123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- package llm
- import (
- "encoding/binary"
- "errors"
- "fmt"
- "io"
- "strings"
- "github.com/ollama/ollama/util/bufioutil"
- )
- type GGML struct {
- container
- model
- }
- type model interface {
- KV() KV
- Tensors() Tensors
- }
- type KV map[string]any
- func (kv KV) u64(key string) uint64 {
- switch v := kv[key].(type) {
- case uint64:
- return v
- case uint32:
- return uint64(v)
- case float64:
- return uint64(v)
- default:
- return 0
- }
- }
- func (kv KV) Architecture() string {
- if s, ok := kv["general.architecture"].(string); ok {
- return s
- }
- return "unknown"
- }
- func (kv KV) ParameterCount() uint64 {
- return kv.u64("general.parameter_count")
- }
- func (kv KV) FileType() fileType {
- if u64 := kv.u64("general.file_type"); u64 > 0 {
- return fileType(uint32(u64))
- }
- return fileTypeUnknown
- }
- func (kv KV) BlockCount() uint64 {
- return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
- }
- func (kv KV) HeadCount() uint64 {
- return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
- }
- func (kv KV) HeadCountKV() uint64 {
- if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
- return headCountKV
- }
- return 1
- }
- func (kv KV) EmbeddingHeadCount() uint64 {
- if heads := kv.HeadCount(); heads > 0 {
- return kv.EmbeddingLength() / kv.HeadCount()
- }
- return 0
- }
- func (kv KV) EmbeddingHeadCountK() uint64 {
- if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
- return k
- }
- return kv.EmbeddingHeadCount()
- }
- func (kv KV) EmbeddingHeadCountV() uint64 {
- if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
- return v
- }
- return kv.EmbeddingHeadCount()
- }
- func (kv KV) GQA() uint64 {
- return kv.HeadCount() / kv.HeadCountKV()
- }
- func (kv KV) EmbeddingLength() uint64 {
- return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
- }
- func (kv KV) ContextLength() uint64 {
- return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
- }
- func (kv KV) ChatTemplate() string {
- s, _ := kv["tokenizer.chat_template"].(string)
- return s
- }
- type Tensors []*Tensor
- func (ts Tensors) Layers() map[string]Layer {
- layers := make(map[string]Layer)
- for _, t := range ts {
- parts := strings.Split(t.Name, ".")
- if parts[0] == "blk" {
- // join first and second part, e.g. blk.%d
- parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
- }
- if _, ok := layers[parts[0]]; !ok {
- layers[parts[0]] = make(Layer)
- }
- layers[parts[0]][strings.Join(parts[1:], ".")] = t
- }
- return layers
- }
- type Layer map[string]*Tensor
- func (l Layer) size() (size uint64) {
- for _, t := range l {
- size += t.Size()
- }
- return size
- }
- type Tensor struct {
- Name string `json:"name"`
- Kind uint32 `json:"kind"`
- Offset uint64 `json:"-"`
- // Shape is the number of elements in each dimension
- Shape []uint64 `json:"shape"`
- io.WriterTo `json:"-"`
- }
- func (t Tensor) blockSize() uint64 {
- switch t.Kind {
- case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
- return 1
- case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
- return 32
- default: // All others
- return 256
- }
- }
- func (t Tensor) typeSize() uint64 {
- blockSize := t.blockSize()
- switch t.Kind {
- case 0: // FP32
- return 4
- case 1: // FP16
- return 2
- case 2: // Q4_0
- return 2 + blockSize/2
- case 3: // Q4_1
- return 2 + 2 + blockSize/2
- case 6: // Q5_0
- return 2 + 4 + blockSize/2
- case 7: // Q5_1
- return 2 + 2 + 4 + blockSize/2
- case 8: // Q8_0
- return 2 + blockSize
- case 9: // Q8_1
- return 4 + 4 + blockSize
- case 10: // Q2_K
- return blockSize/16 + blockSize/4 + 2 + 2
- case 11: // Q3_K
- return blockSize/8 + blockSize/4 + 12 + 2
- case 12: // Q4_K
- return 2 + 2 + 12 + blockSize/2
- case 13: // Q5_K
- return 2 + 2 + 12 + blockSize/8 + blockSize/2
- case 14: // Q6_K
- return blockSize/2 + blockSize/4 + blockSize/16 + 2
- case 15: // Q8_K
- return 2 + blockSize + 2*blockSize/16
- case 16: // IQ2_XXS
- return 2 + 2*blockSize/8
- case 17: // IQ2_XS
- return 2 + 2*blockSize/8 + blockSize/32
- case 18: // IQ3_XXS
- return 2 + blockSize/4 + blockSize/8
- case 19: // IQ1_S
- return 2 + blockSize/8 + blockSize/16
- case 20: // IQ4_NL
- return 2 + blockSize/2
- case 21: // IQ3_S
- return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
- case 22: // IQ2_S
- return 2 + blockSize/4 + blockSize/16
- case 23: // IQ4_XS
- return 2 + 2 + blockSize/2 + blockSize/64
- case 24: // I8
- return 1
- case 25: // I16
- return 2
- case 26: // I32
- return 4
- case 27: // I64
- return 8
- case 28: // F64
- return 8
- case 29: // IQ1_M
- return blockSize/8 + blockSize/16 + blockSize/32
- default:
- return 0
- }
- }
- func (t Tensor) parameters() uint64 {
- var count uint64 = 1
- for _, n := range t.Shape {
- count *= n
- }
- return count
- }
- func (t Tensor) Size() uint64 {
- return t.parameters() * t.typeSize() / t.blockSize()
- }
- type container interface {
- Name() string
- Decode(io.ReadSeeker) (model, error)
- }
- const (
- // Magic constant for `ggml` files (unversioned).
