOperator{\coker}{coker}
  165. \DeclareMathOperator{\ch}{ch}
  166. \DeclareMathOperator{\Hilb}{Hilb}
  167. % Section formatting
  168. \titleformat{\section}
  169. {\Large\sffamily\scshape\bfseries}{\thesection}{1em}{}
  170. \titleformat{\subsection}[runin]
  171. {\large\sffamily\bfseries}{\thesubsection}{1em}{}
  172. \titleformat{\subsubsection}[runin]{\normalfont\itshape}{\thesubsubsection}{1em}{}
  173. \title{COURSE TITLE}
  174. \author{Lectures by INSTRUCTOR, Notes by NOTETAKER}
  175. \date{SEMESTER}
  176. \newcommand*{\titleSW}
  177. {\begingroup% Story of Writing
  178. \raggedleft
  179. \vspace*{\baselineskip}
  180. {\Huge\itshape Integrability, Enumerative Geometry, and Quantization \\ August-September 2022}\\[\baselineskip]
  181. {\large\itshape Notes by Patrick Lei}\\[0.2\textheight]
  182. {\Large Lectures by Various}\par
  183. \vfill
  184. {\Large \sffamily Simons Center for Geometry and Physics}
  185. \vspace*{\baselineskip}
  186. \endgroup}
  187. \pagestyle{simple}
  188. \chapterstyle{ell}
  189. %\renewcommand{\cftchapterpagefont}{}
  190. \renewcommand\cftchapterfont{\sffamily}
  191. \renewcommand\cftsectionfont{\scshape}
  192. \renewcommand*{\cftchapterleader}{}
  193. \renewcommand*{\cftsectionleader}{}
  194. \renewcommand*{\cftsubsectionleader}{}
  195. \renewcommand*{\cftchapterformatpnum}[1]{~\textbullet~#1}
  196. \renewcommand*{\cftsectionformatpnum}[1]{~\textbullet~#1}
  197. \renewcommand*{\cftsubsectionformatpnum}[1]{~\textbullet~#1}
  198. \renewcommand{\cftchapterafterpnum}{\cftparfillskip}
  199. \renewcommand{\cftsectionafterpnum}{\cftparfillskip}
  200. \renewcommand{\cftsubsectionafterpnum}{\cftparfillskip}
  201. \setrmarg{3.55em plus 1fil}
  202. \setsecnumdepth{subsection}
  203. \maxsecnumdepth{subsection}
  204. \settocdepth{subsection}
  205. \addbibresource{../../math.bib}
  206. \DefineBibliographyStrings{english}{
  207. backrefpage={$\leftarrow$},
  208. backrefpages={$\leftarrow$},
  209. }
  210. \begin{document}
  211. \begin{titlingpage}
  212. \titleSW
  213. \end{titlingpage}
  214. \thispagestyle{empty}
  215. \section*{Disclaimer}%
  216. \label{sec:disclaimer}
  217. These notes were taken during the program using the \texttt{vimtex} package of the editor \texttt{neovim}.
  218. Any errors are mine and not the speakers'.
  219. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style and that of the lecturers. Also, notation may differe between lecturers.
  220. If you find any errors, please contact me at \texttt{plei@math.columbia.edu}.
  221. \section*{Acknowledgements}
  222. I would like to thank Ga\"etan Borot, Alexandr Buryak, Melissa Liu, Nikita Nekrasov, Paul Norbury, and Paolo Rossi for organizing this program.
  223. \vspace*{1cm}
  224. \noindent\textbf{Program Website:} \url{https://scgp.stonybrook.edu/archives/33309}
  225. \newpage
  226. \tableofcontents
  227. \chapter{Virasoro constraints in enumerative geometry (Alexei Oblomkov)}%
  228. \label{cha:alexei}
  229. Here is an equation of a plane curve over formal power series in $s$, which we will call the \textit{Lambert curve}:
  230. \[ ye^y = xe^x e^{-s}. \]
  231. This curve appears in the work of Oblomkov-Okounkov-Pandharipande~\cite{gwptdescendent} which treats the descendent Gromov-Witten/Pandharipande-Thomas correspondence in the stationary, non-fully equivariant case. The main question is to consider deformations of this curve.
  232. We will now state the main formula of interest:
  233. \begin{equation}\label{eqn:maineqn}
  234. H^{\mr{GW}}(x) = \frac{x}{\theta} \Res_{w=\infty} \qty(\frac{\sqrt{\dd{y} \dd{w}}}{y-w}; e^{\theta \phi(y) - \theta \phi(w)}).
  235. \end{equation}
  236. This formula lives on the curve $ye^{y} = we^{w} e^{-x/\theta}$, where $\theta^{-2} = -c_2(T_X)$ for $X$ a compact threefold. Here, we define
  237. \[ \phi(z) = \sum_{n > 0} \frac{a_n}{n} \qty(\frac{izc_1}{u})^{-n} + \frac{1}{c_1} \sum_{n < 0} \frac{a_n}{n} \qty(\frac{izc_1}{u})^{-n}. \]
  238. The $a_n$ satisfy the usual Heisenberg relations $[a_n, a_m] = m \delta_{n+m, 0}$.
  239. \begin{thm}[{\autocite[Theorems 4, 5]{gwptdescendent}}]\label{thm:oopmain}
  240. There is an equality (after the standard change of variables $q=-e^{iu}$ and up to a monomial in $q$) of equivariant $2$-legged vertices with descendents
  241. \[ \braket{\prod_{i=1}^m H_{k_i}^{\mr{GW}}(p)}{\mu_1, \mu_2, \emptyset}^{\mr{GW}} = q^? \braket{\prod_{i=1}^m H_{k_i}^{\mr{PT}}(p)}{\mu_1, \mu_2, \emptyset}^{\mr{PT}} \]
  242. modulo $(s_1+s_2)(s_2+s_3)$, where
  243. \[ H^{\mr{PT}}(x) = S^{-1} \qty(\frac{x}{\theta}) \sum_{k=0}^{\infty} x^k \ch_k(\F-\mc{O}), \]
  244. where $\F$ is the universal stable pair on the PT moduli space. Here, we have
  245. \[ S(z) = \frac{e^{z/2}-e^{-z/2}}{z}. \]
  246. \end{thm}
  247. \section{GW/Hurwitz correspondence for curves}
  248. \subsection{Hurwitz theory}\label{sub:hurwitz}
  249. Hurwitz theory counts ramified covers of a curve $X$ with specified ramification data:
  250. \[ H^X_d(\eta^1, \ldots, \eta^n) = \# \qty{\pi \colon C \to X \mid \pi^{-1}(z_i) = \eta^i}. \]
  251. Hurwitz proved that these numbers are always finite and that
  252. \[ H^{\P^1}_d(\eta^1, \ldots, \eta^m) = \frac{1}{d!} [C_{(1^d)}] \prod C_{\eta^i} = \frac{1}{(d!)^2} \tr_{\Q S(d)} \prod C_{\eta^i}, \]
  253. where $C_{\eta} = \sum_{g \sim (\eta)} g \in \Q S(d)$ is actually in the center of $\Q S(d)$. Then $C_{\eta}$ acts on $L_{\lambda}$ by the constant function $f_{\eta}(\lambda) = \abs{C_{\eta}} \frac{\chi_{\eta}^{\lambda}}{\dim(\lambda)}$.
  254. Because of this, we can write
  255. \[ \prod C_{\eta^i} = \sum_{\abs{\lambda} = d} \qty(\frac{\dim \lambda}{d!})^2 \prod_{i=1}^n f_{\eta^i}(\lambda). \]
  256. This can now be computed by a hook length formula, which corresponds to localization in the Hilbert scheme of points on $\C^2$. If we fix $\eta$, then the function
  257. \[ f_{\eta}(\lambda) = f_{\eta}^{\lambda} \in \Q[\lambda_1, \ldots, \lambda_n]^{* S(n)} \]
  258. is a symmetric function on $(\lambda_i - i)$, or a so-called \textit{shifted symmetric function}. If we consider the limit
  259. \[ \Lambda^* = \varprojlim_{n} \Q[\lambda_1, \ldots, \lambda_n]^{*S(n)}, \]
  260. this is a free algebra on functions $f^{(i)}$ satisfying $f^{(i+1)}(\lambda_1, \ldots, \lambda_i, 0) = f^{(i)}(\lambda_1, \ldots, \lambda_n)$. We now consider the functions
  261. \[ \P_k(\lambda) = \sum_{i=1}^{\infty} \qty(\qty[\lambda_i - i + \frac{1}{2}]^k - \qty(-i + \frac{1}{2})^k) + (1-2^{-k}) \zeta(-k). \]
  262. By the work of Vershik-Kerov, the shifted Schur functions can be written as
  263. \[ f_{\mu} = \frac{1}{\prod_{\mu_i}} \P_{\mu} + \cdots, \]
  264. which after inversion becomes
  265. \[ \frac{\P_{\mu}}{\prod \mu_i} = f_{\mu} + \sum_{\abs{\lambda} < \abs{\mu}} \rho_{\mu, \lambda} f_{\lambda}. \]
  266. We can also write the completed conjugacy classes $\overline{C}_{\mu} = C_{\mu} + \sum \rho_{\mu, \lambda} C_{\lambda}$.
  267. \begin{exm}
  268. For example, we have $\overline{(4)} = (4) + 2(2,1) + \frac{5}{4} (2)$.
  269. \end{exm}
  270. \subsection{GW/Hurwitz correspondence}
  271. \begin{thm}[{\cite{op1}}]\label{thm:op01}
  272. There is a correspondence
  273. \[ \tau_k(\omega) = \frac{1}{k!} \ol{(k+1)} \]
  274. between Gromov-Witten descendents and Hurwitz objects, where $\omega \in H^2(X)$ is the class of a point. More precisely, we have
  275. \[ \ev{\prod_{k=1}^n \tau_{k_i}(\omega)}_d^{\bullet X} = H_d^X \qty(\prod \frac{\ol{(k_i+1)}}{k_i!}). \]
  276. \end{thm}
  277. This can be related to PT theory as follows: consider $Z = \C^2 \times \P^1$ with the antidiagonal action of $\C^{\times}$ on $\C^2$ and recall that $H_{\C^{\times}}^*(\mr{pt}) = \C[t]$. Then we have the localization formula
  278. \[ \ev{\prod_{i=1}^n \tau_{k_i}(\omega)}_d^{\bullet Z, \C^{\times}} = t^? \ev{\prod_{i=1}^n \tau_{k_i}(\omega)}^{\bullet \P^1}. \]
  279. The left hand side becomes
  280. \begin{align*}
  281. \ev{\prod_{i=1}^n \ch_{k_i+2}(\omega)}^{\bullet Z, \C^{\times}}_d &= \int_{\mr{Hilb}_d(\C^2) \ch_{k_i+2}(\omega)} \\
  282. &= H^{\P^1} \qty(\prod_{i=1}^n \frac{\ol{(k_i+1)}}{k_i!}),
  283. \end{align*}
  284. where $\tau_k(\omega) = \ch_{k+2}(\omega)$.
  285. \subsection{Pandharipande-Thomas theory}\label{sub:pt}
  286. For a threefold $Z$, Pandharipande-Thomas theory~\cite{ptthy} considers moduli spaces
  287. \[ P_n(Z, \beta) = \qty{[\mc{O}_Z \xrightarrow{\varphi} \mc{F}]} \]
  288. of \textit{stable pairs}, where $\mc{F}$ is a pure dimension $1$ sheaf on $X$ supported on $\beta \in H_2(Z)$ and $n = \chi(\mc{F})$. This has technical advantages over the older Donaldson-Thomas theory, one of them being that we don't have to study the Hilbert scheme of points on $\C^3$. If we let $\mc{O}_{\P_n(Z, \beta) \times Z} \to \F$ be the universal stable pair, then we define
  289. \[ \ch_k(\gamma) = \int_Z \ch_k(\F) \cup \gamma \] for any $\gamma \in H^*(Z)$.
  290. Now consider $Z = \C^2 \times \P^1$. Then the first nonempty PT moduli space is
  291. \[ P_d(Z, d \P^1) = \mr{Hilb}_d(\C^2). \]
  292. If we let $\gamma \in H_{\C^{\times}}(\C^2)$, we define
  293. \[ \ch_k(\gamma) = \int_{\C^2} \ch_k(\mc{O}/I) \cup \gamma, \]
  294. where $\mc{I}$ is the universal ideal sheaf on $\mr{Hilb}_d(\C^2) \times \C^2$.
  295. \subsection{Idea of proof of GW/Hurwitz}
  296. We begin with a correspondence between relative Gromov-Witten theory without descendents and Hurwitz theory. Then we can degenerate our target curve with descendents to bubble out the descendents. We now need to show that
  297. \[ H_d^{\P^1} \qty(\mu, \frac{\ol{(k+1)}}{k!}) = \mr{GW}^{\P^1}(\mu, \tau_k(\omega)), \]
  298. which requires us to study the equivariant Gromov-Witten theory of $\P^1$.
  299. \subsection{Fock space}\label{sub:fock}
  300. We begin by defining the infinite-dimensional space
  301. \[ V = \bigoplus_{k \in \Z + \frac{1}{2}} \C \ul{k}. \]
  302. Then the semi-infinite exterior power $\bigwedge^{\infty/2} V$ has basis $\qty{\vec{v}_S}$, where $S = \qty{S_1 > S_2 > \ldots} \subset \Z + \frac{1}{2}$ such that
  303. \begin{enumerate}[(i)]
  304. \item The set $S_+ = S \setminus \qty(\Z_{\leq 0} - \frac{1}{2})$ is finite;
  305. \item The set $S_- = \qty(\Z_{\leq 0} - \frac{1}{2}) \setminus S$ is also finite.
  306. \end{enumerate}
  307. Then we write $\vec{v}_S = s_1 \wedge s_2 \wedge s_3 \wedge \cdots$.
  308. If we rotate the French way of drawing Young diagrams counterclockwise by $\frac{\pi}{4}$, we obtain the Russian way of drawing Young diagrams:
  309. \begin{figure}[H]
  310. \centering
  311. \includegraphics[width=0.6\textwidth]{ydiagru}
  312. \caption{Russian convention for Young diagrams.}
  313. \label{fig:ydiagru}
  314. \end{figure}
  315. There are two natural statistics associated to Young diagrams as in \Cref{fig:ydiagru}, which are the size and where the vertex touches the bottom. Define
  316. \[ V_{\lambda} = \qty(\lambda_1 - \frac{1}{2}) \wedge \qty(\lambda_2 - \frac{3}{2}) \wedge \cdots \]
  317. We now define the operators
  318. \[ \psi_k v = \ul{k} \wedge v. \]
  319. Then we have
  320. \[ :\psi_i \psi_j^*: = \begin{cases}
  321. \psi_i \psi_j^* & j > 0 \\
  322. - \psi_j^* \psi_j & j < 0.
  323. \end{cases}
  324. \]
  325. We can check that $[\psi_i, \psi_j] = [\psi_i^*, \psi_j^*] = 0$ and $\psi_i \psi_j^* + \psi_j^* \psi_i = \delta_{ij}$. If we consider $E_{ij} \in \mf{gl}(\infty)$, then assigning $E_{ij} \mapsto \psi_i \psi_j^*$ gives a projective representation of $\mf{gl}(\infty)$. The Casimir operator is $C = \sum_{k \in \Z + \frac{1}{2}} E_{kk}$, and this acts by
  326. \[ C v_S = (\abs{S_+} - \abs{S_-}) v_S. \]
  327. In addition, the operator $H = \sum k E_{kk}$ acts by
  328. \[ H v_{\lambda} = \abs{\lambda} v_{\lambda}. \]
  329. Define the operators
  330. \[ \mc{E}_r(z) = \sum e^{z(k-r/2)} E_{k-r,k} + \frac{\delta_{r,0}}{\zeta(z)}, \]
  331. where $\zeta(z) = e^{z/2} - e^{-z/2}$. In particular, we have $\mc{E}_r(0) = \sum E_{k-r, k} = \alpha_r$ for $r \neq 0$, where $[\alpha_k, \alpha_r] = k \delta_{k+r}$.
