123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- \begin{code}
- \>[0]\AgdaFunction{ker\ensuremath{_h}{-}ideal}\AgdaSpace{}%
- \AgdaSymbol{:}\AgdaSpace{}%
- \AgdaSymbol{\{}\AgdaSpace{}%
- \AgdaBound{c₁}\AgdaSpace{}%
- \AgdaBound{c₂}\AgdaSpace{}%
- \AgdaBound{ℓ₁}\AgdaSpace{}%
- \AgdaBound{ℓ₂}\AgdaSpace{}%
- \AgdaSymbol{:}\AgdaSpace{}%
- \AgdaPostulate{Level}\AgdaSymbol{\}}\<%
- \\
- \>[0][@{}l@{\AgdaIndent{0}}]%
- \>[2]\AgdaSymbol{(}\AgdaBound{r₁}\AgdaSpace{}%
- \AgdaSymbol{:}\AgdaSpace{}%
- \AgdaRecord{Ring}\AgdaSpace{}%
- \AgdaBound{c₁}\AgdaSpace{}%
- \AgdaBound{ℓ₁}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSpace{}%
- \AgdaSymbol{:}\AgdaSpace{}%
- \AgdaRecord{Ring}\AgdaSpace{}%
- \AgdaBound{c₂}\AgdaSpace{}%
- \AgdaBound{ℓ₂}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{→}\AgdaSpace{}%
- \AgdaKeyword{let}\AgdaSpace{}%
- \AgdaKeyword{open}\AgdaSpace{}%
- \AgdaModule{Ring}\AgdaSpace{}%
- \AgdaKeyword{in}\<%
- \\
- %
- \>[2]\AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- \AgdaSymbol{:}%
- \>[8]\AgdaFunction{Definitions.Morphism}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaField{Carrier}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaField{Carrier}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaOperator{\AgdaField{\AgdaUnderscore{}≈\AgdaUnderscore{}}}\AgdaSymbol{))}\AgdaSpace{}%
- \AgdaSymbol{→}\<%
- \\
- %
- \>[2]\AgdaSymbol{(}\AgdaBound{iRm}\AgdaSpace{}%
- \AgdaSymbol{:}\AgdaSpace{}%
- \AgdaRecord{IsRingMorphism}\AgdaSpace{}%
- \AgdaBound{r₁}\AgdaSpace{}%
- \AgdaBound{r₂}\AgdaSpace{}%
- \AgdaBound{f}\AgdaSymbol{)}\<%
- \\
- %
- \>[2]\AgdaSymbol{→}%
- \>[587I]\AgdaKeyword{let}\AgdaSpace{}%
- \AgdaKeyword{open}\AgdaSpace{}%
- \AgdaModule{IsRingMorphism}\AgdaSpace{}%
- \AgdaBound{iRm}\AgdaSpace{}%
- \AgdaKeyword{in}\AgdaSpace{}%
- \AgdaKeyword{let}\<%
- \\
- \>[587I][@{}l@{\AgdaIndent{0}}]%
- \>[7]\AgdaBound{kern}\AgdaSpace{}%
- \AgdaSymbol{=}\AgdaSpace{}%
- \AgdaFunction{Kern\ensuremath{_h}}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaField{IsAbelianGroupMorphism.gp{-}homo}%
- \>[70]\AgdaField{+{-}abgp{-}homo}\AgdaSymbol{)}\<%
- \\
- \>[587I][@{}l@{\AgdaIndent{0}}]%
- \>[5]\AgdaKeyword{in}\AgdaSpace{}%
- \AgdaRecord{IsIdeal}\AgdaSpace{}%
- \AgdaBound{kern}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaOperator{\AgdaField{\AgdaUnderscore{}≈\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaOperator{\AgdaField{\AgdaUnderscore{}+\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaOperator{\AgdaField{{-}\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaField{0\#}\AgdaSymbol{)}\AgdaSpace{}%
- \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- \AgdaField{1\#}\AgdaSymbol{)}\<%
- %% \\
- %% \>[0]\AgdaFunction{ker\ensuremath{_h}{-}ideal}\AgdaSpace{}%
- %% \AgdaBound{r₁}\AgdaSpace{}%
- %% \AgdaBound{r₂}\AgdaSpace{}%
- %% \AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{iRm}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaKeyword{let}\AgdaSpace{}%
- %% \AgdaKeyword{open}\AgdaSpace{}%
- %% \AgdaModule{Ring}\AgdaSpace{}%
- %% \AgdaKeyword{in}\AgdaSpace{}%
- %% \AgdaKeyword{let}\AgdaSpace{}%
- %% \AgdaKeyword{open}\AgdaSpace{}%
- %% \AgdaModule{IsRingMorphism}\AgdaSpace{}%
- %% \AgdaBound{iRm}\AgdaSpace{}%
- %% \AgdaKeyword{in}\AgdaSpace{}%
- %% \AgdaKeyword{let}\<%
- %% \\
- %% \>[0][@{}l@{\AgdaIndent{0}}]%
- %% \>[3]\AgdaBound{groupMorphism}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaField{IsAbelianGroupMorphism.gp{-}homo}\AgdaSpace{}%
- %% \AgdaField{+{-}abgp{-}homo}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{monoidMorphism}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaField{IsGroupMorphism.mn{-}homo}\AgdaSpace{}%
- %% \AgdaBound{groupMorphism}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{smMorphism}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaField{IsMonoidMorphism.sm{-}homo}\AgdaSpace{}%
