123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783 |
- package server
- import (
- "context"
- "errors"
- "fmt"
- "log/slog"
- "reflect"
- "runtime"
- "sort"
- "strings"
- "sync"
- "time"
- "github.com/ollama/ollama/api"
- "github.com/ollama/ollama/envconfig"
- "github.com/ollama/ollama/format"
- "github.com/ollama/ollama/gpu"
- "github.com/ollama/ollama/llm"
- )
- type LlmRequest struct {
- ctx context.Context //nolint:containedctx
- model *Model
- opts api.Options
- origNumCtx int // Track the initial ctx request
- sessionDuration *api.Duration
- successCh chan *runnerRef
- errCh chan error
- schedAttempts uint
- }
- type Scheduler struct {
- pendingReqCh chan *LlmRequest
- finishedReqCh chan *LlmRequest
- expiredCh chan *runnerRef
- unloadedCh chan interface{}
- loaded map[string]*runnerRef
- loadedMu sync.Mutex
- loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
- newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
- getGpuFn func() gpu.GpuInfoList
- getCpuFn func() gpu.GpuInfoList
- reschedDelay time.Duration
- }
- // Default automatic value for number of models we allow per GPU
- // Model will still need to fit in VRAM, but loading many small models
- // on a large GPU can cause stalling
- var defaultModelsPerGPU = 3
- // Default automatic value for parallel setting
- // Model will still need to fit in VRAM. If this setting wont fit
- // we'll back off down to 1 to try to get it to fit
- var defaultParallel = 4
- var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
- func InitScheduler(ctx context.Context) *Scheduler {
- sched := &Scheduler{
- pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
- finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
- expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests),
- unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests),
- loaded: make(map[string]*runnerRef),
- newServerFn: llm.NewLlamaServer,
- getGpuFn: gpu.GetGPUInfo,
- getCpuFn: gpu.GetCPUInfo,
- reschedDelay: 250 * time.Millisecond,
- }
- sched.loadFn = sched.load
- return sched
- }
- // context must be canceled to decrement ref count and release the runner
- func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
- if opts.NumCtx < 4 {
- opts.NumCtx = 4
- }
- req := &LlmRequest{
- ctx: c,
- model: model,
- opts: opts,
- sessionDuration: sessionDuration,
- successCh: make(chan *runnerRef),
- errCh: make(chan error, 1),
- }
- select {
- case s.pendingReqCh <- req:
- default:
- req.errCh <- ErrMaxQueue
- }
- return req.successCh, req.errCh
- }
- // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
- func (s *Scheduler) Run(ctx context.Context) {
- slog.Debug("starting llm scheduler")
- go func() {
- s.processPending(ctx)
- }()
- go func() {
- s.processCompleted(ctx)
- }()
- }
- func (s *Scheduler) processPending(ctx context.Context) {
- for {
- select {
- case <-ctx.Done():
- slog.Debug("shutting down scheduler pending loop")
- return
- case pending := <-s.pendingReqCh:
- // Block other requests until we get this pending request running
- pending.schedAttempts++
- if pending.origNumCtx == 0 {
- pending.origNumCtx = pending.opts.NumCtx
- }
- if pending.ctx.Err() != nil {
- slog.Debug("pending request cancelled or timed out, skipping scheduling")
- continue
- }
- numParallel := envconfig.NumParallel
- // TODO (jmorganca): multimodal models don't support parallel yet
- // see https://github.com/ollama/ollama/issues/4165
- if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
- numParallel = 1
- slog.Warn("multimodal models don't support parallel requests yet")
- }
- for {
- var runnerToExpire *runnerRef
- s.loadedMu.Lock()
- runner := s.loaded[pending.model.ModelPath]
- loadedCount := len(s.loaded)
- s.loadedMu.Unlock()
- if runner != nil {
- if runner.needsReload(ctx, pending) {
- runnerToExpire = runner
- } else {
- // Runner is usable, return it
- pending.useLoadedRunner(runner, s.finishedReqCh)
- break
- }
- } else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners {
- slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