  332. The space $\qty(\bigwedge^{\infty/2} V)_0$ has two natural bases given by the $v_S$ and by $\prod \alpha_{k_i} v_{\emptyset}$. The transition function between them is $\chi_{\mu}^{\lambda}$. This appears in the Gromov-Witten theory of $\P^1$:
  333. \begin{align*}
  334. \mel**{\mu}{\prod \tau_{k_i}(\omega)}{v}^{\P^1} &= \frac{1}{\zeta(\mu) \zeta(\lambda)} \sum_{\abs{\lambda} = \abs{\mu}} \chi_{\mu}^{\lambda} \chi_{\nu}^{\lambda} \times \prod \frac{\P_{k_i+1}(\lambda)}{(k_i+1)!} \\
  335. &= \mel**{\alpha_{\mu}}{\prod_{i=1}^n \frac{[z^{k_i}] \mc{E}_0(z)}{k_i!}}{\alpha_{\nu}},
  336. \end{align*}
  337. where the last equality uses the formula $[z^k](\mc{E}_0(z)) v_{\lambda} = \P_k(\lambda) v_{\lambda}$. The last formula we will write in this section is the relation
  338. \[ [\mc{E}_a(z), \mc{E}_b(w)] = \zeta\qty(\det \mqty(z & a \\ w & b)) \mc{E}_{a+b}(z+w). \]
  339. \section{Equivariant Gromov-Witten theory of $\P^1$}
  340. We are interested in an equivariant version of the GW/Hurwitz correspondence, so we want to compute the Gromov-Witten invariants
  341. \begin{align*}
  342. \braket{a_{k_1}([0]) \cdots a_{k_m}([0])}{\mu}^{\P^1/\infty}_{\C^{\times}} &= \braket{\alpha_{k_1} \cdots \alpha_{k_m} \wt{W}}{\mu} \\
  343. &= \mel**{\vec{k}}{\wt{W}}{\mu},
  344. \end{align*}
  345. where the $a_{k_i}$ are Getzler descendents, $\wt{W}$ is the operator in~\Cref{thm:op02}, and $\mu$ is ramification data over $\infty$.
  346. \subsection{Localization in Gromov-Witten theory}
  347. Focusing on the case of $\P^1$, we will discuss localization. We begin with the moduli space $\ol{\mc{M}}^{\bullet}_{g, n+m}(\P^1, d)$ of disconnected stable maps, and the fixed points
  348. \[ \qty(\ol{\mc{M}}_{g, n+m}(\P^1, d))^{\C^{\times}} \]
  349. with respect to the $\C^{\times}$ action $\xi (v_1, v_2) = (v_1, \xi v_2)$ are simply a moduli space of bipartite graphs with extra markings on the vertices (genuses $g_i$ and marked points) and the edges (degrees $d_{ij}$) subject to various conditions, for example
  350. \[ \sum d_{ij} = d. \]
  351. Then recall that $H^*_{\C^{\times}}(\mr{pt}) = \C[t]$ and $H^*_{\C^{\times}}(\P^1) = \C[h,t]/h(h+t)$.
  352. In particular, we see that
  353. \[ \qty( \ol{\mc{M}}^{\bullet}(\P^1, d) )^{\C^{\times}} = \bigsqcup_{\vec{g}, \vec{k}} \frac{ \ol{\mc{M}}_{g_1, k_1}, \ol{\mc{M}}_{g_{\ell}, k_{\ell}} }{\Aut}, \]
  354. so we need to consider integrals over this space.
  355. One standard technique is to cut the edges in half and consider the vertices and then glue the edges together, and this puts the markings and the degree $d_{ij}$ copies of $\P^1$ on the same footing. We now need to compute the contribution of a vertex $v_0$ to our integral. We want to compute the contribution of $v_0$ to
  356. \[ \ev{\tau(z_1)[0] \cdots \tau(z_n)[0] \tau(w_1)[\infty]\cdots\tau(w_m)[\infty]}, \]
  357. which is in fact
  358. \[ C^{\circ}(v_0) = \frac{\prod_{i=1}^{e(v_0)} \frac{d_i^{d_i}}{d_i!}}{t^{2g(v_0) - 2 + d(v_0) + \mr{val}(v_0)}} \times H^{\circ}_{g(v_0)(d_1, \ldots, d_{e(v_0)}, \ldots, tz_i, \ldots)}. \]
  359. \subsection{Hodge integrals}
  360. The main component of this computation is the $H^{\circ}$ terms, which are called \textit{Hodge integrals}. Let
  361. \[\pi \colon C \to \ol{\mc{M}}_{g,n} \]
  362. be the universal curve on the moduli space of curves. Then
  363. \[ \mathbb{E} = \pi_*(\omega_{\pi}) \]
  364. is a rank $g$ vector bundle, called the Hodge bundle. Then let $\lambda_i = c_i(\E)$ be the Hodge classes and $\psi_i = c_1(T^*_{z_i} C)$ be the psi classes. The Hodge integral is now
  365. \[ H^{\circ}_g(z_1, \ldots, z_n) = \prod z_i \int_{\ol{\mc{M}}_{g, n}} \frac{1 - \lambda_1 + \cdots \pm \lambda_g}{\prod_{i=1}^n (1-z_i \psi_i)}. \]
  366. There is a connection between Hodge integrals and Hurwitz numbers in the nonequivariant case, due to Ekedahl-Lando-Schapiro-Vainshtein~\cite{elsv}. The main contribution of Okounkov-Pandharipande~\cite{op2} is to replace the Hurwitz numbers in the equivariant case. First, we consider $C_g(\mu)$, which counts genus $g$ curves with simple ramification at $c_1, \ldots, c_b$ and ramification data $\mu$ at $\infty$, where
  367. \[ b = 2g + \abs{\mu} + \ell(\mu) - 2 \]
  368. by the Riemann-Hurwitz formula. By ELSV, this number is computed by the formula
  369. \[ C_g(\mu) = \frac{b!}{\zeta(\mu)} \qty(\frac{\prod \mu_i^{\mu_i}}{\mu!}) H_g^{\circ}(\mu_1, \ldots, \mu_{\ell}). \]
  370. Our next goal is to interpret $C_g(\mu)$ in the Fock space analytically. Write
  371. \[ \mc{A}(a,b) = S(b)^a \times \sum_{k \in \Z} \frac{\zeta(b)^k}{(a+1)_k} \mc{E}_k(b), \]
  372. where
  373. \[ (a+1)_k = \begin{cases}
  374. (a+1) \cdots (a+k) & k \geq 0 \\
  375. (a(a-1)\cdots(a+k+1))^{-1} & k \leq 1
  376. \end{cases}
  377. \]
  378. is the Pochammer symbol. In the case where $m \in \Z$ and $(a,b) = (m, um)$, we obtain
  379. \[ \mc{A}(m, um) = \sum_{n \geq 0} \frac{\zeta(u)^n}{n!} \mc{E}_{n-m}(u). \]
  380. Keeping $b$ as the number of simple branch points, we obtain
  381. \begin{lem}[\cite{op2}]
  382. We have the identity
  383. \begin{align*}
  384. C_g(\mu) &= \frac{b!}{\zeta(\mu)} \qty(\frac{\prod \mu_i^{\mu_i}}{\mu!}) H_g^{\circ}(\mu_1, \ldots, \mu_{\ell}) \\
  385. &= \ev{\prod_{i=1}^{\ell} \mc{A}(\mu_i, u \mu_i)} \\
  386. &= \frac{u^?}{\zeta(\mu)} \ev{e^{\alpha_1} \mc{P}_2^b \prod \alpha_{-\mu_i}},
  387. \end{align*}
  388. where we use the formula
  389. \[ \frac{u^m m^m}{m!} \mc{A}(m, um) = e^{\alpha_1} e^{u \mc{P}_2} \alpha_{-m} e^{u \mc{P}_2} e^{-\alpha_1}. \]
  390. \end{lem}
  391. We will also discuss some more properties of the $\mc{A}_{a,b}$. First, there is the identity
  392. \[ [\mc{A}(z, uz), \mc{A}(w, uw)] = \frac{1}{w} \sum_{k \in \Z} \qty(-\frac{z}{w})^k = \delta(z, -w), \]
  393. and second
  394. \[ [u^k] \qty(\prod_{i < j} (z_i + z_j) \times \ev{\mc{A}(z_1, uz_1) \cdots \mc{A}(z_n, uz_n)}) \in \Q[z]. \]
  395. \begin{exm}
  396. We have an explicit example of a Hodge integral
  397. \begin{align*}
  398. H^0(z_1, z_2, u) &= \frac{S(uz_1)^{z_1} S(uz_2)^{z_2}}{\zeta(u(z_1+z_2))} \times \sum_{k > 0} \zeta(ku(z_1+z_2)) \times \frac{\zeta(uz_1)^k \zeta(uz_2)^{-k}}{(1+z_1)_k (1+z_2)_{-k}}
  399. \end{align*}
  400. with two insertions.
  401. \end{exm}
  402. \subsection{Application to Gromov-Witten theory}
  403. Returning to the vertex contributions, we obtain
  404. \begin{align*}
  405. (\cdots) H(d_1, \ldots, d_n, tz_1, \ldots, tz_m) &= (\cdots) \ev{\mc{A}(tz_1, uz_1) \cdots \mc{A}\qty(d_1, \frac{u}{t}d_1) \cdots} \\
  406. &= (\cdots) \ev{\mc{A}(tz_1, uz_1) \cdots e^{\alpha_1} e^{\frac{u}{t} \mc{P}_2} \prod \alpha_{-d_i}}.
  407. \end{align*}
  408. If we let $P_d$ be the projection operator on $\ker(H-d)$ and write it explicitly as
  409. \[ P_d = \sum \frac{1}{\zeta(\mu)} e^{-\frac{u}{t}} \mc{P}_2 \prod \alpha_{-\mu_i} P_0 \prod \alpha_{\mu_i} e^{-\frac{u}{t} \mc{P}_2}, \]
  410. then we obtain the formula
  411. \begin{align*}
  412. \ev{\tau(z_1)[0]\cdots\tau(z_n)[0]\tau(w_1)[\infty]\cdots\tau(w_m)[\infty]} &= \sum_{\mu} H(t \vec{z}, \mu) (\cdots) H(-t\vec{w}, \mu) \\
  413. &= \ev{\prod_{i=1}^n \mc{A}(tz_i, uz_i) e^{\alpha_1} P_d e^{-\alpha_1} \prod_{i=1}^m \mc{A}^*(-t w_i, uw_i)}.
  414. \end{align*}
  415. When $m = 0$, the formula simplifies to
  416. \begin{align*}
  417. \ev{\tau(z_1)[0]\cdots\tau(z_n)[0]} &= \ev{\prod_{i=1}^n \mc{A}(tz_i, uz_i) e^{\alpha_1} P_d e^{-\alpha_{-1}}} \\
  418. &= \ev{\prod_{i=1}^n \mc{A}(tz_i, uz_i) \frac{\alpha_1^d}{d!}} \\
  419. &= \braket{\prod_{i=1}^n \mc{A}(tz_i, uz_i)}{1^d} \\
  420. \end{align*}
  421. \subsection{Dressing operator}
  422. Recall that we want to compute the Gromov-Witten invariants with Getzler descendents, which are given by
  423. \[ \braket{a_{k_1}([0]) \cdots a_{k_n}([0])}{\mu}^{\P^1/\infty, \C^{\times}} = \braket{\alpha_{k_1} \cdots \alpha_{k_n} W e^{\alpha_1}}{\mu}. \]
  424. It remains to describe this matrix $W$ and the variant $\wt{W} = W e^{\alpha_{1}}$. Here, the $a_n$ are defined by
  425. \[ \sum_{n=0}^{\infty} z^n \tau_n = \sum_{n=0}^{\infty} \frac{(iuz)^{n-1}}{1+zc_1} a_n, \]
  426. so for example we have
  427. \[ \tau_1 = \frac{iu}{2} a_2 - c_1 a_1. \]
  428. We will work in $\mf{gl}_{\infty}(V)$. We also write
  429. \[ \wt{\mf{gl}}(V) = \ev{H^a S^b}_{a,b \in \Z}, \]
  430. where $H = \sum k E_{kk}$ and $S = \alpha_{-1} = \sum E_{k,k-1}$, so $SH = (H+1)S$. Then define the operator
  431. \[ \wt{\mc{A}} = \frac{1}{u} \sum \frac{(uz)^k}{(tz+1)_k} \alpha_k. \]
  432. Both the operators $\mc{A}, \wt{\mc{A}}$ live in $\mf{gl}(V)[[z^{\pm 1}, u^{\pm 1}, t^{\pm 1}]$.
  433. Then we will have $W^{-1}AW = \wt{A}$.
  434. \begin{lem}
  435. Write $D = S^{-1} + H$, $Z = \frac{tS}{u}$, and $\wt{D} = D - \frac{1}{2} \qty(H \frac{1}{1-Z} + \frac{1}{1-Z}H)$. Then there exists a unique solution to the equation
  436. \[ \dv{W}{t} = WB, \qquad B = \frac{H^2 Z^2}{(1-Z)^2} + \frac{HZ^2}{(1-Z)^3} + \frac{2Z^3 + 3Z^2}{8(1-Z)^4} \]
  437. such that
  438. \begin{enumerate}
  439. \item $W |_{u=0} = 1$;
  440. \item $W^{-1} DW = \wt{D}$;
  441. \item $W$ is upper triangular.
  442. \end{enumerate}
  443. \end{lem}
  444. \begin{proof}[Sketch of proof]
  445. We will compute the derivative
  446. \begin{align*}
  447. \dv{t} (W \wt{D} W^{-1}) &= W \qty(\frac{1}{t} [B, \wt{D}] + \dv{\wt{D}}{t})W^{-1},
  448. \end{align*}
  449. and this implies that $\wt{D}|_{t=0} = D|_{t=0}$. Some more ``basic checking'' completes the proof.
  450. \end{proof}
  451. \begin{rmk}
  452. The operator $B$ in the lemma was discovered by a computer and it is unclear why it appears.
  453. \end{rmk}
  454. \begin{thm}[\cite{gwptdescendent}]
  455. We have the formula
  456. \[ W^{-1} \mc{A} W = \wt{\mc{A}}. \]
  457. \end{thm}
  458. \begin{proof}
  459. Define the operator
  460. \[ \mc{A}^{(m)} \coloneqq \frac{u^{m+1}m^m}{m!} \mc{A}|_{t=1,z=m} \]
  461. and define $\wt{\mc{A}}^{(m)}$ analogously. In fact, we have $\mc{A}^{(m)} = (\mc{A}^{(1)})^m$ and
  462. \begin{align*}
  463. \wt{\mc{A}}^{(m)} &= S^m e^{\frac{mu}{S}} \\\
  464. \mc{A}^{(m)} &= e^{\frac{u}{S}} e^{\frac{uH^2}{2}} S^m e^{\frac{-uH^2}{2}}.
  465. \end{align*}
  466. Thus we obtain $W^{-1} \mc{A}^{(1)} W = \wt{\mc{A}}^{(1)}$. Differenting both sides by $t$, we obtain the desired result.
  467. \end{proof}
  468. \section{GW/PT correspondence}
  469. Let $X$ be a threefold and consider Pandharipande-Thomas theory on $X$, which we defined in~\Cref{sub:pt}.
  470. \begin{exm}
  471. Let $X = \P^3$ and $\beta = \P^1$. Then
  472. \[ P_n(X, \beta) = \qty{L \subset \P^3 \mid n \text{ points on }L}, \]
  473. and we will call the $n$ points $z_1, \ldots, z_n$. Then we see that
  474. \[ \mc{O}_{\P^3} \xrightarrow{\varphi} \mc{F} = \mc{O}_L(n) \]
  475. and $\varphi$ has zeroes at $z_1, \ldots, z_n$. In particular, we have
  476. \[ \on{vir-dim} P_n(X, \beta) = \dim \mr{Gr}(\P^1, \P^3). \]
  477. This and similar examples were worked out by Pandharipande-Thomas~\cite{ptthy} and by Moreira~\cite{moreira}.
  478. \end{exm}
  479. \begin{exm}
  480. Consider $X = \P^1 \times \C^2$. We will consider the moduli space $P_{\chi}(\C^2 \times \P^1, n \P^1)$. If we consider the torus $T_0$ preserving the symplectic form on $\C^2$, then the virtual class satisfies
  481. \[ [P_{\chi}(\P^1 \times \C^2)]^{\mr{vir}}_{T_0} = \delta_{\chi, n}[\Hilb_n(\C^2)]. \]
  482. \end{exm}
  483. \subsection{Descendents in PT theory}
  484. Let $\F$ be the universal stable pair on $P_n(X, \beta) \times X$. Then if $\gamma \in H^*(X)$, we define
  485. \[ \ch_k(\gamma) = \int_X \ch_k(\F - \mc{O}) \cdot \gamma. \]
  486. When $X = \P^1 \times \C^2$, then
  487. \[ \int_{P_n(X, n \P^1)} \prod_{i=1}^n \ch_{k_i}(\gamma_i) = \int_{\Hilb_n(\C^2)} \prod \ch_{k_i}(\gamma_i). \]
  488. Then there is the formula
  489. \[ \ch(z)([0]) \ket{[I_{\lambda}]} = S^{-1} \qty(\frac{x}{s})e^{zH} \ket{v_{\lambda}}. \]
  490. Of course, if $\C^{\times}$ acts on $\C^2$ with the antidiagonal action, we see that
  491. \[ (\Hilb_n(\C^2))^{\C^{\times}} = \bigsqcup_{\abs{\lambda} = n} \qty{I_{\lambda}}, \]
  492. where $I_{\lambda} = (x^{\lambda_1}, x^{\lambda_2}y, \ldots, x^{\lambda_{\ell}} y^{\ell})$. Then we have $\mc{O} / I_{\lambda} = \mc{F}$, and so
  493. \begin{align*}
  494. \ch(\mc{F}) |_{I_{\lambda}} &= \sum_{ij \in \lambda} e^{s(i-j)} \\
  495. &= \sum_{i=1}^{\ell} \frac{e^{(\lambda_i - i)s}-1}{e^s-1}.