- %% \AgdaBound{monoidMorphism}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{semi*Morphism}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaField{IsMonoidMorphism.sm{-}homo}\AgdaSpace{}%
- %% \AgdaField{*{-}mn{-}homo}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{kern}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaFunction{Kern\ensuremath{_h}}\AgdaSpace{}%
- %% \AgdaBound{groupMorphism}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{abelian₁}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaFunction{+{-}abelianGroup}\AgdaSpace{}%
- %% \AgdaBound{r₁}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{group₁}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaFunction{AbelianGroup.group}\AgdaSpace{}%
- %% \AgdaBound{abelian₁}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{group₂}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaFunction{AbelianGroup.group}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaFunction{+{-}abelianGroup}\AgdaSpace{}%
- %% \AgdaBound{r₂}\AgdaSymbol{)}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{isSubGroup}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaRecord{IsSubGroup}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSpace{}%
- %% \AgdaSymbol{.}\AgdaOperator{\AgdaField{\AgdaUnderscore{}≈\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{kern}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSpace{}%
- %% \AgdaSymbol{.}\AgdaOperator{\AgdaField{\AgdaUnderscore{}+\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSpace{}%
- %% \AgdaSymbol{.}\AgdaField{0\#}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSpace{}%
- %% \AgdaSymbol{.}\AgdaOperator{\AgdaField{{-}\AgdaUnderscore{}}}\AgdaSymbol{)}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{isSubGroup}%
- %% \>[15]\AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaFunction{kern\ensuremath{_h}{-}induces{-}subgroup}\AgdaSpace{}%
- %% \AgdaBound{group₁}\AgdaSpace{}%
- %% \AgdaBound{group₂}\AgdaSpace{}%
- %% \AgdaBound{groupMorphism}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{ideal}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{Carrier}\AgdaSymbol{))}\AgdaSpace{}%
- %% \AgdaSymbol{\{}\AgdaBound{x}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{Carrier}\AgdaSymbol{)\}}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{ix}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaBound{kern}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{→}\AgdaSpace{}%
- %% \AgdaFunction{IdealProp}\AgdaSpace{}%
- %% \AgdaBound{kern}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₁}\AgdaSpace{}%
- %% \AgdaSymbol{.}\AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSpace{}%
- %% \AgdaBound{ix}\<%
- %% \\
- %% %
- %% \>[3]\AgdaBound{ideal}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSpace{}%
- %% \AgdaSymbol{\{}\AgdaBound{x}\AgdaSymbol{\}}\AgdaSpace{}%
- %% \AgdaBound{ix}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaKeyword{let}\AgdaSpace{}%
- %% \AgdaKeyword{open}\AgdaSpace{}%
- %% \AgdaModule{EqR}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaFunction{setoid}\AgdaSpace{}%
- %% \AgdaBound{r₂}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaKeyword{in}\AgdaSpace{}%
- %% \AgdaKeyword{let}\<%
- %% \\
- %% \>[3][@{}l@{\AgdaIndent{0}}]%
- %% \>[5]\AgdaBound{frx≈0}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}≈\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaSymbol{((}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSymbol{))}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{0\#}\AgdaSymbol{)}\<%
- %% \\
- %% %
- %% \>[5]\AgdaBound{frx≈0}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{begin}}\<%
- %% \\
- %% \>[5][@{}l@{\AgdaIndent{0}}]%