- runnerToExpire = s.findRunnerToUnload()
- } else {
- // Either no models are loaded or below envconfig.MaxRunners
- // Get a refreshed GPU list
- var gpus gpu.GpuInfoList
- if pending.opts.NumGPU == 0 {
- gpus = s.getCpuFn()
- } else {
- gpus = s.getGpuFn()
- }
- if envconfig.MaxRunners <= 0 {
- // No user specified MaxRunners, so figure out what automatic setting to use
- // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
- // if any GPU has unreliable free memory reporting, 1x the number of GPUs
- allReliable := true
- for _, gpu := range gpus {
- if gpu.UnreliableFreeMemory {
- allReliable = false
- break
- }
- }
- if allReliable {
- envconfig.MaxRunners = defaultModelsPerGPU * len(gpus)
- slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
- } else {
- slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
- envconfig.MaxRunners = len(gpus)
- }
- }
- // Load model for fitting
- ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
- if err != nil {
- pending.errCh <- err
- break
- }
- // Evaluate if the model will fit in the available system memory, or if we should unload a model first
- if len(gpus) == 1 && gpus[0].Library == "cpu" {
- // simplifying assumption of defaultParallel when in CPU mode
- if numParallel <= 0 {
- numParallel = defaultParallel
- }
- pending.opts.NumCtx = pending.origNumCtx * numParallel
- if loadedCount == 0 {
- slog.Debug("cpu mode with first model, loading")
- s.loadFn(pending, ggml, gpus, numParallel)
- break
- }
- runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
- if runnerToExpire == nil {
- slog.Debug("cpu mode with available system memory or first model, loading")
- s.loadFn(pending, ggml, gpus, numParallel)
- break
- }
- // else we need to expire a runner
- } else if loadedCount == 0 {
- // No models loaded. Load the model but prefer the best fit.
- slog.Debug("loading first model", "model", pending.model.ModelPath)
- g := pickBestFitGPUs(pending, ggml, gpus, &numParallel)
- if g != nil {
- gpus = g
- }
- s.loadFn(pending, ggml, gpus, numParallel)
- break
- }
- if runnerToExpire == nil {
- // More than one loaded model, so we have to see if the
- // new one fits
- //
- // We want to avoid loading on any GPUs that have other
- // models still loading on them to avoid potential races
- // with VRAM consumption ramping up during load
- availGpus := s.filterGPUsWithoutLoadingModels(gpus)
- // Update free memory from currently loaded models
- s.updateFreeSpace(availGpus)
- fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel)
- if fitGpus != nil {
- slog.Debug("new model fits with existing models, loading")
- s.loadFn(pending, ggml, fitGpus, numParallel)
- break
- }
- // We couldn't find a set of GPUs to fully load the new
- // model. If no other models are loading (both GPU lists
- // are the same) then we need to unload another model to
- // make room
- if len(availGpus) < len(gpus) {
- // There are other requests pending, and this one
- // needs more time, so put it on the back of the
- // queue so that we might satisfy other pending
- // requests that aren't blocked
- go func() {
- // Process in a go routine to avoid deadlocking
- // the scheduler if our queue is full
- slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
- time.Sleep(s.reschedDelay)
- s.pendingReqCh <- pending
- }()
- break
- }
- runnerToExpire = s.findRunnerToUnload()
- }
- }
- if runnerToExpire == nil {
- // Shouildn't happen
- slog.Error("runner to expire was nil!")
- continue
- }
- // Trigger an expiration to unload once it's done
- runnerToExpire.refMu.Lock()
- slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
- if runnerToExpire.expireTimer != nil {
- runnerToExpire.expireTimer.Stop()
- runnerToExpire.expireTimer = nil
- }
- runnerToExpire.sessionDuration = 0
- if runnerToExpire.refCount <= 0 {
- s.expiredCh <- runnerToExpire
- }
- runnerToExpire.refMu.Unlock()
- // Wait for the unload to happen
- // Note: at this point we're queueing up all incoming requests, even if they were for
- // a different model that's loaded and not scheduled to be removed.
- slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
- select {
- case <-ctx.Done():
- slog.Debug("shutting down scheduler pending loop")
- return
- case <-s.unloadedCh:
- slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
- continue
- }
- }
- case <-s.unloadedCh:
- // An unload request when there are no pending request can be ignored
- slog.Debug("ignoring unload event with no pending requests")
- }
- }
- }
- func (s *Scheduler) processCompleted(ctx context.Context) {
- // Process completed requests, expired timers, and unloading models
- for {
- select {
- case <-ctx.Done():
- slog.Debug("shutting down scheduler completed loop")
- return
- case finished := <-s.finishedReqCh:
- s.loadedMu.Lock()
- runner := s.loaded[finished.model.ModelPath]
- s.loadedMu.Unlock()
- if runner == nil {
- slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
- continue
- }
- runner.refMu.Lock()
- runner.refCount--
- if runner.refCount <= 0 {
- if runner.sessionDuration <= 0 {
- slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
- if runner.expireTimer != nil {
- runner.expireTimer.Stop()
- runner.expireTimer = nil
- }
- s.expiredCh <- runner
- } else if runner.expireTimer == nil {
- slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
- runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
- slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
- runner.refMu.Lock()
- defer runner.refMu.Unlock()
- if runner.expireTimer != nil {
- runner.expireTimer.Stop()
- runner.expireTimer = nil
- }
- s.expiredCh <- runner
- })
- runner.expiresAt = time.Now().Add(runner.sessionDuration)
- } else {
- slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
- runner.expireTimer.Reset(runner.sessionDuration)
- runner.expiresAt = time.Now().Add(runner.sessionDuration)
- }
- }
- slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
- runner.refMu.Unlock()
- case runner := <-s.expiredCh:
- slog.Debug("runner expired event received", "modelPath", runner.modelPath)
- runner.refMu.Lock()
- if runner.refCount > 0 {
- // Shouldn't happen, but safeguard to ensure no leaked runners
- slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
- go func(runner *runnerRef) {
- // We can't unload yet, but want to as soon as the current request completes
- // So queue up another expired event
- time.Sleep(10 * time.Millisecond)
- s.expiredCh <- runner
- }(runner)
- runner.refMu.Unlock()
- continue
- }
- s.loadedMu.Lock()
- slog.Debug("got lock to unload", "modelPath", runner.modelPath)
- finished := runner.waitForVRAMRecovery()
- runner.unload()
- delete(s.loaded, runner.modelPath)
- s.loadedMu.Unlock()
- slog.Debug("runner released", "modelPath", runner.modelPath)
- runner.refMu.Unlock()
- <-finished
- slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
- s.unloadedCh <- struct{}{}
- }
- }
- }
- // Complete the pending request and send the runner back to the requester
- // Wires up a finished event after the request context is completed
- // Updates session duration, and resets expiration timer
- func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
- runner.refMu.Lock()
- defer runner.refMu.Unlock()
- runner.refCount++
- if runner.expireTimer != nil {
- runner.expireTimer.Stop()
- runner.expireTimer = nil
- }
- if pending.sessionDuration != nil {
- runner.sessionDuration = pending.sessionDuration.Duration
- }
- pending.successCh <- runner
- go func() {
- <-pending.ctx.Done()
- slog.Debug("context for request finished")
- finished <- pending
- }()
- }
- func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
- if numParallel < 1 {
- numParallel = 1
- }
- sessionDuration := envconfig.KeepAlive
- if req.sessionDuration != nil {
- sessionDuration = req.sessionDuration.Duration
- }
- llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
- if err != nil {
- // some older models are not compatible with newer versions of llama.cpp
- // show a generalized compatibility error until there is a better way to
- // check for model compatibility
- if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
- err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
- }
- slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
- req.errCh <- err
- return
- }
- runner := &runnerRef{
- model: req.model,
- modelPath: req.model.ModelPath,
- llama: llama,
- Options: &req.opts,
- sessionDuration: sessionDuration,
- gpus: gpus,
- estimatedVRAM: llama.EstimatedVRAM(),
- estimatedTotal: llama.EstimatedTotal(),
- loading: true,
- refCount: 1,
- }
- runner.numParallel = numParallel
- runner.refMu.Lock()
- s.loadedMu.Lock()
- s.loaded[req.model.ModelPath] = runner
- slog.Info("loaded runners", "count", len(s.loaded))
- s.loadedMu.Unlock()
- go func() {
- defer runner.refMu.Unlock()
- if err = llama.WaitUntilRunning(req.ctx); err != nil {
- slog.Error("error loading llama server", "error", err)
- runner.refCount--
- req.errCh <- err
- slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
- s.expiredCh <- runner
- return
- }
- slog.Debug("finished setting up runner", "model", req.model.ModelPath)
- runner.loading = false
- go func() {
- <-req.ctx.Done()
- slog.Debug("context for request finished")
- s.finishedReqCh <- req
- }()
- req.successCh <- runner
- }()
- }
- func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
- type predKey struct {
- Library string
- ID string
- }
- predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
- s.loadedMu.Lock()
- for _, r := range s.loaded {
- r.refMu.Lock()
- if r.llama != nil {
- for _, gpu := range allGpus {
- predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
- }
- } else {
- slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
- }
- r.refMu.Unlock()
- }
- s.loadedMu.Unlock()
- // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
- for i := range allGpus {
- if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
- slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
- if p > allGpus[i].TotalMemory {
- // Shouldn't happen
- slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
- allGpus[i].FreeMemory = 0
- } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
- // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
- // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
- // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
- allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
- }
- slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
- }
- }
- }
- // While models are loading the VRAM consumption numbers will be indeterminate, so we have
- // to avoid scheduling another model on the same GPU(s) that haven't stabilized.