  496. \end{align*}
  497. The $S^{-1}\qty(\frac{x}{s})$ term comes from the presence of the Todd class. Recall the definition
  498. \begin{align*}
  499. H^{\mr{PT}}(x) &= \sum_{k=-1}^{\infty} x^{k+1} H_k^{\mr{PT}} \\
  500. &= S^{-1}\qty(\frac{x}{\theta}) \sum_{k=0}^{\infty} x^k \ch_k(\F-\mc{O}),
  501. \end{align*}
  502. where $\theta^{-1} = -c_2(T_X)$.
  503. Now the main formula is that for $s=1$, we have
  504. \begin{align*}
  505. \mel**{1^n}{\prod_{i=1}^n H_{k_i}^{\mr{PT}}([0])}{\mu}^{T_0} &= [z^{\vec{k}}] \mel**{e^{\alpha_1}}{e^{\qty(\sum z_i)H}}{\mu} \\
  506. &= [z^{\vec{k}}]\braket{e^{\qty(\sum z_i)(H+\alpha_1)}e^{\alpha_1}}{\mu} \\
  507. &= [z^{\vec{k}}] \braket{W^{-1} e^{\qty(\sum z_i) D}e^{\alpha_1}}{\mu} \\
  508. &= [z^k] \braket{e^{\qty(\sum z_i)\wt{D}}We^{\alpha_1}}{\mu}.
  509. \end{align*}
  510. On the Gromov-Witten side, we have
  511. \begin{align*}
  512. \mel**{1^n}{\prod_{i=1}^n H_{k_i}^{\mr{GW}}([0])}{\mu} = \braket{\prod \alpha_{k_i}W^{-1}e^{\alpha_1}}{\mu}.
  513. \end{align*}
  514. This allows us to solve the GW/PT correspondence and match descendents, where
  515. \begin{align*}
  516. e^{z\wt{D}} &= \ch(z)[0] \\
  517. \alpha_k &= \tau_k([0]).
  518. \end{align*}
  519. This actually allows us to define negative descendents, but to match the descendents we need to write $\wt{D}$ in terms of the $\alpha_k$.
  520. \subsection{Matching GW and PT descendents}
  521. Our method will be to do the following:
  522. \begin{enumerate}
  523. \item Diagonalize $D$;
  524. \item If $A \in \mf{gl}(V)$ is diagonal with eigenvalues
  525. \[ A \ul{\qty(k+\frac{1}{2})} = \lambda_k \ul{\qty(k+\frac{1}{2})}, \]
  526. then $A$ acts on $\bigwedge^{\infty/2} V$ by
  527. \[ \Res_{w=0} \qty(\sum_{k \in \Z} \lambda_k w^{-k}) \times \psi(w) \psi^*(w). \]
  528. There is a boson/fermion correspondence between
  529. \begin{align*}
  530. \psi(x) &= T x^{c+\frac{1}{2}} \Gamma_+(x), \\
  531. \psi^*(x) &= T^{-1} x^{-c+\frac{1}{2}} \Gamma_-(x).
  532. \end{align*}
  533. \end{enumerate}
  534. The first step is of course to diagonalize $D$ (for simplicity, we will set $t=s=1$). Clearly we can identify
  535. \[ V = z^{\frac{1}{2}} \C[z][[z^{-1}]]. \]
  536. Then we know
  537. \[ D = \qty(\frac{1}{z} - \dv{z} \frac{z^2}{(iu-z)} - \frac{1}{2} \frac{z}{(1-z)^2}) f(z), \]
  538. so we need to solve the differential equation $Df(z) = \lambda f(z)$. The solution is
  539. \[ f(z) = \qty(1-\frac{z}{iu})^{-\frac{1}{2}} z^{\frac{1}{2}-\lambda} \times \exp \qty[\frac{iu}{2z^2} - \frac{(1+iu\lambda)}{z}]. \]
  540. To make this work, we need $\lambda \in \Z$, and to diagonalize $D$ we take the basis
  541. \[ f_k(z) = \qty(z^{-1} e^{\frac{-iu}{z}})^k \times \exp(g(z)), \]
  542. where $g(z) = -\frac{iu}{2z^2} + \frac{1}{z} - \frac{1}{2} \log\qty(1-\frac{iu}{z})$. The Lambert curve is obtained from $f_k$, which produces the curve
  543. \[ xe^{-x} = ye^{-y} e^{\frac{x}{\theta}}. \]
  544. \begin{rmk}
  545. Recall the dressing operator $W$, which we defined using a differential equation. An explicit formula for $W$ is
  546. \[ W = W_{\lambda,\mu} = \braket{a_{\lambda}}{\mu}^{\P^1, \C^{\times}}. \]
  547. \end{rmk}
  548. An upgraded version of the GW/PT correspondence is the following:
  549. \begin{thm}[\cite{gwptdescendent}]
  550. Subject to $t_1 + t_2 = 0$, there is an explicit equality of descendent vertices
  551. \[ \braket{\prod H_{k_i}^{\mr{GW}}([0])}{\emptyset, \emptyset, \mu}^{\mr{GW}, T_0} =\braket{\prod H_{k_i}^{\mr{PT}}([0])}{\emptyset, \emptyset, \mu}^{\mr{PT}, T_0}. \]
  552. \end{thm}
  553. \begin{rmk}
  554. Using the Pandharipande-Pixton philosophy, we can obtain equality~\Cref{thm:oopmain}. This will be enough to prove the stationary GW/PT correspondence for toric varieties.
  555. \end{rmk}
  556. \subsection{GW/PT correspondence with descendents}
  557. Recall that on the Gromov-Witten side, the insertions of interest are $\tau_0(\gamma)$, while in PT theory, the corresponding insertions should be $\ch_2(\gamma)$. This correspondence was proved in~\cite{moop} for any toric variety and any $\gamma$, while Pandharipande-Pixton~\cite{ppquintic} prove this for $X$ a complete intersection in $\P^N$. There is also a conjectural equality between $\tau_k([\mr{pt}])$ and $\ch_{k+2}([\mr{pt}])$.
  558. More generally,~\cite{mnop2} conjecture that there is a series of ``chemical reactions'' that take
  559. $\prod_{i=1}^n \tau_{k_i}(\gamma_i)$ to an expression involving with Chern classes.
  560. Pandharipande-Pixton~\cite{ppgwptdesc} consider the operators
  561. \begin{align*}
  562. M_{\lambda,\mu}^{\mr{PT}} = \braket{\prod \ch_{\lambda_i + 2}([0])}{\mu}_{\mr{PT},T}^{\C^2 \times \P^1 / \C^2 \times \infty} \\
  563. M_{\lambda,\mu}^{\mr{GW}} = \braket{\prod \tau{\lambda_i}([0])}{\mu}_{\mr{GW}, T}^{\C^2 \times \P^1 / \C^2 \times \infty}
  564. \end{align*}
  565. in the fully equivariant case. This fits into an overall picture
  566. \begin{equation*}
  567. \begin{tikzcd}
  568. \text{GW desc} \ar{r}{M^{\mr{GW}}} & \text{rel conds} & \text{PT desc} \ar[swap]{l}{M^{\mr{PT}}} \ar[bend left=30]{ll}{M^{\mr{GW/PT}} = M^{\mr{GW}} \circ (M^{\mr{PT}})^{-1}}.
  569. \end{tikzcd}
  570. \end{equation*}
  571. \begin{thm}[\cite{ppgwptdesc}]\leavevmode
  572. \begin{itemize}
  573. \item The operator $M^{\mr{PT}}$ is rational in $q$;
  574. \item The operators $M^{\mr{PT}}$ and $M^{\mr{GW}}$ are upper-triangular.
  575. \item There is an equality
  576. \[ \ev{M^{\mr{GW/PT}}(D)}_{\mr{GW},T}^X = \ev{D}_{\mr{PT},T}^X \]
  577. for any $X$ and any $D = \prod_{i=1}^m \ch_{k_i}(\gamma_i)$.
  578. \end{itemize}
  579. \end{thm}
  580. While $M^{\mr{GW/PT}}$ is unknown, there is an explicit formula for some of the matrix elements, which we call $C^{\bullet}$.
  581. \begin{thm}[\cite{gwptdescendent}]
  582. There is an explicit equality
  583. \[ \ev{C^{\bullet}\qty(\prod_{i=1}^n \ch_{k_i}(\gamma_i))}_X^{\mr{GW}} = \ev{\prod \ch_{k_i}(\gamma_i)}_X^{\mr{PT}} \]
  584. for any toric $X$ and stationary descendents $\gamma_i \in H^{>0}(X)$.
  585. \end{thm}
  586. We will consider the formal algebras
  587. \begin{align*}
  588. \mathbb{D}_{\mr{PT}}^X &\supset \mathbb{D}_{\mr{PT}}^{ X, \mt{st} } \coloneqq \braket{\ch_i(\gamma) \mid i \geq 2, \gamma \in H^{>0}} \\
  589. \mathbb{D}_{\mr{GW}}^X &\supset \mathbb{D}_{\mr{GW}}^{ X, \mt{st} } \coloneqq \braket{\tau_i(\gamma) \mid i \geq 0, \gamma \in H^{>0}}.
  590. \end{align*}
  591. Then write
  592. \[ \wt{\ch}_k(\gamma) \coloneqq \ch_k(\gamma) + \frac{1}{24} \ch_{k-2}(\gamma \cdot c_2). \]
  593. Then we can write
  594. \[ C^{\bullet}\qty(\prod_{i=1}^m \wt{\ch}_i(\gamma)) = \prod_{P \text{ partition of } (1, \ldots, n)} \prod_{s \in P} C^{\circ} \qty(\prod_{s \in P} \wt{\ch}_{{k_i}}(\gamma_i)). \]
  595. The $C^{\circ}$ are quite complicated, but in a simple case, we have
  596. \[ C^{\circ}(\wt{\ch}_{k_1+2}(\gamma) \wt{\ch}_{k_2 + 2}(\gamma')) = -\frac{(iu)}{k_1!}{k_2!} a_{k_1+k_2}(\gamma \cdot \gamma') + \sum (*) a_{\mu_1} a_{\mu_2}(\gamma \cdot \gamma' c_1). \]
  597. There is a bumping and splitting that produces things like
  598. \[ a_k a_{\ell}(\alpha) = \sum_{i=1}^N a_k(\alpha_i^L) a_{\ell}(\alpha_i^R), \]
  599. where $\Delta \cdot \alpha = \sum \alpha_i^L \otimes \alpha_i^R \in H^*(X \times X)$. We will take the $\alpha_i^L$ and $\alpha_i^R$ to have degrees $d^L, d^R$, respectively.
  600. \subsection{Virasoro constraints in PT theory}
  601. For a toric variety $X$, we can apply the GW/PT correspondence to the Virasoro constraints for $\mr{GW}(X)$. This obtains Virasoro constraints for $\mr{PT}(X)$, which turns out to be quite simple. The Virasoro constraints in PT theory are:
  602. \begin{itemize}
  603. \item We have
  604. \[ R_k(\ch_i(\gamma)) = \qty(\prod_{n=0}^k (i+d-3+n)) \ch_{i+k}(\gamma) \]
  605. for any $\gamma \in H^{2d}(X, \Q)$. For example, $R_{-1}(\ch_i(\gamma)) = \ch_{i=1}(\gamma)$.
  606. \item The constant terms are
  607. \begin{align*}
  608. T_k ={}& -\frac{1}{2} \sum_{a+b=k+2} (-1)^{d^L d^R}(a+d^L-3)!(b+d^R-3)! \ch_a \ch_b(c_1) \\
  609. &+ \frac{1}{24} \sum_{a+b=k} a! b! \ch_a \ch_b(c_1 c_2).
  610. \end{align*}
  611. \item There are also the operators $L_k^{\mr{PT}} = T_k + R_k$ satisfying
  612. \[ L_k^{\mr{PT}}, L_{\ell}^{\mr{PT}} = (k+\ell) L_{k+\ell}^{\mr{PT}} \]
  613. and operators $\mc{L}_k^{\mr{PT}} = L_k^{\mr{PT}} + (k+1)! L_{-1}^{\mr{PT}} \ch_{k+1}(p)$.
  614. \end{itemize}
  615. \begin{thm}[\cite{virasoropt}]
  616. For any $D \in \mathbb{D}^{\mr{PT},\mr{st}}$, we have
  617. \[ \ev{\mc{L}_k^{\mr{PT}}(D)}_X^{\mr{PT}} = 0. \]
  618. \end{thm}
  619. \begin{conj}
  620. The theorem holds for all descendents $D \in \mathbb{D}^{\mr{PT}}$.
  621. \end{conj}
  622. The proof essentially amounts to checking the following formula:
  623. \begin{thm}
  624. There is the formula
  625. \[ C^{\bullet} \circ L_k^{\mr{PT}}(D) = (iu)^{-k} \wt{\mc{L}}_k^{\mr{GW}} \circ C^{\bullet}(D). \]
  626. \end{thm}
  627. Here, $L_k^{\mr{GW}}$ is the usual Virasoro for Gromov-Witten theory.\footnote{Alexei complained about this not preserving stationary things.} The only contribution to descendents of $1$ to $L_k^{\mr{GW}}$ are
  628. \[ (k+1)! \tau_0(1) \tau_{k-1}(p) = T_k^{\circ}. \]
  629. Therefore, we can define $\wt{L}_k^{\mr{GW}} = L_k^{\mr{GW}} - T_k^{\circ}$ and $\mc{L}_k^{\mr{GW}} = \wt{\mc{L}}_k^{\mr{GW}} + (iu)^2 (k+1)! \wt{L}_{-1}^{\mr{GW}}$.
  630. \begin{prop}\leavevmode
  631. \begin{itemize}
  632. \item The operator $\mc{L}_k^{\mr{GW}}$ preserve stationary descendents, as in
  633. \[ \mc{L}_k^{\mr{GW}}(\mathbb{D}^{\mr{GW}, \mr{st}}) \subset \mathbb{D}^{\mr{GW}, \mr{st}}. \]
  634. \item We have the vanishing
  635. \[ \ev{\mc{L}_k^{\mr{GW}}(D)}^{\mr{GW}} = 0 \]
  636. for all $D \in \mathbb{D}^{\mr{GW}}$.