- FILE_MAGIC_GGML = 0x67676d6c
- // Magic constant for `ggml` files (versioned, ggmf).
- FILE_MAGIC_GGMF = 0x67676d66
- // Magic constant for `ggml` files (versioned, ggjt).
- FILE_MAGIC_GGJT = 0x67676a74
- // Magic constant for `ggla` files (LoRA adapter).
- FILE_MAGIC_GGLA = 0x67676C61
- // Magic constant for `gguf` files (versioned, gguf)
- FILE_MAGIC_GGUF_LE = 0x46554747
- FILE_MAGIC_GGUF_BE = 0x47475546
- )
- var ErrUnsupportedFormat = errors.New("unsupported model format")
- func DetectGGMLType(b []byte) string {
- switch binary.LittleEndian.Uint32(b[:4]) {
- case FILE_MAGIC_GGML:
- return "ggml"
- case FILE_MAGIC_GGMF:
- return "ggmf"
- case FILE_MAGIC_GGJT:
- return "ggjt"
- case FILE_MAGIC_GGLA:
- return "ggla"
- case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
- return "gguf"
- default:
- return ""
- }
- }
- // DecodeGGML decodes a GGML model from the given reader.
- //
- // It collects array values for arrays with a size less than or equal to
- // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
- // the maxArraySize is negative, all arrays are collected.
- func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
- if maxArraySize == 0 {
- maxArraySize = 1024
- }
- rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
- var magic uint32
- if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
- return nil, 0, err
- }
- var c container
- switch magic {
- case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
- return nil, 0, ErrUnsupportedFormat
- case FILE_MAGIC_GGLA:
- c = &containerGGLA{}
- case FILE_MAGIC_GGUF_LE:
- c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
- case FILE_MAGIC_GGUF_BE:
- c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
- default:
- return nil, 0, errors.New("invalid file magic")
- }
- model, err := c.Decode(rs)
- if err != nil {
- return nil, 0, err
- }
- offset, err := rs.Seek(0, io.SeekCurrent)
- if err != nil {
- return nil, 0, err
- }
- // final model type
- return &GGML{
- container: c,
- model: model,
- }, offset, nil
- }
- func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
- embedding := llm.KV().EmbeddingLength()
- heads := llm.KV().HeadCount()
- headsKV := llm.KV().HeadCountKV()
- vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
- embeddingHeads := llm.KV().EmbeddingHeadCount()
- embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
- layers := llm.Tensors().Layers()
- switch llm.KV().Architecture() {
- case "llama":
- fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
- partialOffload = 4 * batch * embedding
- partialOffload += max(
- // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
- 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- )
- if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
- // mixtral 8x22b
- ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
- partialOffload = max(
- 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
- 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
- )
- } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
- // mixtral 8x7b
- ffnGateWeight1 := ffnGateWeight.Shape[1]
- fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
- partialOffload = max(
- 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
- 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
- )
- }
- case "gemma", "gemma2":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
- )
- partialOffload = max(
- 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
- 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
- 4*embeddingHeadsK*context*8+
- embedding*embeddingHeadsK*heads*9/16,
- )
- case "command-r":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(2+4*embedding+context*(1+heads)),
- )
- partialOffload = max(
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
- )
- case "qwen2":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(1+2*embedding+context+context*heads),
- )
- partialOffload = max(
- 4*batch*(embedding+vocab)+embedding*vocab*105/128,
- 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
- )
- case "phi2":
- fullOffload = max(
- 4*batch*(embedding+vocab),
- 4*batch*(1+4*embedding+context+context*heads),
- )
- partialOffload = max(
- 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
- 4*batch*(2+3*embedding+context+context*heads),
- )
- case "stablelm":
- fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
- partialOffload = max(
- 4*batch*(vocab+2*embedding),
- fullOffload,
- )
- case "deepseek2":
- fullOffload = max(
- 4*batch*(3*embedding+vocab),
- 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
- )
- partialOffload = max(
- 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
- 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
- )
- case "chatglm":
- fullOffload = 4 * batch * (embedding + vocab)
- partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
- if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
- fullOffload = max(
- fullOffload,
- 4*batch*(2+
- 2*embedding+
- context+
- context*heads+
- embeddingHeadsK*heads+
- qkvBias.Shape[0]),
- )
- partialOffload = max(
- partialOffload,
- 4*batch*(1+
- 2*embedding+
- embeddingHeadsK*heads+
- context+
- context*heads)+
- 4*embeddingHeadsK*context+
- 4*context*embeddingHeadsK+
- 4*qkvBias.Shape[0],
- )
- }
- }
- return
- }
|