- // This routine returns the set of GPUs that do not have an active loading model.
- // If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
- func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
- ret := append(gpu.GpuInfoList{}, allGpus...)
- s.loadedMu.Lock()
- defer s.loadedMu.Unlock()
- for _, runner := range s.loaded {
- if runner.loading {
- slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
- for _, busyGPU := range runner.gpus {
- for i := range ret {
- if ret[i].ID == busyGPU.ID {
- ret = append(ret[:i], ret[i+1:]...)
- break
- }
- }
- }
- }
- }
- return ret
- }
- // TODO consolidate sched_types.go
- type runnerRef struct {
- refMu sync.Mutex
- // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
- refCount uint // prevent unloading if > 0
- // unloading bool // set to true when we are trying to unload the runner
- llama llm.LlamaServer
- loading bool // True only during initial load, then false forever
- gpus gpu.GpuInfoList // Recorded at time of provisioning
- estimatedVRAM uint64
- estimatedTotal uint64
- sessionDuration time.Duration
- expireTimer *time.Timer
- expiresAt time.Time
- model *Model
- modelPath string
- numParallel int
- *api.Options
- }
- // The refMu must already be held when calling unload
- func (runner *runnerRef) unload() {
- if runner.expireTimer != nil {
- runner.expireTimer.Stop()
- runner.expireTimer = nil
- }
- if runner.llama != nil {
- runner.llama.Close()
- }
- runner.model = nil
- runner.llama = nil
- runner.Options = nil
- runner.gpus = nil
- }
- func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
- slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
- runner.refMu.Lock()
- defer runner.refMu.Unlock()
- timeout := 10 * time.Second
- if runner.loading {
- timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
- }
- if runner.Options == nil {
- return true
- }
- // Don't reload runner if num_gpu=-1 was provided
- optsExisting := runner.Options.Runner
- optsNew := req.opts.Runner
- if optsNew.NumGPU < 0 {
- optsExisting.NumGPU = -1
- optsNew.NumGPU = -1
- }
- // Normalize the NumCtx for parallelism
- optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
- ctx, cancel := context.WithTimeout(ctx, timeout)
- defer cancel()
- if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
- !reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
- !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
- runner.llama.Ping(ctx) != nil {
- return true
- }
- return false
- }
- // Free memory reporting on GPUs can lag for a while even after the runner
- // exits, so we have to keep checking until we see the available memory recover,
- // otherwise subsequent model loads will get far less layers loaded or worse
- // case, may completely fall back to CPU mode.