  637. \end{itemize}
  638. \end{prop}
  639. Let $S$ be a surface and $X = S \times \P^1$. Then
  640. \[ P_n(S \times \P^1, [n \P^1]) = \Hilb_n(S), \]
  641. and so the virtual class is
  642. \[ [P_n(S \times \P^1, [n \P^1])]^{\mr{vir}} = [\Hilb_n(S)]. \]
  643. Then if $\mc{I}$ is the universal ideal on the Hilbert scheme, define
  644. \[ \ch_k^{\Hilb}(\gamma) = \int_S \ch_k(\mc{I}) \gamma. \]
  645. \begin{cor}
  646. For any toric surface $S$ and $\gamma_i \in H^*(S)$, we have
  647. \[ \int_{\Hilb_n(S)} \mc{L}_k^{\Hilb} \qty(\prod_{i=1}^n \ch_{k_i}^{\Hilb}(\gamma_i)) = 0. \]
  648. \end{cor}
  649. \begin{proof}
  650. This follows from
  651. \[ \ch_{k_i}(\gamma \times [\mr{pt}]) = \ch_{k_i}^{\Hilb}(\gamma). \]
  652. \end{proof}
  653. \begin{rmk}
  654. A cobordism argument was used by Moreira~\cite{moreira} to extend this to any surface $S$ with $H^1(S) = 0$.
  655. \end{rmk}
  656. \chapter{Counting curves in 1, 3, \xout{and 5} dimensions (Andrei Okounkov)}%
  657. \label{cha:andrei}
  658. The main object in Gromov-Witten theory is the moduli space $\mc{M}_{\mr{GW}}$ of stable maps $C \to X$ from a curve to $X$. This is of course highly disconnected, so the genus $g$ component will be weighted by $u^{2g-2}$ while we will hide the degree component for now. One of the major ideas in this subject is to push forward cohomology classes to the moduli of curves, which forms a \textit{cohomological field theory} with rich structure coming from maps between different moduli spaces of curves. Instead, we will push things forward to $X$. Just like we can vary the source curves in families, we can degenerate $X$. Also, automorphisms of $X$ still act on our moduli space.
  659. Our goal is to give a target space description of integrals over $\mc{M}_{\mr{GW}}$. We would like a geometric theory that reproduces the same integrals and an algebraic theory that computes them in some fashion resembling a topological quantum field theory -- for example Chern-Simons theory.
  660. \begin{figure}[h]
  661. \centering
  662. \includegraphics[width=0.4\textwidth]{basicdeg}
  663. \caption{Basic degeneration}
  664. \label{fig:basicdeg}
  665. \end{figure}
  666. The most basic degeneration of a variety $X$ is to degenerate
  667. \[ X \rightsquigarrow X_1 \cup_D X_2, \]
  668. where $D$ is a smooth divisor shared between $X_1$ and $X_2$ as in~\Cref{fig:basicdeg}. If we write $\P = \P(\mc{O}_D \oplus N_{X_i/D})$, we obtain the relation
  669. \[ [X] = [X_1] + [X_2] - [\P] \]
  670. in algebraic cobordism. As proved by Levine-Pandharipande~\cite{algcob}, this relation generates all relations in algebraic cobordism. A similar type of degeneration is the expanded degeneration of Jun Li~\cite{expdeg}, which creates an accordion of $\P^1$-bundles as in~\Cref{fig:extdeg}.
  671. \begin{figure}[h]
  672. \centering
  673. \includegraphics[width=0.4\textwidth]{extdeg}
  674. \caption{Expanded degeneration}
  675. \label{fig:extdeg}
  676. \end{figure}
  677. This fits well into the usual TQFT formalism where the boundary divisor $D = \bigsqcup D_i$ is associated to a vector space $\mc{H}(D) = \bigotimes \mc{H}(D_i)$ and the manifold $X$ is a vector in this space. Because $\mc{H}(D)$ is usually the cohomology of some nice space, it has a product $\cup$, integration, and a form
  678. \[ (\alpha, \beta) = \int \alpha \cup \beta. \]
  679. We can impose conditions at $D$ by either pulling back cohomology classes from $D$ or pushing forward to a cohomology class in $\mc{H}(D)$.
  680. In reality, we have more general degenerations, where we have a degeneration
  681. \[ X \rightsquigarrow \bigcup_i X_i, \]
  682. where the $X_i$ are glued along a simple normal crossings divisor. This has been extensively studied in geometry, for example in logarithmic Gromov-Witten theory, logarithmic Donaldson-Thomas theory of Maulik-Ranganathan~\cite{logdt}, and Brett Parker's ``exploded manifolds''~\cite{expman}.
  683. \section{Counting curves in 1 dimension}
  684. Now, we will take $\dim X = 1$, so we are studying maps $f \colon C \to X$ from a curve. We can take $X = \P^1$ or even $X = \C$ with the action of $\C^{\times}$. Before we begin, we would like to discuss why we prefer $\dim X$ to be odd. If we consider $X \times \C$, then
  685. \[ [\mc{M}_{\mr{GW}}(X \times \C)]^{\mr{vir}} = [\mc{M}_{\mr{GW}}(X)]^{\mr{vir}} \cup \mr{Eu}(H^1(C, \mc{O}_C) \otimes \C) \ep^{-1}, \]
  686. where $\ep \in H^2([\mr{pt}/\C^{\times}])$ is a coordinate on $\on{\ms{Lie}} \C^{\times}$. This can be removed by taking $\ep \to \infty$, but doing so is very hard and introduces new problems. However, Mumford tells us
  687. \[ \mr{Eu}(\ep) \otimes \mr{Eu}(-\ep) = (-1)^g \ep^{2g}, \]
  688. and thus changing dimension by $2$ is very easy.
  689. In the case of $\dim X = 1$, the geometric target space theory is just Hurwitz theory, which as in~\Cref{sub:hurwitz} counts ramified covers of $X$ of degree $d$ with specified ramification data. This ramification data is an instance of a relative condition in Gromov-Witten theory, which is as follows. We can consider the moduli space of relative stable maps $\mc{M}_{\mr{GW}}(X/D)$, where we impose that $f^{-1}(D) = \sum \mu_i p_i$, where $\mu$ is a partition and the $p_i$ are the marked points of $C$.
  690. Hurwitz theory has moduli spaces parameterizing maps $C \to X$ which are ramified covers with the specified ramification, where $(X, x_1, \ldots, x_n)$ can vary in moduli. These moduli spaces are finite over the moduli of curves, so the most interesting number is simply the degree of this map, which is the Hurwitz number. Under degenerations $X \rightsquigarrow X_1 \cup X_2$, then the ramification at the node $x_0$ should match. These are called admissible covers; see Harris-Morrison~\cite{harmor} for a reference. This gives us the relation
  691. \[ \mr{Hur}(X, \mu_1, \mu_2, \ldots) = \mr{Hur}(X_1, \mu_1, \ldots, \bullet) \cdot \mr{Hur}(X_2, \mu_2, \ldots, \bullet), \]
  692. where $\bullet = \sum_{\eta} \zeta(\eta) \eta \otimes \eta \in \mc{H} \otimes \mc{H}$. This insertion is inverse to the the pairing on $\mc{H}$.
  693. The general answer for Hurwitz numbers was known to Frobenius and Burnside as
  694. \[ \mr{Hur}(\mu^{(1)}, \mu^{(2)}, \ldots)_X = \sum_{\lambda \in \mr{Irr}(S(d))} \qty(\frac{\dim \lambda}{\abs{S(d)}})^{2-2g} \prod_i (\text{central character of }\mu^{(i)}\text{ in }\lambda). \]
  695. This contains a blueprint for the modern understanding of all 2d TQFTs as well as handle-gluing operators.
  696. \subsection{More algebraic way to think about characters of $S(d)$}
  697. There is the action of a central extension of $\mf{gl}(\infty)$ on $\bigwedge^{\infty/2} \C^{\infty}$, known as the \textit{Fock space}. We need the operators $\psi_k, \psi_k^*$ defined in \Cref{sub:fock}, but we also want the Heisenberg operators
  698. \[ \alpha_n = \sum_{j-i=n} E_{ij}, \]
  699. which act on the vacuum $v_{\emptyset}$ by
  700. \[ \prod \alpha_{-\mu_i} \ket{v_{\emptyset}} = \sum_{\lambda} \chi_{\mu}^{\lambda} \ket{\lambda}. \]
  701. We also want co consider the fermionic operators
  702. \[ P_m = \sum_k k^m \psi_k \psi_k^* \]
  703. taken without the normal ordering and $\zeta$-regularized as in
  704. \[ \sum_{i=1}^{\infty} \qty(-i + \frac{1}{2})^m = (1-2^{-m})\zeta(-m). \]
  705. The operator $P_m$ acts with eigenvalue
  706. \[ p_m(\lambda) = \sum_i \qty(\lambda_i - i + \frac{1}{2})^m \]
  707. on $\ket{\lambda}$. By Vershik-Kerov and Kerov-Olshanski, the central character of $\mu$ and $\lambda$ are polynomials of $\lambda$, which are $\C[p_1, p_2, \ldots]$ and in fact is equal to
  708. \[ \frac{1}{\prod \mu_i} \prod p_{\mu_i} + \cdots, \]
  709. where the lower order terms are controlled by the Gromov-Witten/Hurwitz correspondence. In particular, there is the remarkable formula
  710. \[ \sum z^{d-\frac{1}{24}} \mr{Hur}(\P^1, \mu_1, \ldots) = \mel**{v_{\emptyset}}{e^{\alpha_1} z^{p_1} (\text{fermionic operators}) e^{\alpha_{-1}}}{v_{\emptyset}}, \]
  711. while the case of the elliptic curve is simply the trace of the middle operator without the $e^{\alpha_1}$ terms.
  712. \subsection{Gromov-Witten/Hurwitz correspondence}
  713. There are several features of this correspondence:
  714. \begin{enumerate}
  715. \item There are no descendents of $1 \in H^0(X, \Q)$ or $H^1(X, \Q)$ in Hurwitz theory. In Gromov-Witten theory, these can be explicitly reduced to descendents of $\mr{pt} \in H^2(X, \Q)$.
  716. \item Relative conditions correspond to relative conditions. This will always be true in the things that we study.
  717. \item Descendents of $\mr{pt} \in H^2(X, \Q)$ are equal to relative conditions glued on a $\P^1$ bubble.
  718. \end{enumerate}
  719. This reduces to computing everything in the Gromov-Witten theory of $X = (\P^1, 0, \infty)$, where one of the marked points is descendent and the other is relative.
  720. The remarkable formula in~\Cref{thm:op01} can be computed explicitly and gives a formula for the completed cycles as conjugacy classes. More generally, if we have two relative points, the invariants can be computed explicitly and are B/C-symmetric in $\eta \cup \eta'$. In particular, for $d = 0$, we have
  721. \[ \tau_k(\mr{pt}) v_{\emptyset} = \frac{1}{(k+1)!}(1-2^{-k-1}) \zeta(-k-1), \]
  722. and this was computed by Faber and Pandharipande~\cite{gwhodge}.
  723. We now want to consider the equivariant theory for $\P^1$.
  724. \begin{thm}[\cite{op2}]\label{thm:op02}
  725. We have the identity
  726. \[ \braket{\exp\qty(\sum_{i \geq 0} t_i \tau_i([0]))}{\mu} = \braket{\exp\qty(\sum_{n \geq 1} \wt{t}_n \alpha_n) \wt{W}}{\mu}, \]
  727. where we take a linear change of times determined by
  728. \[ \sum_{k \geq 0} x^{k+1} \tau_k([0]) \rightsquigarrow \sum_{n \geq 1} \frac{u^{n-1}x^n}{(1+\ep x) \cdots (n+\ep x)} \alpha_n. \]
  729. \end{thm}
  730. \subsection{Role of integrable systems}
  731. This last formula was found by Getzler~\cite{getz} and is problematic in the $\ep \to \infty$ limit. Morally, the Gromov-Witten descendents give a quantum integrable system that looks like a free boson or free fermion. By the Kyoto school of integrable systems, there is a classical integrable system for generating functions. In particular, for $\P^1$ with two marked points, the degeneration gives us
  732. \[ \ev{\exp \qty(\sum_{n \geq 1} \wt{t}_n \alpha_n) g \exp\qty(\sum_{n \geq 1} \wt{s}_n \alpha_{-n})}, \]
  733. which is a tau function for the 2-Toda hierarchy and in particular gives a KP hierarchy for linear Hodge integrals in degree $0$.
  734. \begin{rmk}
  735. These equations differ from the equations found in 2009 by Kazarian~\cite{kaz}, and this is not well-understood.
  736. \end{rmk}
  737. Fundamentally, these equations come from Pl\"ucker relations for $GL(\infty) \hookrightarrow \End(\mr{Fock})$. This is because in $\mr{Fock} \otimes \mr{Fock}$ there is an invariant operator $\sum \psi_k \otimes \psi_k^*$ commuting with $GL(\infty)$. Our goal now is to understand the deformation of the following for $\dim X = 3$:
  738. \begin{enumerate}
  739. \item The group $GL(\infty)$;
  740. \item The representation $GL(\infty) \to \End(\mr{Fock})$;
  741. \item The quantum integrable system;
  742. \item The invariant operator in $\mr{Fock} \otimes \mr{Fock}$.
  743. \end{enumerate}
  744. \section{Counting curves in 3 dimensions}
  745. Again, we are looking for a target space description of enumerative theories, but this time for threefolds. Here, we will consider Donaldson-Thomas (sheaf-counting) theories on a threefold $X$. The connection to Gromov-Witten theory was conjectured by Maulik-Nekrasov-Okounkov-Pandharipande~\cite{mnop1,mnop2} building on the work of Aganagic-Klemm-Marino-Vafa~\cite{vertexphys} and the connection to box counting by Okounkov-Reshetikhin-Vafa~\cite{crystals}.
  746. \subsection{Donaldson-Thomas theory}
  747. While Gromov-Witten theory thinks of a curve inside $X$ as a map $f \colon C \to X$, Donaldson-Thomas theory thinks of $C$ as being cut out by the ideal sheaf
  748. \[ \mc{I}_C \in \Hilb(X, \mr{curves}), \]
  749. which has discrete invariants the degree $\beta \in H_2(X, \Z)$ and the holomorphic Euler characteristic $\chi(\mc{O}_C)$. This has a natural obstruction theory
  750. \[ \Ext^i(\mc{I}_C, \mc{O}_C), \]
  751. which is unsuitable for our purposes. Instead, we interpret $\mc{I}_C$ as a rank $1$ torsion-free sheaf with
  752. \[ \det \mc{I}_C = \mc{O}_C, \]
  753. and so we obtain the obstruction theory
  754. \[ \mr{Def} = \Ext_0^1(\mc{I}_C, \mc{I}_C), \qquad \mr{Obs} = \Ext_0^2(\mc{I}_C, \mc{I}_C). \]
  755. There are no higher Ext groups (even for orbifolds) by a result of Zhou~\cite{relorbdt}.
  756. In Donaldson-Thomas theory, the descendents are $\ch(\mf{I}_C)$, where $\mf{I}_C$ is the universal sheaf on $X \times \Hilb(X)$. We would hope that counts in fixed degree (this does work) and fixed genus (this does not work because moduli spaces are empty for $g \ll 0$ or $\chi \ll 0$) may be related, but unfortinately this is too naive. Instead, we expect a GW/DT correspondence
  757. \[ \sum u^{2g-2} (\cdots) \xleftrightarrow{\text{corresponds}} \sum (-z)^{\chi} (\cdots) \]
  758. after the standard change of variables
  759. \[ z = -e^{iu}, \]
  760. where $z$ is weighted by $\chi$ and $u$ is weighted by genus.
  761. All moduli spaces in Donaldson-Thomas theory are schemes, so all DT invariants are actually integers. If we want actual equality of analytic functions with the Gromov-Witten partition function, we must have rationality of the DT partition function (this is related to BPS integrality). For this all to work out, the virtual dimensions
  762. \begin{align*}
  763. \mr{GW-vir-dim} &= (\deg, c_1(X)) + (g-1)(3-\dim X) \\
  764. \mr{DT-vir-dim} &= (\deg, c_1(X))
  765. \end{align*}
  766. must be the same, so $X$ must be a threefold. Of course, our correspondence requires
  767. \begin{enumerate}
  768. \item Identification of descendents;
  769. \item Division by degree $0$ contributions in DT theory;
  770. \item Prefactors like $z^{-\frac{\mr{vir-dim}}{2}} \leftrightarrow (-iu)^{\mr{vir-dim}}$.
  771. \end{enumerate}
  772. See~\cite{takagidt} for precise formulas and additional discussion.
  773. In DT theory, it is possible to remove the degree $0$ terms \textbf{geometrically} using Pandharipande-Thomas theory, which was discussed in~\Cref{sub:pt}. Some parts of identifying the descendents are easy (for example primary descendents and relative conditions are fine).
  774. \subsection{Relative conditions in DT theory}
  775. In Gromov-Witten theory, a relative condition for a divisor $D$ consists of specifying a condition like
  776. \[ f^{-1}(D) = 2p_1 + p_2 + 2 p_3. \]
  777. If $p_2$ and $p_3$ are mapped to the same point with $p_3$ tangent to $D$, then we have an evaluation map to the inertia stack of $S^n D \ni 2 f(p_1) + 3 f(p_2)$, where we remember the ramification data $(2,1)$ on $f(p_2) = f(p_3)$. Therefore, we are really integrating orbifold cohomology classes, where classes in $H^*(D)$ are colored by integers, so we are considering
  778. \[ S^{\bullet} (H^{\bullet}(D) \otimes t \C[t]). \]
  779. If we want to resolve the tangency, then we must degenerate $X$ in a family and bubble off of $\P^1$-bundle on $D$ (or a whole accordion).
