predict-csv-taxis.py 1.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. import tensorflow as tf
  2. from tensorflow.keras.models import load_model
  3. savedModel = load_model('TaxiCsvModel.keras')
  4. # print(f'savedModel.summary() = {savedModel.summary()}')
  5. sample = { # cash
  6. "passengers": 1,
  7. "color": "yellow",
  8. "pickup_zone": "Upper West Side South",
  9. "dropoff_zone": "Upper West Side South",
  10. "pickup_borough": "Manhattan",
  11. "dropoff_borough": "Manhattan",
  12. "distance": 0.8,
  13. "fare": 5.0,
  14. "tip": 0.0,
  15. "tolls": 0.0,
  16. "total": 9.31,
  17. } # This passengers had a 93.37% probability payment with a credit card.
  18. # sample = { # credit card
  19. # "passengers": 1,
  20. # "color": "yellow",
  21. # "pickup_zone": "Lenox Hill West",
  22. # "dropoff_zone": "UN/Turtle Bay South",
  23. # "pickup_borough": "Manhattan",
  24. # "dropoff_borough": "Manhattan",
  25. # "distance": 1.60,
  26. # "fare": 7.0,
  27. # "tip": 2.15,
  28. # "tolls": 0.0,
  29. # "total": 12.95,
  30. # } # This passengers had a 97.98% probability payment with a credit card.
  31. input_dict = {name: tf.convert_to_tensor([value]) for name, value in sample.items()}
  32. predictions = savedModel.predict(input_dict)
  33. print(
  34. f"This passengers had a {100 * predictions[0][0]:.2f}% probability "
  35. "payment with a credit card."
  36. )