import.md 2.2 KB

Import

GGUF models and select Safetensors models can be imported directly into Ollama.

Import GGUF

A binary GGUF file can be imported directly into Ollama through a Modelfile.

FROM /path/to/file.gguf

Import Safetensors

If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:

  • LlamaForCausalLM
  • MistralForCausalLM
  • GemmaForCausalLM
FROM /path/to/safetensors/directory

For architectures not directly convertable by Ollama, see llama.cpp's guide on conversion. After conversion, see Import GGUF.

Automatic Quantization

[!NOTE] Automatic quantization requires v0.1.35 or higher.

Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the -q/--quantize flag in ollama create.

FROM /path/to/my/gemma/f16/model
$ ollama create -q Q4_K_M mymodel
transferring model data
quantizing F16 model to Q4_K_M
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
creating new layer sha256:0853f0ad24e5865173bbf9ffcc7b0f5d56b66fd690ab1009867e45e7d2c4db0f
writing manifest
success

Supported Quantizations

  • Q4_0
  • Q4_1
  • Q5_0
  • Q5_1
  • Q8_0

K-means Quantizations

  • Q3_K_S
  • Q3_K_M
  • Q3_K_L
  • Q4_K_S
  • Q4_K_M
  • Q5_K_S
  • Q5_K_M
  • Q6_K

Template Detection

[!NOTE] Template detection requires v0.1.42 or higher.

Ollama uses model metadata, specifically tokenizer.chat_template, to automatically create a template appropriate for the model you're importing.

FROM /path/to/my/gemma/model
$ ollama create mymodel
transferring model data
using autodetected template gemma-instruct
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
writing manifest
success

Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.