  780. In Donaldson-Thomas theory, we have a map
  781. \[ \mc{O}_C(-D) \to \mc{O}_C \to \mc{O}_{C \cap D} \in \Hilb(D, m), \]
  782. which is regular as long as multiplying by the equation of $D$ is injective. To ensure this, we must bubble out the accordion as above. Therefore, the relative conditions come from $H^*(\Hilb(D, n))$, which has a Nakajima basis
  783. \[ \prod \alpha_{-m_i}(\gamma_i) \ket{\mr{vac}}, \]
  784. where the vacuum vector is $1 \in H^0(\Hilb(D, 0))$. Of course, there is an isomorphism
  785. \[ \bigoplus_n H^*(\Hilb(D, n)) \simeq S^{\bullet}(H^*(D) \otimes t \C[t]), \]
  786. and so adding a subscheme of length $m_i$ along $\gamma_i \in H^*(D)$ should correspond to tangency of order $m_i$ along $\gamma_i$.
  787. The GW/DT correspondence has been proved for many, but not all, threefolds, and a key step, as in Maulik-Oblomkov-Okounkov-Pandharipande~\cite{moop}, is to consider a fibration
  788. \[ A_r \hookrightarrow X \to B, \]
  789. where $A_r$ is a crepant resolution of $\C^2/\mu_{r+1}$, where $\mu_{r+1}$ acts with weights $(1, -1)$. Thus $X$ is a crepant resolution of
  790. \[ \qty(\mc{L}_1 \oplus \mc{L}_2 \to B) / \mu_{r+1}. \]
  791. When $r = 0$, then $X = \mc{L}_1 \oplus \mc{L}_2 \to B$ is a local curve, so for example $B \times \C \times \C$ is fine, and we should recover Hurwitz theory for $\ep_1 + \ep_2 = 0$.
  792. \begin{rmk}
  793. ADE surfaces are special for many reasons, for example enhanced symmetries of $H^*(\Hilb)$ or of $D^b \ms{Coh}$.
  794. \end{rmk}
  795. The torus fixed points on $\Hilb(B \times \C^2)$ are those curves supported on $B$, which can be thought of having a partition on $B$ (corresponding to the closure of the generic point) with some extra boxes. The DT analog of the Mumford relations is that if $\ep_1 + \ep_2 = 0$, then the virtual class vanishes for all nonminimal cases. Of course, the fixed points of $\Hilb(\C^2, n)$ correspond to partitions. If $\abs{\lambda} = n$, then
  796. \[ T_{\lambda} \Hilb(\C^2, n) = \sum_{\square} (a(\square) + 1) \ep_1 - \ell(\square) \ep_2 + (\ell(\square) + 1) \ep_1 - a(\square) \ep_2, \]
  797. where $a(\square), \ell(\square)$ are the arm and leg lengths respectively. Then we obtain
  798. \[ \Ext^{\bullet}_{X, \circ} (\mc{I}_{\lambda}, \mc{I}_{\lambda}) = H^*(B, -), \]
  799. and so the virtual class is
  800. \[ \prod_{\square} \qty((a+1-\ell)(\ell+1-a))^{2g(B)-2}. \]
  801. When $\ep_1 + \ep_2 = 0$, this becomes
  802. \[ (-1)^{n(1-g(b))} \ep_1^{2n(1-g(b))} \prod_{\square} h(\square)^{2g(B)-2}. \]
  803. This clearly is related to the representation theory of the symmetric group.
  804. \begin{rmk}
  805. Subsequent to~\cite{moop}, a different perspective was developed, in particular for computations in K-theory. Unfortunately, we cannot say anything about a possible relation to Gromov-Witten theory.
  806. \end{rmk}
  807. \subsection{Role of quantum groups}
  808. If we return to our $A_r$-bundle over $B$, we want some kind of cohomological field theory on the stack of $(\C^{\times})^2$-bundles on curves $B$ (which can vary in moduli). This has various building blocks related to $B = \P^1$ with a descendent at $0$ and relative condition at $\infty$ with the $\C^{\times}$ action. The descendent conditions correspond to
  809. \[ S^{\bullet}(H^*(A_r) \otimes t \C[t]), \]
  810. while the relative conditions correspond to
  811. \[ H^{\bullet}(\Hilb(A_r)). \]
  812. By the ideas of Nekrasov-Shatashvili~\cite{nekshat}, this structure should be described by a quantum group, and this idea has been realized (also in K-theory) with the quantum group $\mc{U}_{\hslash}\qty(\wh{\wh{\mf{gl}(r+1)}})$ in K-theory and the Yangian for cohomology. Here, if $t_1, t_2$ are the weights of $(\C^{\times})^2$ acting on $\C^2$, then $\hslash = \frac{1}{t_1 t_2}$ is the weight of the symplectic form. There is a noticeable difference between $\mf{gl}$ and $\mf{sl}$, and it becomes more dramatic for other quivers.
  813. \begin{rmk}
  814. In order to work with these objects, it is important to use a computer, and we would like to advertise the code written by Henry Liu: \url{https://github.com/liu-henry-hl/boxcounting}.
  815. \end{rmk}
  816. \begin{rmk}
  817. If we restrict to $\ep_1 + \ep_2 = 0$, then
  818. \[ \ms{Y}(\wh{\mf{gl}(1)}) \simeq \mc{U}(\mf{gl}(\infty)) \]
  819. as a Hopf algebra, so we recover our description of Hurwitz theory.
  820. \end{rmk}
  821. \begin{exm}
  822. Recall that the operators corresponding to $\P^1$ with one descendent and two relative conditions commute. These should be Baxter $Q$-operators, and this is more or less true.
  823. \end{exm}
  824. \subsection{Quantum loop algebra}
  825. The \textit{quantum loop algebra} $\mc{U}_{\hslash}(\wh{g})$ is a Hopf algebra deformation of $\mc{U}(\mf{g} \otimes \C[t^{\pm 1}])$. The original loop algebra has a loop rotation automorphism, where if $V$ is a representation, $V(a)$ is the precomposition with $t \mapsto at$. The way we will construct our quantum group is by using the category of modules, which for a Hopf algebra have tensor products and duals. There are particularly important maps. where for $\wh{g}$, we take
  826. \[ V_1(a_1) \otimes V_2(a_2) \xrightarrow{(1 2)} V_2(a_2) \otimes V_1(a_1), \]
  827. and for $\mc{U}_{\hslash}(\wh{g})$ we take
  828. \[ V_1(a_1) \otimes V_2(a_2) \xrightarrow{R_{12}^{\vee}(a_1/a_2)} V_2(a_2) \otimes V_1(a_1). \]
  829. This $R_{12}^{\vee}(a_1/a_2)$ is a rational operator, and it must depend only on $\frac{a_1}{a_2}$ if the loop rotation is an automorphism. If we have three representations $V_1, V_2, V_3$, then there are two ways to reverse the order, and the equality between them is called the \textit{Yang-Baxter equation}, see~\Cref{fig:ybe}.
  830. \begin{figure}[h]
  831. \centering
  832. \includegraphics[width=0.4\textwidth]{ybe}
  833. \caption{Yang-Baxter equation sculpture at the Simons Center}
  834. \label{fig:ybe}
  835. \end{figure}
  836. Finally, we would like to reconstruct our quantum group given a family of $R$-matrices. We will do this using
  837. \[ \text{Hopf algebra} \hookrightarrow \bigotimes V_{k_i}(a_i). \]
  838. We can always assume that the collection of $V_i$ are closed under the tensor product. If we consider a physical space $V_i(a)$ and auxillary space $V_0(u)$, then matrix elements in $V_0$ give operators depending on $u$ in $V_i(a)$. These operators will generate $\mc{U}_{\hslash}$ and are closed under product (two auxillary spaces, one physical) and coproduct (one auxillary, two physical). Morphisms in the category of modules are maps commuting with $R$-matrices, and so we obtain relations in $\mc{U}_{\hslash}$. The $R$-matrix indeed gives braiding and commutation relations by the Yang-Baxter equations.
  839. Now we will consider a family of subalgebras, called \textit{Baxter subalgebras}. Let $g \in \End(V_i(a_i))$ be such that $[g \otimes g, R] = 0$. These come from the Cartan torus, which in geometric cases come from discrete invariants. Then we consider the \textit{transfer matrix}
  840. \[ \tr_1 (g \otimes 1) R_{V_i, V_j}(u/a). \]
  841. These commute for fixed $g$ and all $V_i, u$, and so we get a family of commutative subalgebras in $\mf{U}_{\hslash}(\wh{g})$ which are parameterized by a maximal torus in $\mf{g}$.
  842. More generally, we can have several strands on a cylinder and one strand going around as in~\Cref{fig:cylbraid} with the same condition on $g$ as before. But then we have commutativity with $g(a_i) = q a_i$, and so we get a canonical flat $q$-difference connection on $V_1(a_1) \otimes \cdots \otimes V_n(a_n)$, which is the qKZ equation.
  843. \begin{figure}[h]
  844. \centering
  845. \includegraphics[width=0.3\textwidth]{cylbraid}
  846. \caption{Cylindrical braiding condition.}
  847. \label{fig:cylbraid}
  848. \end{figure}
  849. \subsection{Some more curve counting}
  850. We now want to return to curve counting on fibrations
  851. \[ A_r \hookrightarrow X \to B, \]
  852. where for now we will specialize $B = \P^1$.
  853. We will begin with Gromov-Witten theory. For example, when $r = 0$, then $X$ is the total space of two line bundles on $\P^1$, so above $0, \infty$ there are curves collapsed to a point and above the base there are copies of $\P^1$ mapping with degrees $\mu_i$. Therefore we have something like
  854. \[ \sum_{\mu} \mr{edge}(\mu)^{-1} \times (\text{triple Hodge integral at $0$}) \times (\text{triple Hodge integral at $\infty$}). \]
  855. The triple Hodge integral terms (\Cref{fig:thodge}) also involve nonsingular boundary conditions of tangency to $\pi^{-1}(\infty)$ (resp. $\pi^{-1}(0)$). Recall that we can break a curve in half while adding relative boundary conditions, and if we have $\P^1$ with a $\C^{\times}$ action, it can be broken in half with nonsingular boundary conditions into $\mr{edge}^{-1}$.
  856. \begin{figure}[h]
  857. \centering
  858. \includegraphics[width=0.4\textwidth]{triplehodge}
  859. \caption{Triple Hodge integral terms.}
  860. \label{fig:thodge}
  861. \end{figure}
  862. On the other side, in DT theory, a half edge corresponds to a 3D partition with extra boxes.
  863. The correspondences also include Givental's $J$-function for $\Hilb(\C^2, n)$, which is of course a Nakajima quiver variety.
  864. Of course, whenever the target is a GIT quotient (for example in the case of a Nakajima variety), there is a notion of quasimaps~\cite{qmap}, which for $A_0$ are actually equal to Pandharipande-Thomas moduli spaces~\cite{pcmi}. For $r > 0$, these are not PT moduli spaces, but there is still a correspondence with PT-like theories~\cite{qmapsp}. The combinatorics of the PT vertex terms looks like~\Cref{fig:ptcomb}.
  865. \begin{figure}[h]
  866. \centering
  867. \includegraphics[width=0.4\textwidth]{ptcomb}
  868. \caption{Combinatorics of one-legged PT vertex.}
  869. \label{fig:ptcomb}
  870. \end{figure}
  871. The half-edge solves differential and difference equations (giving quantum groups) and are a much evolved relative of the hypergeometric function of the form
  872. \[ \sum_{d \geq 0} z^d \prod_{i=1}^m \frac{(b_i)_d}{(a_i)_d} \]
  873. where the $z$ are the K\"ahler variables (solving a linear differential equation) and the product term contains the equivariant variables (solving a linear difference equation).
  874. \subsection{qKZ equation}
  875. Donaldson-Thomas and quasimap theories make sense in $K$-theory, and so we obtain a $q$-difference equation from quantun groups, for example the qKZ equation. which comes from~\Cref{fig:cylbraid}. Here, the strands are $V_i(a_i)$ and we will call the blue strand $V_k(a_k)$. Recall that
  876. \[ [g \otimes g, R] = 0, \]
  877. and so we have
  878. \[ g = (\text{Loop rotation}) \cdot z, \]
  879. where $z$ lives in the Cartan torus (also the K\"ahler variables) and the loop rotation is $T^{-1}$, where $Ta = qa$.
  880. Consider unrolling the cylinder into a hyperplane arrangement. Consider the simple example of hyperplanes $x_1=x2+\qty{-1,0,1}$ with walls like $x_1=x_3$ and $x_2=x_3$, see~\Cref{fig:hyperplane}. We can move in three directions, and in the first direction we obtain
  881. \[ g^{(1)} R_{13} R_{12}. \]
  882. In the second direction, we obtain
  883. \[ g^{-(1)} R_{12}^{-1} g^{(1)} g^{(2)} R_{23} = g^{(2)} R_{12}^{-1} g^{-(2)} g^{(2)} R_{23}. \]
  884. \begin{figure}[h]
  885. \centering
  886. \includegraphics[width=0.4\textwidth]{hyperplane}
  887. \caption{Hyperplane arrangement}
  888. \label{fig:hyperplane}
  889. \end{figure}
  890. More generally, from each wall in our hyperplane arrangement $\ev{\alpha, x} + n = 0$, we obtain an operator $B_w(q^nx^{\alpha})$. If we consider $\lambda$ such that $\ev{\alpha, \lambda} \in \Z$ for all $\alpha$, then translation by $\lambda$ is conjugation by $\mc{O}(\lambda)$ of all $B_w$. This produces commuting $q$-difference operators, which are transition functions for a vector bundle of the form
  891. \[ \C^{\mr{rank}} / q^{\mr{shifts}}. \]
  892. For example, for $\mc{U}_{\hslash}(\wh{\mf{g}})$, we obtain the following:
  893. \begin{enumerate}
  894. \item First, of course the qKZ equation, which depends on $z$ in the Cartan torus of $\mf{g}$.
  895. \item Universally, there exists a $q$-difference connection in $z$ that commutes with the qKZ operator. Operators in $\mc{U}_{\hslash}(\wh{\mf{g}})$ act on $V_1(a_1) \otimes \cdots \otimes V_n(a_n)$. This was studied first by Etingof-Varchenko~\cite{etvar} for finite-dimensional Lie algebras $\g$, where the $\alpha$ are simply the roots of $\mf{g}$. They write elements
  896. \[ B_w \in \mc{U}_{\hbar}(\mf{sl}_2) \hookrightarrow \mc{U}_{\hslash}(\wh{\g}), \]
  897. and these are called \textit{quantum dynamical Weyl groups}. More generally, Okounkov-Smirnov~\cite{qdenak} consider more complicated arrangements, for example for $\mc{U}_{\hslash}\qty(\wh{\wh{\mf{gl}(1)}})$, where we need all roots of of $\wh{\mf{gl}(1)}$, and so the hyperplane arrangement is $\Q$. This is clearly preserved by translation by $\Z$, so the root subalgebras are
  898. \[ \mc{U}_{\hslash}(\wh{\mf{gl}(1)}) \hookrightarrow \mc{U}_{\hslash}\qty(\wh{\wh{\mf{gl}(1)}}). \]
  899. \end{enumerate}
  900. The way to prove the above is to
  901. \begin{enumerate}
  902. \item Find qKZ among the $q$-difference equations in the equivariant variables;
  903. \item Use commutation with qKZ and other known results to conclude.
  904. \end{enumerate}
  905. We know that $K(\Hilb(\C^2, \mr{pts}))$ is a module over a quantum group. Then
  906. \[ K(\Hilb(\C^2, \mr{pts})) \otimes K(\Hilb(\C^2, \mr{pts})) = K(\mr{ideal} \oplus \mr{ideal}), \]
  907. where $\mr{ideal} \oplus \mr{ideal}$ lives inside the space $M(2)$ of rank $2$ framed sheaves on $\C^2$. Here, a framed sheaf is a sheaf $\mc{F}$ on $\P^2$ such that
  908. \[ \mc{F}|_{\P^2 \setminus \C^2} \simeq \mc{O}_{\P^2\setminus \C^2}^{\oplus 2}. \]
  909. Clearly, there is an action of $GL(2)$ on framed sheaves, so the sum of two ideals is the fixed locus of the maximal torus. Normalizing one of the weights of the torus, the locus of two ideals is the fixed locus of matrices of the form
  910. \[ \mqty(a & 0 \\ 0 & 1), \]
  911. and so shifts in $a$ give the qKZ equation.
