123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- package llm
- import (
- "fmt"
- "log/slog"
- "strconv"
- "strings"
- "github.com/ollama/ollama/api"
- "github.com/ollama/ollama/format"
- "github.com/ollama/ollama/gpu"
- )
- // This algorithm looks for a complete fit to determine if we need to unload other models
- func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
- // Split up the GPUs by type and try them
- var estimatedVRAM uint64
- for _, gpus := range allGpus.ByLibrary() {
- var layerCount int
- estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
- layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
- if opts.NumGPU < 0 {
- if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
- return true, estimatedVRAM
- }
- } else {
- if layerCount > 0 && layerCount >= opts.NumGPU {
- return true, estimatedVRAM
- }
- }
- }
- return false, estimatedVRAM
- }
- type MemoryEstimate struct {
- // How many layers we predict we can load
- Layers int
- // The size of the graph which occupies the main GPU
- Graph uint64
- // How much VRAM will be allocated given the number of layers we predict
- VRAMSize uint64
- // The total size of the model if loaded into VRAM. If all layers are loaded, VRAMSize == TotalSize
- TotalSize uint64
- // For multi-GPU scenarios, this provides the tensor split parameter
- TensorSplit string
- // For multi-GPU scenarios, this is the size in bytes per GPU
- GPUSizes []uint64
- // internal fields for logging purposes
- inferenceLibrary string
- layersRequested int
- layersModel int
- availableList []string
- kv uint64
- allocationsList []string
- memoryWeights uint64
- memoryLayerOutput uint64
- graphFullOffload uint64
- graphPartialOffload uint64
- }
- // Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
- // The GPUs provided must all be the same Library
- func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
- // Graph size for a partial offload, applies to all GPUs
- var graphPartialOffload uint64
- // Graph size when all layers are offloaded, applies to all GPUs
- var graphFullOffload uint64
- // Final graph offload once we know full or partial
- var graphOffload uint64
- // Projectors loaded into GPU0 only
- var projectorSize uint64
- // Conditional output size on GPU 0
- var memoryLayerOutput uint64
- // The sizes of a layer
- var layerSize uint64
- // The sum of all the layer sizes (just for logging)
- var memoryWeights uint64
- // True if all the layers are loaded
- var fullyLoaded bool
- // Overflow that didn't fit into the GPU
- var overflow uint64
- availableList := make([]string, len(gpus))
- for i, gpu := range gpus {
- availableList[i] = format.HumanBytes2(gpu.FreeMemory)
- }
- slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
- for _, projector := range projectors {
- projectorSize += projectorMemoryRequirements(projector)
- // multimodal models require at least 2048 context
- opts.NumCtx = max(opts.NumCtx, 2048)
- }
- layers := ggml.Tensors().Layers()
- // add one layer worth of memory as a buffer
- if blk0, ok := layers["blk.0"]; ok {
- layerSize = blk0.size()
- } else {
- slog.Warn("model missing blk.0 layer size")
- }
- // fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
- var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
- // KV is proportional to the number of layers
- layerSize += kv / ggml.KV().BlockCount()
- graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
- if graphPartialOffload == 0 {
- graphPartialOffload = ggml.KV().GQA() * kv / 6
- }
- if graphFullOffload == 0 {
- graphFullOffload = graphPartialOffload
- }
- // on metal there's no partial offload overhead
- if gpus[0].Library == "metal" {
- graphPartialOffload = graphFullOffload
- } else if len(gpus) > 1 {
- // multigpu should always use the partial graph size
- graphFullOffload = graphPartialOffload
- }
- if layer, ok := layers["output_norm"]; ok {
- memoryLayerOutput += layer.size()
- }
- if layer, ok := layers["output"]; ok {
- memoryLayerOutput += layer.size()
- } else if layer, ok := layers["token_embd"]; ok {
- memoryLayerOutput += layer.size()
- }
- // Output layer handled at the end if we have space
- gpuZeroOverhead := projectorSize
- // Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
- var layerCount int
- layerCounts := make([]int, len(gpus))
- gpuAllocations := make([]uint64, len(gpus))
- type gs struct {
- i int
- g *gpu.GpuInfo
- }
- gpusWithSpace := []gs{}
- for i := range gpus {
- var gzo uint64
- if len(gpusWithSpace) == 0 {
- gzo = gpuZeroOverhead
- }
- // Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
- if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
- slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
- continue
- }
- gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
- gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
- }
- var gpuZeroID int