- %% \>[7]\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaSymbol{((}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{≈⟨}}\AgdaSpace{}%
- %% \AgdaField{IsSemigroupMorphism.∙{-}homo}\AgdaSpace{}%
- %% \AgdaBound{semi*Morphism}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{⟩}}\<%
- %% \\
- %% %
- %% \>[7]\AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{≈⟨}}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaFunction{*{-}cong}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaFunction{refl}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{ix}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{⟩}}\<%
- %% \\
- %% %
- %% \>[7]\AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{0\#}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{≈⟨}}\AgdaSpace{}%
- %% \AgdaFunction{zero$^r$}\AgdaSpace{}%
- %% \AgdaBound{r₂}\AgdaSpace{}%
- %% \AgdaSymbol{\AgdaUnderscore{}}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{⟩}}\<%
- %% \\
- %% %
- %% \>[7]\AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{0\#}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{$\qed$}}\<%
- %% \\
- %% %
- %% \>[5]\AgdaBound{fxr≈0}\AgdaSpace{}%
- %% \AgdaSymbol{:}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}≈\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaSymbol{((}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSymbol{))}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{0\#}\AgdaSymbol{)}\<%
- %% \\
- %% %
- %% \>[5]\AgdaBound{fxr≈0}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{begin}}\<%
- %% \\
- %% \>[5][@{}l@{\AgdaIndent{0}}]%
- %% \>[7]\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaSymbol{((}\AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{≈⟨}}\AgdaSpace{}%
- %% \AgdaField{IsSemigroupMorphism.∙{-}homo}\AgdaSpace{}%
- %% \AgdaBound{semi*Morphism}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{⟩}}\<%
- %% \\
- %% %
- %% \>[7]\AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{x}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{≈⟨}}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaFunction{*{-}cong}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaBound{ix}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaFunction{refl}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{⟩}}\<%
- %% \\
- %% %
- %% \>[7]\AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaField{\AgdaUnderscore{}*\AgdaUnderscore{}}}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{0\#}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaSymbol{(}\AgdaBound{f}\AgdaSpace{}%
- %% \AgdaBound{r}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{≈⟨}}\AgdaSpace{}%
- %% \AgdaFunction{zero$^l$}\AgdaSpace{}%
- %% \AgdaBound{r₂}\AgdaSpace{}%
- %% \AgdaSymbol{\AgdaUnderscore{}}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{⟩}}\<%
- %% \\
- %% %
- %% \>[7]\AgdaSymbol{(}\AgdaBound{r₂}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{0\#}\AgdaSymbol{)}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaFunction{$\qed$}}\<%
- %% \\
- %% \>[3][@{}l@{\AgdaIndent{0}}]%
- %% \>[4]\AgdaKeyword{in}\AgdaSpace{}%
- %% \AgdaBound{frx≈0}\AgdaSpace{}%
- %% \AgdaOperator{\AgdaInductiveConstructor{,}}\AgdaSpace{}%
- %% \AgdaBound{fxr≈0}\<%
- %% \\
- %% \>[0][@{}l@{\AgdaIndent{0}}]%
- %% \>[1]\AgdaKeyword{in}\AgdaSpace{}%
- %% \AgdaKeyword{record}\AgdaSpace{}%
- %% \AgdaSymbol{\{}\AgdaSpace{}%
- %% \AgdaField{isRing}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaBound{r₁}\AgdaSymbol{.}\AgdaSpace{}%
- %% \AgdaField{isRing}\AgdaSpace{}%
- %% \AgdaSymbol{;}\AgdaSpace{}%
- %% \AgdaField{isSubGroup}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaBound{isSubGroup}\AgdaSpace{}%
- %% \AgdaSymbol{;}\AgdaSpace{}%
- %% \AgdaField{idealProp}\AgdaSpace{}%
- %% \AgdaSymbol{=}\AgdaSpace{}%
- %% \AgdaBound{ideal}\AgdaSpace{}%
- %% \AgdaSymbol{\}}\<%
- \end{code}
|