  912. \begin{rmk}
  913. The Hilbert scheme $\Hilb(\C^2, n)$ is the Nakajima quiver variety $M(n,1)$ for the quiver with one vertex and one loop.
  914. \end{rmk}
  915. Then the qKZ equation is
  916. \[ (z \otimes 1)R_{12}(a) \]
  917. and comes from a twist by $\mc{O}(1)$ in the framing. In the case of $A_r$ for $r > 0$, there are more fixed points of $a$ and there are ``constant sections'' whose degrees are encoded in the K\"ahler variables.
  918. \subsection{Stable envelopes}
  919. We would now like a map
  920. \[ \on{Stab} \colon K(\Hilb) \otimes K(\Hilb) \to K(M(2)) \]
  921. such that if we insert the relative conditions in the $A_r$-fibration, all contributions cancel except those of the constant curves. Once this \textit{stable envelope} exists, we will have
  922. \[ R \approx \on{Stab}^T \cdot \on{Stab}. \]
  923. Vanishing is easier in cohomology~\cite{qgqc}, but is more difficult in K-theory. The reason for this is that vanishing in $K$-theory is usually proved using rigidity (properness, which implies the result is a polynomial in $a$, and a degree bound, which implies the result has negative degree).
  924. The stable envelope is supported on the full attracting locus inside $Y \times Y^a$ (or repelling for $\on{Unstab}$), which gives properness. For degree bounds, the Newton polygon
  925. \[ \mr{deg}\qty(\on{Stab}|_{F_j \times F_i}) \]
  926. is contained a fixed polygon.
  927. \begin{rmk}
  928. Rigidity in K-theory should come from a rigidity argument in elliptic cohomology, where K-theory is thought of as coming from a nodal degeneration of an elliptic curve.
  929. \end{rmk}
  930. More abstractly, let $A$ be a torus acting on a variety $Y$. Then we choose a chamber in $\on{\ms{Lie}} A$, where the walls are weights on $N_{Y/Y^A}$. This is a choice of attracting and repelling directions and corresponds to $\xi \in \on{\ms{Lie}} A$ such that $Y^{\xi} \neq Y^A$. Now for all adjacent strata in our chamber structure, there should be an attaching map, and the attaching maps should commute. These can be constructed with some assumptions on $Y$, and now the $R$-matrix is simply the composition of one attaching operator and the inverse of the other. By the original commutation relation, we obtain the Yang-Baxter equation.
  931. \begin{exm}
  932. If we consider the rank $r$ sheaves $M(r)$ and write $r = r_1 + r_2 + r_3$, then there is an action of $(\C^{\times})^3$. Therefore,
  933. \[ M(r)^A = M(r_1) \times M(r_2) \times M(r_3). \]
  934. More generally, for Nakajima varieties we can consider $w = \sum w^{(i)}$.
  935. \end{exm}
  936. \subsection{From enumerative geometry to quantum integrable systems}
  937. A quantum integrable system is controlled by a commutative subalgebra of
  938. \[ \End(H^*(\Hilb(A_r, \mr{pts}))). \]
  939. One interesting problem is to find the eigenvectors and eigenvalues of this algebra. The Hilbert scheme of $A_r$ can be replaced by some Nakajima quiver variety
  940. \[ \bigsqcup_v \mc{M}(v, w), \]
  941. where the framing $w$ is fixed.
  942. The quantum integrable system is actually the $q \to 1$ limit of some flat $q$-difference connection. In this setting, the problem of finding eigenthings is the problem of finding an integral solution to the $q$-difference connection.
  943. In the classical setting, consider a hyperplane arrangement and take hyperplanes
  944. \[ \ev{\beta_1,x} = y_i = 0, \]
  945. where the $\beta_1$ is fixed and the $y_i$ vary, then we obtain integrals that look like
  946. \[ \int_{\gamma_j} \omega_i(x) \prod_m \qty(\ev{\beta_m, x} + y_m)^{c_m}, \]
  947. where the $\omega_i(x)$ are rational and the $\gamma_j$ are homology classes on the complement of the hyperplane arrangement. This is like an Euler integral, which has the form
  948. \[ \int x^{a-1}(x-1)^{b-1}(y-x)^{c-1} \dd{x}. \]
  949. Our integral solves a differential equation (the Gauss-Manin connection) as well as a difference equation.
  950. We now need to consider a $q$-analog. Here, the $\gamma_k$ will live on the complement of translates of subtori inside a tori, and the exponentials become gamma functions. Thus we are now integrating
  951. \[ \int_{\gamma_j} \omega_i(x) \prod_m \frac{\Gamma_q(x^{m} a_m)}{\Gamma_q(x^{\beta_m}b_m)}, \]
  952. which is a $q$-analog of a Mellin-Barnes integral. These are fundamental solutions $\Psi_{ij}$ to the $q$-difference equation.
  953. The $q$-difference equation has the form
  954. \[ \Psi(qa) = M(a) \Psi(a). \]
  955. In the $q \to 1$ limit, our solutions become
  956. \[ e^{\frac{\int \log \lambda_j \frac{\dd{a}}{a}}{\log q}} \psi_j(a), \]
  957. where $\psi_j(a)$ is the eigenvector with eigenvalue $\lambda_j(a)$. The eigenvectors and eigenvalues correspond to critical points of the $\int \log \lambda_j \frac{\dd{a}}{a}$ term, where the eigenvalues are $e^{\pdv{S}{a}}$ and the eigenvectors are given by evaluating $\omega_i(x)$ at the critical points $x$ of $S$. The $\omega_i(x)$ are called the \textit{off-shell Bethe eigenfunctions} and also depend on some auxillary variables. Note that we need to substitute in solutions of the \textit{Bethe equations}
  958. \[ \partial_x S = 0. \]
  959. \begin{rmk}
  960. There is an important detail in which it is better to do the replacement
  961. \[ \int_{\gamma_j} \omega_i(x) \prod_m \frac{\Gamma_q(x^m a_m)}{\Gamma_q(x^{\beta_m} b_m)} \rightsquigarrow \int_{\norm{x}=1} \omega_i(x) \ell_j(x) \prod_m \frac{\Gamma_q(x^m a_m)}{\Gamma_q(x^{\beta_m} b_m)}. \]
  962. \end{rmk}
  963. Geometrically, we will work with quasimaps to Nakajima quiver varieties. The fundamental solution will correspond to the $\P^1$ with one nonsingular point and one relative point. On the other hand, the vertex (see~\cite[Section 7.4]{pcmi}) is the Mellin-Barnes integral.
  964. \begin{exm}
  965. Consider $\mc{L} = \mc{O}(d)$ on $\P^1$. This has weight $w$ above $0$, $q$ along the $\P^1$, and $q^{-d} w$ above $\infty$. Therefore,
  966. \[ H^0(\mc{L}) = w + q^{-1} w + \cdots + q^{-d} w, \qquad H^1(\mc{L}) = 0 \]
  967. if $d > 0$, and so the Euler class is
  968. \[ \mr{Euler} = (1-w^{-1})(1-qw^{-1}) \cdots (1-q^dw^{-1}), \]
  969. which is a ratio of two $q$-gamma functions.
  970. \end{exm}
  971. The ideas in this example work more generally, and now it remains to find the elliptic term. This will come from some consideration of elliptic cohomology. The moduli space
  972. \[ \ms{Qmap}(\P^1 \to \Hilb) \]
  973. of quasimaps (or for a general Nakajima variety) has evaluation maps
  974. \begin{equation*}
  975. \begin{tikzcd}
  976. & \ms{Qmap}(\P^1 \to \Hilb) \ar{dl}{\mr{ev}_0} \ar{dr}{\mr{ev}_{\infty}} \\
  977. \text{ambient stack} & & \Hilb.
  978. \end{tikzcd}
  979. \end{equation*}
  980. This gives us a push-pull morphism
  981. \begin{equation*}
  982. \begin{tikzcd}
  983. K(\text{ambient stack}) & & & K(\Hilb) \ar[swap]{lll}{\on{ev}_0(\wh{\mc{O}}^{\mr{vir}} \otimes \on{ev}_{\infty} \cdot z^{\mr{deg}})} \\
  984. \ms{Ell}() \ar{u}{\frac{\Gamma_q}{\Gamma_q}} & & & \ms{Ell}(\Hilb) \ar{u}{\frac{\Gamma_q}{\Gamma_q}} \ar{lll}{!}.
  985. \end{tikzcd}
  986. \end{equation*}
  987. This gives us an elliptic function $\ell_j(x)$ which goes into the missing argument of the bottom-left $\ms{Ell}$. Also, the ratios of gamma functions were known to Iritani in the classical setting.
  988. \begin{rmk}
  989. The consideration of elliptic cohomology does not affect the gamma function terms of the fundamental solution. The gamma function terms control the spectrum and can be observed already in the case of just one nonsingular point. This was observed already in~\cite{nekshat}.
  990. \end{rmk}
  991. \subsection{Elliptic cohomology}
  992. Recall that
  993. \[ H^*(\P^{n-1}, \C) = \C[x]/x^{n}, \]
  994. where $x = c_1(\mc{O}(1))$. If we consider the action of $(\C^{\times})^n$, we can consider the \textbf{equivariant} cohomology
  995. \[ H_A^*(\P^{n-1}, \C) = H_A^*(\P^{n-1}, \C) = \frac{\C[x, a_1, \ldots, a_n]}{\prod_{i=1}^n (x+a_i)}. \]
  996. This comes from the observation that $\P^n$ has $n$ ways to lift $x$ to an equivariant class (consider each of the toric divisors). If we consider
  997. \[ \Spec H_A^*(\P^{n-1}, \C), \]
  998. this is the union of hyperplanes $x = -a_i$, which are the cohomologies of the fixed points. Lifting to $k$-theory, we have the same picture after replacing $x=-a_i$ with $x=a_i^{-1}$ and taking $a \in A$ instead of $x \in \on{\ms{Lie}}(A)$.
  999. Returning to the case of Nakajima varieties, the ring
  1000. \[ K_{(\C^{\times})^2} (\Hilb(\C^2, n)) \]
  1001. is generated by the tautological bundle and its exterior powers. Then its spectrum
  1002. \[ \Spec K_{(\C^{\times})^2}(\Hilb(\C^2, n)) \]
  1003. is again a union of planes with data coming from plane partitions (which are the fixed points).
  1004. Finally, it makes sense to replace $\C^{\times}$ by $E = \C^{\times}/q^{\Z}$, where all of the exact same equations hold (subject to writing the group operation on $E$ as multiplication). The elliptic cohomology of $\Hilb(\C^2, n)$ is drawn in~\Cref{fig:ellhilbc2}.
  1005. \begin{figure}[h]
  1006. \centering
  1007. \includegraphics[width=0.4\textwidth]{ellhilbc2}
  1008. \caption{Elliptic cohomology of $\Hilb(\C^2, n)$}
  1009. \label{fig:ellhilbc2}
  1010. \end{figure}
  1011. \begin{rmk}
  1012. It is important to note that $\ms{Ell}_G(X)$ is a \textbf{scheme} and not an algebra, so it is covariant in both $G$ and $X$.
  1013. \end{rmk}
  1014. Note that if $G$ is connected, then
  1015. \[ \ms{Ell}_G(\mr{pt}) = \ms{Ell}([\mr{pt}/G]) \]
  1016. is the moduli space of semistable degree $0$ $G$-bundles on the dual elliptic curve $E^{\vee}$. Also note that $\ms{Ell}_{(\C^{\times})^n}(\mr{pt}) = E^n$.
  1017. \subsection{Computations in elliptic cohomology of $\Hilb(\C^2, n)$}
  1018. In order to compute things, we need Euler classes. Suppose $p$ is a fixed point of $A$ acting on $X$, $V$ is a vector bundles, and $A$ acts with weights $w_i$ on $V_p$. Then
  1019. \[ \mr{Euler}(V)|_p = \begin{cases}
  1020. \prod w_i & \text{in cohomology} \\
  1021. \prod (1-w_i^{-1}) & \text{in K-theory} \\
  1022. \prod \vartheta(w_i) & \text{in elliptic cohomology}.
  1023. \end{cases}
  1024. \]
  1025. Note that these theta functions are \textbf{not} functions but are sections of line bundles on elliptic curves. Recall that $V$ is a pullback
  1026. \begin{equation*}
  1027. \begin{tikzcd}
  1028. V \ar{r} \ar{d} & \C^n/\mr{GL}(n) \ar{d} \\
  1029. X \ar{r} & [\mr{pt}/\mr{GL}(n)].
  1030. \end{tikzcd}
  1031. \end{equation*}
  1032. This gives us a map
  1033. \[ \ms{Ell}(X) \to \ms{Ell}([\mr{pt}/\mr{GL}(n)]) = S^n E, \]
  1034. and on $S^n E$ there is the theta divisor $\Theta$, which is the locus of bundles with a section. Pulling back to $\ms{Ell}(X)$, we obtain a line bundle $\Theta(V)$, which is where $\mr{Euler}(V)$ lives.
  1035. Pushforwards in the elliptc theory involve Euler classes and thus twists by line bundles. If we use localization, we obtain the factors in~\Cref{tab:loccohkell}.
  1036. \begin{table}[H]
  1037. \centering
  1038. \caption{Localization in different cohomology theories}
  1039. \label{tab:loccohkell}
  1040. \begin{tabular}{ccc}
  1041. \toprule
  1042. In $H^*$ & In $K^*$ & In $\ms{Ell}$ \\
  1043. \midrule
  1044. $\frac{1}{\prod w_i}$ & $\frac{1}{\prod(1-w_i^{-1})}$ & $\frac{1}{\vartheta(w_i)}$ \\
  1045. \bottomrule
  1046. \end{tabular}
  1047. \end{table}
  1048. Then the pushforward $X \to \mr{pt}$ gives us a map $\Theta(TX) \to \ms{Ell}(\mr{pt})$ and the inclusion of a fixed point in $X$ gives us a map $\ms{Ell}(\mr{pt}) \to \Theta(TX)$.
  1049. \begin{rmk}
  1050. There is an inclusion
  1051. \[ \Pic(X) \otimes E \hookrightarrow \Pic_0(\ms{Ell}(X)). \]
  1052. The K\"ahler variables live on the left hand side, and quantum computations in K-theory embed inside classsical computations in elliptic cohomology.
  1053. \end{rmk}
  1054. \begin{rmk}
  1055. In principle, one could study enumerative counts in elliptic cohomology or even in another complex oriented cohomology theory like complex cobordism (see~\cite{cobpt}). However, we cannot form generating functions in these situations (for example in elliptic cohomology everything lives on a different line bundle), so we want to study the difference equations directly without generating functions.
  1056. \end{rmk}
  1057. We want to actually compute with the line bundles $\Theta(V)$ for vector bundles on $\Hilb(\C^2, n)$. For the tautological bundle, we have
  1058. \[ \deg \Theta(\mr{Taut}) |_{\lambda} = \sum_{\square} S^2\binom{1-j}{1-i} = \sum_{\square} \mqty{(j-1)^2 & (i-1)(j-1) \\ (i-1)(j-1) & (i-1)^2} \in S^2 \Z^2 = \mr{NS}(E^2). \]
  1059. For the tangent bundle, we obtain
  1060. \[ \deg \Theta(\mr{Tan})|_{\lambda} = \sum_{\square} S^2 \binom{a+1}{-\ell} + S^2 \qty\binom{-a}{\ell+1}. \]
  1061. Note that if we restrict $t_1t_2 = 1$, we have a square root. Thus, we can find a \textit{polarization}
  1062. \[ \mr{Tan} = T^{\frac{1}{2}} + t_1 t_2 (T^{\frac{1}{2}})^{\vee}. \]
  1063. Thus we will need sections of a line bundle of the form
  1064. \[ \mc{L} = \sqrt{\Theta(\mr{Tan})} \otimes \Pic_0(\ms{Ell}). \]
  1065. We will call the determinant $\det \mr{Taut} \eqqcolon \mc{O}(1)$. Recall that taking the determinant corresponds to taking
  1066. \[ (x_1, \ldots, x_n) \in S^n E \to E \ni \prod x_i. \]
  1067. Now recall that $\Pic_0(E) = E^{\vee} = E$, so for $z \in \Pic_0(E)$ (the K\"ahler variable), we can consider the meromorphic section
  1068. \[ \frac{\vartheta\qty(\prod x_i z)}{\vartheta\qty(\prod x_i) \vartheta(z)} \]
  1069. of some degree $0$ line bundle. More generally, we can take $z \in \Pic(X) \otimes E$.