- if len(gpusWithSpace) > 0 {
- gpuZeroID = gpusWithSpace[0].i
- gpuAllocations[gpuZeroID] += gpuZeroOverhead
- }
- // For all the layers, find where they can fit on the GPU(s)
- for i := range int(ggml.KV().BlockCount()) {
- // Some models have inconsistent layer sizes
- if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
- layerSize = blk.size()
- layerSize += kv / ggml.KV().BlockCount()
- }
- memoryWeights += layerSize
- if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
- // Stop allocating on GPU(s) once we hit the users target NumGPU
- continue
- }
- // distribute the layers across the GPU(s) that have space
- for j := len(gpusWithSpace); j > 0; j-- {
- g := gpusWithSpace[i%j]
- used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
- if g.g.FreeMemory > used+layerSize {
- gpuAllocations[g.i] += layerSize
- layerCounts[g.i]++
- layerCount++
- break
- } else {
- gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
- }
- }
- }
- if layerCount >= int(ggml.KV().BlockCount()) {
- fullyLoaded = true
- } else {
- for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
- overflow += layerSize
- }
- }
- // Determine if we need to consider output then find where it fits
- if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
- for j := len(gpusWithSpace); j > 0; j-- {
- g := gpusWithSpace[layerCount%j]
- used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
- if g.g.FreeMemory > used+memoryLayerOutput {
- gpuAllocations[g.i] += memoryLayerOutput
- layerCounts[g.i]++
- layerCount++
- break
- }
- }
- if layerCount < int(ggml.KV().BlockCount())+1 {
- fullyLoaded = false
- overflow += memoryLayerOutput
- }
- }
- // Add the applicable (full or partial) graph allocations
- for i := range gpus {
- if layerCounts[i] <= 0 {
- continue
- }
- if fullyLoaded {
- gpuAllocations[i] += graphFullOffload
- } else {
- gpuAllocations[i] += graphPartialOffload
- }
- }
- if fullyLoaded {
- graphOffload = graphFullOffload
- } else {
- graphOffload = graphPartialOffload
- }
- // Summaries for the log
- var memoryRequiredPartial, memoryRequiredTotal uint64
- for i := range gpuAllocations {
- memoryRequiredPartial += gpuAllocations[i]
- }
- memoryRequiredTotal = memoryRequiredPartial + overflow
- tensorSplit := ""
- if len(gpus) > 1 {
- splits := make([]string, len(gpus))
- for i, count := range layerCounts {
- splits[i] = strconv.Itoa(count)
- }
- tensorSplit = strings.Join(splits, ",")
- }
- allocationsList := []string{}
- for _, a := range gpuAllocations {
- allocationsList = append(allocationsList, format.HumanBytes2(a))
- }
- estimate := MemoryEstimate{
- TotalSize: memoryRequiredTotal,
- Layers: 0,
- Graph: 0,
- VRAMSize: 0,
- GPUSizes: []uint64{},
- inferenceLibrary: gpus[0].Library,
- layersRequested: opts.NumGPU,
- layersModel: int(ggml.KV().BlockCount()) + 1,
- availableList: availableList,
- kv: kv,
- allocationsList: allocationsList,
- memoryWeights: memoryWeights,
- memoryLayerOutput: memoryLayerOutput,
- graphFullOffload: graphFullOffload,
- graphPartialOffload: graphPartialOffload,
- }
- if gpus[0].Library == "cpu" {
- return estimate
- }
- if layerCount == 0 {
- slog.Debug("insufficient VRAM to load any model layers")
- return estimate
- }
- estimate.Layers = layerCount
- estimate.Graph = graphOffload
- estimate.VRAMSize = memoryRequiredPartial
- estimate.TotalSize = memoryRequiredTotal
- estimate.TensorSplit = tensorSplit
- estimate.GPUSizes = gpuAllocations
- return estimate
- }
- func (m MemoryEstimate) log() {
- slog.Info(
- "offload to "+m.inferenceLibrary,
- slog.Group(
- "layers",
- // requested number of layers to offload
- "requested", m.layersRequested,
- // The number of layers the model has (including output)
- "model", m.layersModel,
- // estimated number of layers that can be offloaded
- "offload", m.Layers,
- // multi-gpu split for tensors
- "split", m.TensorSplit,
- ),
- slog.Group(
- "memory",
- // memory available by GPU for offloading
- "available", m.availableList,
- slog.Group(
- "required",
- // memory required for full offloading
- "full", format.HumanBytes2(m.TotalSize),
- // memory required to offload layers.estimate layers
- "partial", format.HumanBytes2(m.VRAMSize),
- // memory of KV cache
- "kv", format.HumanBytes2(m.kv),
- // Allocations across the GPUs
- "allocations", m.allocationsList,
- ),
- slog.Group(
- "weights",
- // memory of the weights
- "total", format.HumanBytes2(m.memoryWeights),
- // memory of repeating layers
- "repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
- // memory of non-repeating layers
- "nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
- ),
- slog.Group(
- "graph",
- // memory of graph when fully offloaded
- "full", format.HumanBytes2(m.graphFullOffload),
- // memory of graph when not fully offloaded
- "partial", format.HumanBytes2(m.graphPartialOffload),
- ),
- ),
- )
- }
|