- // This routine must be called before the runner unloads so it can establish
- // a before and after GPU memory allocation. The returned channel
- // will be notified when we're done waiting, or have timed out and should
- // proceed anyway
- func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
- finished := make(chan interface{}, 1)
- // CPU or Metal don't need checking, so no waiting required
- // windows can page VRAM, only cuda currently can report accurate used vram usage
- if len(runner.gpus) == 0 ||
- (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
- (runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
- finished <- struct{}{}
- return finished
- }
- start := time.Now()
- // Establish a baseline before we unload
- gpusBefore := gpu.GetGPUInfo()
- var totalMemoryBefore, freeMemoryBefore uint64
- for _, gpu := range gpusBefore {
- totalMemoryBefore += gpu.TotalMemory
- freeMemoryBefore += gpu.FreeMemory
- }
- go func() {
- expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
- ticker := time.NewTicker(250 * time.Millisecond)
- defer ticker.Stop()
- for {
- <-ticker.C
- if time.Now().After(expiresAt) {
- slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
- finished <- struct{}{}
- }
- // Query GPUs, look for free to go back up
- gpusNow := gpu.GetGPUInfo()
- var totalMemoryNow, freeMemoryNow uint64
- for _, gpu := range gpusNow {
- totalMemoryNow += gpu.TotalMemory
- freeMemoryNow += gpu.FreeMemory
- }
- // If we're within ~80% of the estimated memory usage recovered, bail out
- if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
- slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
- finished <- struct{}{}
- return
- }
- }
- }()
- return finished
- }
- type ByDuration []*runnerRef
- func (a ByDuration) Len() int { return len(a) }
- func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
- func (a ByDuration) Less(i, j int) bool {
- // uint64 to turn negative time (never unload) to largest
- return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
- }
- // TODO - future consideration to pick runners based on size
- // type BySize []*runnerRef
- // func (a BySize) Len() int { return len(a) }
- // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
- // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
- // pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits
- // If the model can not be fit fully within the available GPU(s) nil is returned
- // If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
- // opts.NumCtx accordingly
- func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
- var estimatedVRAM uint64
- var numParallelToTry []int
- if *numParallel <= 0 {
- // If no specific parallel setting was provided, try larger then smaller, always end with 1
- numParallelToTry = append(numParallelToTry, defaultParallel, 1)
- } else {
- numParallelToTry = []int{*numParallel}
- }
- for _, gl := range gpus.ByLibrary() {
- var ok bool
- sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
- // TODO - potentially sort by performance capability, existing models loaded, etc.
- // TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
- // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
- sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
- // First attempt to fit the model into a single GPU
- for _, p := range numParallelToTry {
- req.opts.NumCtx = req.origNumCtx * p
- if !envconfig.SchedSpread {
- for _, g := range sgl {
- if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
- slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
- *numParallel = p
- return []gpu.GpuInfo{g}
- }
- }
- }
- }
- // TODO future refinements
- // - if multiple Libraries, see if any single GPU in any Library will fit
- // - try subsets of GPUs instead of just falling back to 1 or all in a family
- // Now try all the GPUs
- for _, p := range numParallelToTry {
- req.opts.NumCtx = req.origNumCtx * p
- if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
- slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
- *numParallel = p
- return sgl
- }
- }
- }
- return nil
- }
- // findRunnerToUnload finds a runner to unload to make room for a new model
- func (s *Scheduler) findRunnerToUnload() *runnerRef {
- s.loadedMu.Lock()
- runnerList := make([]*runnerRef, 0, len(s.loaded))
- for _, r := range s.loaded {
- runnerList = append(runnerList, r)
- }
- s.loadedMu.Unlock()
- if len(runnerList) == 0 {
- slog.Debug("no loaded runner to unload")
- return nil
- }
- // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
- // e.g., if we have multiple options, will one make room for the request?
- sort.Sort(ByDuration(runnerList))
- // First try to find a runner that's already idle
- for _, runner := range runnerList {
- runner.refMu.Lock()
- rc := runner.refCount
- runner.refMu.Unlock()
- if rc == 0 {
- slog.Debug("found an idle runner to unload")
- return runner
- }
- }
- // None appear idle, just wait for the one with the shortest duration
- slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
- return runnerList[0]
- }
- func (s *Scheduler) unloadAllRunners() {
- s.loadedMu.Lock()
- defer s.loadedMu.Unlock()
- for model, runner := range s.loaded {
- if runner.llama != nil {
- slog.Debug("shutting down runner", "model", model)
- runner.llama.Close()
- }
- }
- }
- // If other runners are loaded, make sure the pending request will fit in system memory
- // If not, pick a runner to unload, else return nil and the request can be loaded
- func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
- slog.Debug("evaluating if CPU model load will fit in available system memory")
- estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
- if estimate.TotalSize <= gpus[0].FreeMemory {
- slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
- return nil
- }
- // TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
- return s.findRunnerToUnload()
- }
|