  1070. Recall that we have a map
  1071. \[ \ms{Ell}(\Hilb) \to \ms{Ell}(\text{ambient stack}). \]
  1072. We want to take a Lagrangian class on $\Hilb$ and extend it to the ambient stack. This is like taking a section of a line bundle $\mc{S}$ on $\ms{Ell}(\Hilb)$ and extending it to the ambient stack. The ambient stack has a Harder-Narasimhan stratification in which the stable locus is the first piece. This allows us to take an inductive approach to the interpolation, see~\cite{indconststab}. There is a nonabelian analogue of this, see~\cite{nonabstab}.
  1073. One step of the induction is the following. Consider the inclusion $U = X \setminus \mr{Attr}(F) \hookrightarrow X$. Then in ordinary cohomology, we have the long exact sequence
  1074. \[ \cdots \to H^i(X, U) \to H^i(X) \to H^i(U) \to \cdots \]
  1075. By Atiyah-Bott, the normal bundle $N_{X/\mr{Attr}(F)}$ has a nontrivial action, so all of the connecting maps vanish. By excision, we can replace $(X, U)$ by an embedding of $F$ into a vector bundle $V$ over $F$, which produces
  1076. \[0 \to H^i(\mr{Thom}(V)) \to H^i(V) \to H^i(V \setminus 0) \to 0. \]
  1077. In elliptic cohomology, we obtain an exact sequence of line bundles. Consider the diagram
  1078. \begin{equation*}
  1079. \begin{tikzcd}
  1080. V \ar{d} \ar{r} & { [\C^n/\mr{GL}(r)] } \ar{d} & { [(\C^n \setminus 0) / \mr{Gl}(r)] } \ar[l, phantom, "\supset"] \ar[equal]{r} & { [\mr{pt}/\mr{Gl}(r-1)] } \\
  1081. F \ar{r} & { [\mr{pt}/\mr{GL}(r)] }.
  1082. \end{tikzcd}
  1083. \end{equation*}
  1084. This produces us an inclusion $\ms{Ell}(V \setminus 0) \hookrightarrow \ms{Ell}(V)$, which gives us the divisor $\Theta(V)$ on $\ms{Ell}(V)$. From a section of $\mc{L} |_{\Theta(V)}$, we have an exact sequence
  1085. \[ 0 \to \mc{S} \otimes \Theta(-V) \to \mc{S} \to \mc{S}|_{\Theta(V)} \to 0. \]
  1086. In studying sheaves on $\ms{Ell}(F)$, we want global sections. Consider the long exact cohomology sequence
  1087. \[ 0 \to H^0(\mc{S} \otimes \Theta(-V)) \to H^0(\mc{S}) \to H^0(\mc{S}|_{\Theta(V)}) \to H^1(\mc{S} \otimes \Theta(-V)) \to \cdots. \]
  1088. Note that because $\mc{S} \in \Theta(T^{\frac{1}{2}}) \otimes \Pic_0$, $\mc{L} \coloneqq \mc{S} \otimes \Theta(-V)$ has degree $0$. It is also nontrivial (sections have poles related to enumerative geometry). However, if $\mc{S}$ is a nontrivial degree $0$ line bundle on an abelian variety $\mc{E}$, it has no cohomology whatsoever.
  1089. We have now produced a stable envelope
  1090. \[ \mr{Stab} \colon \ms{Ell}(\text{stable}) \to \ms{Ell}(\mr{stack}) \]
  1091. which interpolates sections of line bundles. We also have the traditional elliptic stable envelope~\cite{ellstab}
  1092. \[ \on{Stab} \colon \ms{Ell}(X^A) \to \ms{Ell}(X). \]
  1093. As we change attracting and repelling directions, we obtain elliptic $R$-matrices. The K-theoretic and cohomological versions can be obtained using degeneration.
  1094. \subsection{Quantum q-difference equations}
  1095. We would like to solve these equations using integrals. Recall that in K-theory, we have
  1096. \begin{equation*}
  1097. \begin{tikzcd}
  1098. K(\mr{stable}) \ar{rrr}{\on{ev}_0 (\on{ev}_{\infty}^{-1} \otimes \wh{\mc{O}}^{\mr{vir}} z^{\deg})} & & & K(\mr{stack})[[z]] \\
  1099. K(\mr{stable}) \ar{u}{(\mr{Iritani})\Gamma_q} \ar{rrr}{\ch(\on{Stab}_{\ms{Ell}})} & & & K(\mr{stack})(z) \ar{u}.
  1100. \end{tikzcd}
  1101. \end{equation*}
  1102. Recall that the solutions are of the form
  1103. \[ \Psi_{ij} = \int_{\abs{x}=1} \omega_i(x) \ell_j(x) \prod \frac{\Gamma_q}{\Gamma_q}. \]
  1104. As $q \to 1$, the gamma functions give the Bethe equation, while the $\omega_i(x)$ are the $q=0$ limit of the $\ell_i(x)$ in~\cite{qmapbethe}. This is called the \textit{off-shell Bethe eigenfunction}. For quotients by groups of the form $\prod GL(V_i)$, the nonabelian stable envelope reduces to the abelian one, so there is a formula in terms of $R$-matrices.
  1105. Consider the $XXZ$ spin chain, where we have states like $\uparrow \downarrow \downarrow \uparrow \downarrow \downarrow \downarrow$. Take the vacuum to be $\downarrow \cdots \downarrow$. Then the physical diagram will look like~\Cref{fig:xxzspin}.
  1106. \begin{figure}[h]
  1107. \begin{center}
  1108. \begin{tikzpicture}[scale=0.9, transform shape]
  1109. \draw[-] (-4,2) -- (-4,-2);
  1110. \draw[-] (-3,2) -- (-3,-2);
  1111. \draw[-] (-2,2) -- (-2,-2);
  1112. \draw[-] (-1,2) -- (-1,-2);
  1113. \draw[-] (0,2) -- (0,-2);
  1114. \draw[-] (1,2) -- (1,-2);
  1115. \draw[-] (2,2) -- (2,-2);
  1116. \draw[-] (3,2) -- (3,-2);
  1117. \draw[-] (4,2) -- (4,-2);
  1118. \draw[-] (-5,1) -- (5,1);
  1119. \draw[-] (-5,0) -- (5,0);
  1120. \draw[-] (-5,-1) -- (5,-1);
  1121. \node[text=blue] at (-4,2.3) {$\boldsymbol{\downarrow}$};
  1122. \node[text=blue] at (-3,2.3) {$\boldsymbol{\downarrow}$};
  1123. \node[text=blue] at (-2,2.3) {$\boldsymbol{\downarrow}$};
  1124. \node[text=blue] at (-1,2.3) {$\boldsymbol{\downarrow}$};
  1125. \node[text=blue] at (0,2.3) {$\boldsymbol{\downarrow}$};
  1126. \node[text=blue] at (1,2.3) {$\boldsymbol{\downarrow}$};
  1127. \node[text=blue] at (2,2.3) {$\boldsymbol{\downarrow}$};
  1128. \node[text=blue] at (3,2.3) {$\boldsymbol{\downarrow}$};
  1129. \node[text=blue] at (4,2.3) {$\boldsymbol{\downarrow}$};
  1130. \node[text=blue] at (-4,-2.3) {$\boldsymbol{\downarrow}$};
  1131. \node[text=green] at (-3,-2.3) {$\boldsymbol{\uparrow}$};
  1132. \node[text=blue] at (-2,-2.3) {$\boldsymbol{\downarrow}$};
  1133. \node[text=blue] at (-1,-2.3) {$\boldsymbol{\downarrow}$};
  1134. \node[text=green] at (0,-2.3) {$\boldsymbol{\uparrow}$};
  1135. \node[text=green] at (1,-2.3) {$\boldsymbol{\uparrow}$};
  1136. \node[text=blue] at (2,-2.3) {$\boldsymbol{\downarrow}$};
  1137. \node[text=blue] at (3,-2.3) {$\boldsymbol{\downarrow}$};
  1138. \node[text=blue] at (4,-2.3) {$\boldsymbol{\downarrow}$};
  1139. \node[text=blue] at (-5.2,1) {$\boldsymbol{\downarrow}$};
  1140. \node[text=blue] at (-5.2,0) {$\boldsymbol{\downarrow}$};
  1141. \node[text=blue] at (-5.2,-1) {$\boldsymbol{\downarrow}$};
  1142. \node[text=green] at (5.6,1) {$\boldsymbol{\uparrow}(u_1)$};
  1143. \node[text=green] at (5.6,0) {$\boldsymbol{\uparrow}(u_2)$};
  1144. \node[text=green] at (5.6,-1) {$\boldsymbol{\uparrow}(u_3)$};
  1145. \node at (0,2.8) {$T^* \mr{Gr}(0,9)$};
  1146. \node at (-6.3,0) {$T^* \mr{Gr}(0,3)$};
  1147. \node at (7.1,0) {$T^* \mr{Gr}(3,3)$};
  1148. \node at (0,-2.8) {$T^* \mr{Gr}(3,9)$};
  1149. \end{tikzpicture}
  1150. \end{center}
  1151. \caption{Example of XXZ spin chain}%
  1152. \label{fig:xxzspin}
  1153. \end{figure}
  1154. If the spectral variables $u_i$ solve the Bethe equation, then the bottom state is an eigenvector. This is the origin of the algebraic Bethe ansatz.
  1155. In our setting, consider the picture of~\Cref{fig:statmechnak}.
  1156. \begin{figure}[h]
  1157. \begin{center}
  1158. \begin{tikzpicture}[scale=1, transform shape]
  1159. \draw[->] (-1,0) -- (1,0);
  1160. \draw[->] (0,1) -- (0,-1);
  1161. \node at (-1.8,0) {$\mc{M}(0, v)$};
  1162. \node at (1.8,0) {$\mc{M}(v, v)$};
  1163. \node at (0,1.3) {$\mc{M}(0, w)$};
  1164. \node at (0,-1.3) {$\mc{M}(v, w)$};
  1165. \end{tikzpicture}
  1166. \end{center}
  1167. \caption{Simple model for Nakajima varieties}%
  1168. \label{fig:statmechnak}
  1169. \end{figure}
  1170. The analog of all up arrows here is when $v = w$ and the maps $W \to V$ are isomorphisms while the maps $V \to W$ are zero. This happens because the Bethe roots sit inside a maximal torus of $\prod GL(W_i) = \prod GL(V_i)$ here.
  1171. \subsection{An open problem}
  1172. In dimension $1$, we computed the equivariant $\P^1$ in terms of the action of $GL(\infty)$ on the Fock space and concluded that the $\P^1$ with two marked points is a $\tau$-function for the 2-Toda hierarchy. This comes from the action of $GL(\infty)$ on $\mr{Fock} \otimes \mr{Fock}$, which has the action of $\sum \psi_i \otimes \psi_i^*$
  1173. In dimension $3$, we know both the equivariant $\P^1$ with one marked and one nonsingular point and with one marked point and one relative point in terms of $\mc{U}_{\hslash} \qty(\wh{\wh{\mf{gl}(1)}})$. In the $\hslash=1$ limit, we recover $\mc{U}(\mf{gl}(\infty))$, which corresponds to going down to $1$ dimension. If we take $\mc{U}_{\hslash}$ acting on $\mr{Fock} \otimes \mr{Fock}(\mr{shift})$ along with a screening operator, where
  1174. \[ \mr{Fock} = \bigoplus_{n \geq 0} K(\Hilb(\C^2, n)), \]
  1175. what is the deformation of 2-Toda?
  1176. The case of one marked point and one relative point is rational in $z$~\cite{ratcapdescvertex}. Three key facts are
  1177. \begin{enumerate}
  1178. \item The equivariant $\P^1$ with one descendent and one relative condition vanishes for $\mc{M}(v, w)$ for $w \gg 0$ (the so-called large framing vanishing)~\cite{pcmi}.
  1179. \item Splitting the equivariant $\P^1$ in half and adding two nonsingular points, consider $w = w_0 + w_1$, where $w_0$ is fixed and $w_1$ is large. Then $a \in \C^{\times}$ acts on $W_1$ by scaling. We now have
  1180. \[ \mc{M}(\cdot, w)^a = \mc{M}(\cdot, w_0) \times \mc{M}(\cdot, w_1), \]
  1181. so the descendent is a Laurent polynomial in the Chern roots of the tautological bundle $V$. Twisting by $\det V$, we obtain an ordinary polynomial. Localizing on $\P^1$ and $a$ and taking $a \to 0$, we reduce to computing the same descendent for $w = w_0$.
  1182. \item In the $a \to 0$ limit, the fundamental solution for the $q$-difference equation becomes the product of an explicit fusion operator and two fundamental solutions.
  1183. \end{enumerate}
  1184. \chapter{Double ramification cycles and integrable hierarches (Paolo Rossi)}%
  1185. \section{Integrable systems}
  1186. \subsection{Notation and formalism}
  1187. We will precisely define things like the KdV equation, tau functions, and higher symmetries. This comes from a formal algebraic discussion of things like dynamical systems. For a detailed reference, see~\cite{dubzhang}. Define the \textit{phase space}
  1188. \[ \mc{P} \coloneqq \qty{u \colon S^1 \to \C^n} \]
  1189. We consider the coordinates $u^{\alpha} \colon S^1 \to \C$ as formal variables. Also, we will let $x$ be the coordinate on $S^1$.
  1190. \begin{defn}
  1191. A \textit{differential polynomial} is an element of the ring
  1192. \[ \wh{\mc{A}} \coloneqq \C[[u^*]][u_{>0}^*][[\ep]], \]
  1193. where $u_k^{\alpha} = \partial_x^k u^{\alpha}$. This has a grading where $u_k^*$ has degree $k$ and $\ep$ has degree $-1$.
  1194. \end{defn}
  1195. This is not quite a ring of functions on $\mc{P}$, so we will correct this. Define the operator
  1196. \[ \partial_x \colon \wh{\mc{A}} \to \wh{\mc{A}} \qquad \partial_x = \sum_{k \geq 0} u_{k+1}^{\alpha} \pdv{u_k^{\alpha}}. \]
  1197. This gives us a space $\wh{\mc{F}} = \wh{\mc{A}}/(\Im \partial_x \oplus \C)$ of \textit{local functionals} and should be thought of as integrating over the $S^1$. There is a way to reintroduce a ring structure on local functionals, but it will not be necessary for our purposes.
  1198. As changes of coordinates on the phase space, consider the \textit{Miura transformations}
  1199. \[ \wt{u}^{\alpha} = \wt{u}^{\alpha}(u_*^*, \ep) \in \in \wh{\mc{A}}^{[0]}. \]
  1200. For some amount of invertibility, we require
  1201. \[ \deg \qty(\pdv{\wt{u}^{\alpha}}{u^{\beta}}) \neq 0, \qquad u_*^* = 0, \qquad \ep = 0. \]
  1202. \begin{rmk}
  1203. Miura transformations are invertible in the sense that they can be solved for $u^*$ as a system of ODEs order by order in $\ep$.
  1204. \end{rmk}
  1205. We may define \textit{Fourier coordinates} on $\mc{P}$ by taking the substitution
  1206. \[ u^{\alpha} \sum_{b \in \Z} p_b^{\alpha} (e^{ix})^b. \]
  1207. Here, the $p_b^{\alpha}$ are the Fourier coordinates. We force the coefficients to have polynomial dependence on $b$ and to sum to $0$ in analogy with the Fourier transform.
