1234567891011121314151617181920212223242526272829303132333435363738 |
- import { Ollama } from "ollama-node";
- import { readFile } from "fs/promises";
- async function main() {
- const ollama = new Ollama();
- // Set the system prompt to prepare the model to receive a prompt and a schema and set some rules for the output.
- const systemprompt = `You will be given a text along with a prompt and a schema. You will have to extract the information requested in the prompt from the text and generate output in JSON observing the schema provided. If the schema shows a type of integer or number, you must only show a integer for that field. A string should always be a valid string. If a value is unknown, leave it empty. Output the JSON with extra spaces to ensure that it pretty prints.`
- const schema = {
- "people": [{
- "name": {
- "type": "string",
- "description": "Name of the person"
- },
- "title": {
- "type": "string",
- "description": "Title of the person"
- }
- }],
- }
- // Depending on the model chosen, you may be limited by the size of the context window, so limit the context to 2000 words.
- const textcontent = await readFile("./wp.txt", "utf-8").then((text) => text.split(" ").slice(0, 2000).join(" "));
- // Specific instructions for this task
- const prompt = `Review the source text and determine the 10 most important people to focus on. Then extract the name and title for those people. Output should be in JSON.\n\nSchema: \n${JSON.stringify(schema, null, 2)}\n\nSource Text:\n${textcontent}`
- await ollama.setModel("neural-chat");
- ollama.setSystemPrompt(systemprompt);
- // setJSONFormat is the equivalent of setting 'format: json' in the API
- ollama.setJSONFormat(true);
- await ollama.streamingGenerate(prompt, (word) => { process.stdout.write(word) })
- }
- main();
|