  1208. \subsection{Poisson structure}
  1209. We will now place a Poisson structure
  1210. \[ \qty{-,-} \colon \wh{\mc{F}} \times \wh{\mc{F}} \to \wh{\mc{F}} \]
  1211. on $\mc{P}$ or equivalently on $\wh{\mc{F}}$. Here, we take
  1212. \[ \qty(\int f \dd{x}, \int g \dd{x}) \mapsto \int \pdv{\ol{f}}{u^{\alpha}} K^{\alpha\beta} \qty(\pdv{\ol{g}}{u^{\beta}}) \dd{x}, \]
  1213. where $\ol{f} = \int f \dd{x}$ and the \textit{variational derivatives} are defined by
  1214. \[ \pdv{\ol{f}}{u^{\alpha}} = \sum_{k \geq 0} (-\partial_x)^k \pdv{f}{u_k^{\alpha}} \colon \wh{\mc{F}} \to \wh{\mc{A}} \]
  1215. and the Poisson operator $K^{\alpha\beta}$ is defined by
  1216. \[ K^{\alpha\beta} = \sum_{j \geq 0} K_j^{\alpha\beta} \partial_x^j \qquad K_j^{\alpha\beta} \in \wh{\mc{A}}^{[-j+1]}. \]
  1217. This is not quite a Poisson structure in general as we still need to impose skew-symmetry and the Jacobi identity.
  1218. \subsection{System of evolutionary PDEs}
  1219. A \textit{system of evolutionary PDEs} (or a vector field on $\mc{P}$) is a differential equation
  1220. \[ \pdv{u^{\alpha}}{t} = Q^{\alpha(u_*^*, \ep)} \in \wh{\mc{A}}^{[1]}, \]
  1221. where $Q^{\alpha}$ is a differential polynomial. Analogously, recall that a vector field $X$ on a finite-dimensional manifold can be written as either
  1222. \[ X = X^{\alpha} \pdv{x^{\alpha}} \]
  1223. or as
  1224. \[ \dv{x^{\alpha}}{t} = X^{\alpha(x^1, \ldots, x^n)}. \]
  1225. Define the operator
  1226. \[ L_{\nu}^{\beta} = \sum_{s \geq 0} (-\partial_x)^s \circ \pdv{\wt{u}^{\beta}}{u_s^{\nu}} \]
  1227. and its adjoint
  1228. \[ (L^*)_{\mu}^{\alpha} = \sum_{s \geq 0} \pdv{\wt{u}^{\alpha}}{u_s^{\mu}} \partial_x^s. \]
  1229. This is related to coordinate transformations on tensors by the formula
  1230. \[ K_{\wt{u}}^{\alpha\beta} = (K^*)_{\mu}^{\alpha} \circ K^{\mu\nu} \circ L_{\nu}^{\beta}. \]
  1231. \begin{thm}[\cite{darbouxhamiltonian}]
  1232. There exists a Miura transformation bringing any Poisson structure of the form
  1233. \[ K^{\alpha\beta} = g^{\alpha\beta}(u^*) \partial_x + b_{\gamma}^{\alpha\beta}(u^*) u_1^{\gamma} + O(\ep) \]
  1234. with $g^{\alpha\beta}$ a nondegenerate flat metric on $\C^n$ to the form
  1235. \[ K_{\wt{u}}^{\alpha\beta} = \eta^{\alpha\beta} \partial_x \]
  1236. where $\eta^{\alpha\beta}$ nondegenerate constant symmetric. Note that the Jacobi identity imposes that the $b_{\gamma}^{\alpha\beta}$ are the Christoffel symbols for the Levi-Cevita connection of $g^{\alpha\beta}$, see~\cite{dubnov}.
  1237. \end{thm}
  1238. \begin{exm}[KdV equation]\label{exm:kdv}
  1239. Let $\mc{P} = \qty{u \colon S^1 \to \C}$. Then the ring of differential polynomials is
  1240. \[ \wh{\mc{A}} = \C[[u]] [u_{>0}] [[\ep]] \]
  1241. and we will consider the vector field
  1242. \[ \pdv{u}{t} = u u_1 + \frac{\ep^2}{12} u_3. \]
  1243. This is a Hamiltonian operator for the Poisson structure, where $K = \partial_x$. The Hamiltonian that produces this system is
  1244. \[ \ol{h} = \int \qty(\frac{u^3}{6} + \frac{\ep^2}{12} u u_2) \dd{x} \in \wh{\mc{F}}^{[0]}. \]
  1245. Now we can compute
  1246. \begin{align*}
  1247. \pdv{u}{t} &= K \qty(\pdv{\ol{h}}{t}) \\
  1248. &= \partial_x \qty(\frac{u^2}{2} + \frac{\ep^2}{24} u_2 + \partial_x^2 \qty(\frac{\ep^2}{2u}u)) \\
  1249. &= \partial_x \qty(\frac{u^2}{2} + \frac{\ep^2}{12} u_2),
  1250. \end{align*}
  1251. which is exactly the differential polynomial we want.
  1252. \end{exm}
  1253. We now want to lift $K^{\alpha\beta}$ to a map
  1254. \[ \wh{\mc{A}} \times \wh{\mc{F}} \to \wh{\mc{A}}. \]
  1255. There is a standard way to do such a thing by taking
  1256. \[ \qty{f, \ol{g}} = \sum_{k \geq 0} \pdv{f}{u_k^{\alpha}} \partial_x^k \qty(K^{\alpha\beta} \qty(\pdv{\ol{g}}{u^{\beta}})). \]
  1257. In \Cref{exm:kdv}, we computed the vector field $K \qty(\pdv{\ol{h}}{u}) = \qty{u, \ol{h}}$.
  1258. \begin{exm}[2-KdV equation]
  1259. Consider $\mc{P} = \qty{u \colon S^1 \to \C^2}$ and the Hamiltonian
  1260. \[ \ol{h} = \int \frac{(u^1)^2}{2} u^2 + \frac{(u^2)^4}{36} + \qty(-\frac{1}{2} (u_1^1)^2 - \frac{1}{24} u^2 (u_1^2)^2)\ep^2 + \frac{1}{432} (u_2^2)^2 \ep^4 \dd{x}. \]
  1261. Also, consider the Poisson operator
  1262. \[ K = \mqty(0 & 1 \\ 1 & 0) \partial_x. \]
  1263. The resulting PDE is called the 2-KdV equation.
  1264. \end{exm}
  1265. \chapter{Airy ideals and topological recursion: an investigative tool for enumerative geometry, VOAs, and gauge theories (Vincent Bouchard)}%
  1266. Topological recursion was invented by Eynard-Orantin in their work~\cite{toprecursion} on matrix models in 2007 and then reformulated in terms of Airy structures (or Airy ideals) by Kontsevich-Soibelman~\cite{airytoprec} in 2017. This is a correspondence between geometry, algebra, and differential equations.
  1267. \section{Witten's conjecture}
  1268. This story began with theories of 2d quantum gravity.
  1269. Define the \textit{partition function}
  1270. \[ \mc{Z} = \exp \qty(\sum_{\substack{g=0 \\ n=1 \\ 2g-2+n>0}}^{\infty} \frac{\hslash^{2g-2+n}}{n!} \sum_{k_1, \ldots, k_n} F_{g,n}[k_1, \ldots, k_n] t_{k_1} \cdots t_{k_n}), \]
  1271. where we define
  1272. \[ F_{g,n}[k_1, \ldots, k_n] = \int_{\ol{\mc{M}}_{g,n}} \psi_1^{k_1} \cdots \psi_n^{k_n}. \]
  1273. To simplify our notation, we will write
  1274. \[ \mc{Z} = \exp \qty(\sum_{k=1}^{\infty} \hslash^k q^{(k+2)}(t_A)). \]
  1275. \begin{thm}[\cite{wittenconj}]\label{thm:witten}
  1276. The function
  1277. \[ u(t_0, t_1, \ldots) = \pdv[2]{t_0} \log \mc{Z} \]
  1278. is the unique solution to the KdV hierarchy with initial condition $u(t_0, 0, \ldots) = t_0$.
  1279. \end{thm}
  1280. \subsection{Reformulation as differential constraints for $\mc{Z}$}
  1281. For $k \geq -1$, define the operator
  1282. \[ L_k = J_{k+1} - \frac{1}{2} \sum_{m+n=k-1} :J_m J_n: - \delta_{k,0} \frac{\hslash^2}{8}, \]
  1283. where
  1284. \[ J_m = \hslash \pdv{t_m}, m \geq 0 \qquad J_{-m} = \hslash(2m-1)t_{m-1}, m \geq 1. \]
  1285. Now we can reformulate~\Cref{thm:witten} as
  1286. \begin{thm*}
  1287. $\mc{Z}$ is the unique solution to the constraints $L_k \mc{Z} = 0$ for all $k \geq -1$.
  1288. \end{thm*}
  1289. Note that the $L_k$ satisfy the relation
  1290. \[ [L_i, L_j] = \hslash^2(i-j)L_{i+j}. \]
  1291. Thus we have a representation of a subalgebra of the Virasoro algebra, which is defined by
  1292. \[ [L_i, L_j] = \hslash^2(i-j)L_{i+j} \frac{\hslash^4 c}{12} i^2(i-1) \delta_{i, -j} \]
  1293. Note that $L_k$ has the expansion
  1294. \[ L_k = \hslash \pdv{t_{k+1}} + O(\hslash^2), \]
  1295. which makes it easy to see uniqueness once we have existence.
  1296. \subsection{Potential generalizations}
  1297. The first possible generalization is the Virasoro conjecture~\cite{virasoroconj}, where we remove uniqueness of the solution and preserve the geometry (using Gromov-Witten theory of projective varieties) and the Virasoro algebra. This has been proved in several cases, including toric varieties~\cites{virasorofanotoric}{virasorotoric}, flag varieties~\cite{virasoroflag}, Grassmannians~\cite{virasorograss}, varieties with semisimple quantum cohomology~\cite{2dsscohft}, Calabi-Yau varieties~\cite{virasorogw}, and toric bundles over varieties satisfying the Virasoro conjecture~\cite{virasorotoricbundle}. There is also progress on Virasoro constraints for sheaf-counting theories, see~\cite{virasoropt}.
  1298. The second possible generalization is to keep existence and uniqueness of the solution $\mc{Z}$ to the constraints $H_i \mc{Z} = 0$. More precisely, we want to find constraints on $H_i$ such that $H_i \mc{Z} = 0$ always has a unique solution of the form
  1299. \[ \mc{Z} = \exp \qty(\sum_{k=1}^{\infty} \hslash^k q^{(k+2)}(x_A)) \]
  1300. with the initial condition $\mc{Z} \_{x_A = 0} = 1$. This is the generalization that we will take.
  1301. \section{Airy structures}
  1302. \subsection{Weyl algebra and modules}
  1303. Let $A$ be a (possibly infinite) indexing set. The \textit{Weyl algebra} $\mc{D}_A$ is defined as
  1304. \[ \mc{D}_A = \C[x_A] \ev{\partial_A} / ([\partial_i, x_j] = \delta_{ij}). \]
  1305. This is only a filtered algebra, so it is difficult to form power series. We will use the \textit{Rees construction} to turn it into a graded algebra.
  1306. Here, we will use the filtration
  1307. \[ \qty{0} \subseteq F_0 \mc{D}_A \subseteq F_1 \mc{D}_A \subseteq \cdots \subseteq \mc{D}_A, \]
  1308. where
  1309. \[ F_i \mc{D}_A = \qty{\sum_{m+k\leq i} P_{a_1, \ldots, a_m}^{(k)}(x_A) \partial_{a_1} \cdots \partial_{a_m}}. \]
  1310. For example, $F_2 \mc{D}_A$ contains terms like $x_1$ and $x_1 \partial_2$ but not terms like $x_1^2 \partial_2$.
  1311. Now we may define the \textit{Rees Weyl algebra}
  1312. \[ \mc{D}_A^{\hslash} = \bigoplus_{k=0}^{\infty} \hslash^k F_k \mc{D}_A, \]
  1313. where $\deg \hslash = 1$, and the completion
  1314. \[ \wh{\mc{D}}_A^{\hslash} = \prod_{k=0}^{\infty} \hslash^k F_k \mc{D}_A. \]
  1315. This is in fact a good way to handle power series, and we will consider $H_i \in \wh{\mc{D}}_A^{\hslash}$.
  1316. We will now consider the polynomial module $\mc{M}_A$, which has the following properties:
  1317. \begin{itemize}
  1318. \item $\mc{M}_A$ is generated by $1 \in \mc{M}_A$;
  1319. \item The annihilator $\on{Ann}_{\mc{D}_A}(1)$ is the left ideal generated by $\partial_i$;
  1320. \item We recover
  1321. \[ \mc{D}_A / \on{Ann}_{\mc{D}_A}(1) \simeq \mc{M}_A. \]
  1322. \end{itemize}
  1323. We can now introduce $\hslash$ directly into our module, but we need a filtration on $\mc{M}$ such that
  1324. \[ F_i \mc{D} \cdot F_j \mc{M} \subset F_{i+j} \mc{M}. \]
  1325. A natural choice is to let $F_i \mc{M}_A$ be polynomials of degree at most $i$. We can now repeat the Rees construction by considering
  1326. \[ \mc{M}_A^{\hslash} = \bigoplus_{k=0}^{\infty} \hslash^k F_k \mc{M}_A, \qquad \wh{\mc{M}}_A^{\hslash} = \prod_{k=0}^{\infty} \hslash^k F_k \mc{M}_A. \]
  1327. The partition function $\mc{Z}$ will live in a twist of $\wh{\mc{M}}_A^{\hslash}$ rather than in the module itself. Some properties of $\hslash$ are as follows:
  1328. \begin{itemize}
  1329. \item $\wh{\mc{M}}_A^{\hslash}$ is a cyclic left $\wh{\mc{D}}_A^{\hslash}$-module generated by $1$;
  1330. \item $\on{Ann}_{\wh{\mc{D}}_A^{\hslash}}(1)$ is the left ideal $\mc{I}_{\mr{can}}$ generated by $\hslash \partial_i$;
  1331. \item We can recover the module by
  1332. \[ \wh{\mc{D}}_A^{\hslash}/\mc{I}_{\mr{can}} = \wh{\mc{M}}_A^{\hslash}. \]
  1333. \end{itemize}
  1334. We can now reformulate our problem as
  1335. \begin{prob}
  1336. What conditions should a left ideal $\mc{I} \subset \wh{\mc{D}}_A^{\hslash}$ satisfy such that $\mc{I} \cdot \mc{Z}$ has a unique solution of the form
  1337. \[ \mc{Z} = \exp\qty(\sum_{k=1}^{\infty} \hslash^k q^{(k+2)}(x_A))? \]
  1338. \end{prob}
  1339. \subsection{Characterization of ideals solving our problem}
  1340. From our expression for $\mc{Z}$, it is clear that the operators
  1341. \[ \ol{H}_i = \hslash \partial_i - \sum_{k=1}^{\infty} \hslash^{k+1} \partial_i q^{(k+2)}(x_A) \]
  1342. satisfy $\ol{H}_i \mc{Z} = 0$. Denote the ideal generated by the $\ol{H}_i$ by $\ol{\mc{I}}$, which is in fact $\on{Ann}_{\wh{\mc{D}}_A^{\hslash}}(\mc{Z})$.
  1343. \begin{defn}
  1344. Define an automorphism $\Phi \colon \wh{\mc{D}}_A^{\hslash} \to \wh{\mc{D}}_A^{\hslash}$ by
  1345. \[ \Phi \colon (\hslash, \hslash x_i, \hslash \partial_i) \mapsto \qty(\hslash, \hslash x_i, \hslash \partial_i - \sum_{k=1}^{\infty} \hslash^{k+1} \partial_i q^{(k+2)}(x_A)). \]
  1346. Note that this is a valid construction because $[\ol{H}_i, \hslash x_j] = \hslash^2 \delta_{ij}$ and $[\ol{H}_i, \ol{H}_j] = 0$.
  1347. \end{defn}
  1348. Given the twist $\Phi$, define the twisted module ${}^{\Phi}\wh{\mc{M}}_A^{\hslash}$ by the twisted product
  1349. \[ \wh{\mc{D}}_A^{\hslash} \cdot^{\Phi} \wh{\mc{M}}_A^{\hslash} \to \wh{\mc{M}}_A^{\hslash} \qquad P \cdot^{\Phi} f = \Phi^{-1}(P) \cdot f. \]
  1350. This satisfies the same properties as the untwisted version. Because $\Phi(P) = \mc{Z} \cdot P \cdot \mc{Z}^{-1}$, we can define a \textit{module of exponential type} by $\mc{Z} \wh{\mc{M}_A^{\hslash}}$, which is cyclic and generated by $\mc{Z}$. Clearly we have
  1351. \[ \on{Ann}_{\wh{\mc{D}}_A^{\hslash}}(\mc{Z}) = \Phi(\mc{I}_{\mr{can}}) = \ol{\mc{I}}. \]
  1352. \printbibliography
  1353. \end{document}