1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594 |
- # 2021 September 13
- #
- # The author disclaims copyright to this source code. In place of
- # a legal notice, here is a blessing:
- #
- # May you do good and not evil.
- # May you find forgiveness for yourself and forgive others.
- # May you share freely, never taking more than you give.
- #
- #***********************************************************************
- #
- # The focus of this file is testing the r-tree extension.
- #
- if {![info exists testdir]} {
- set testdir [file join [file dirname [info script]] .. .. test]
- }
- source [file join [file dirname [info script]] rtree_util.tcl]
- source $testdir/tester.tcl
- set testprefix rtreedoc
- ifcapable !rtree {
- finish_test
- return
- }
- # This command returns the number of columns in table $tbl within the
- # database opened by database handle $db
- proc column_count {db tbl} {
- set nCol 0
- $db eval "PRAGMA table_info = $tbl" { incr nCol }
- return $nCol
- }
- proc column_name_list {db tbl} {
- set lCol [list]
- $db eval "PRAGMA table_info = $tbl" {
- lappend lCol $name
- }
- return $lCol
- }
- unset -nocomplain res
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-1
- # EVIDENCE-OF: R-15060-13876 A 1-dimensional R*Tree thus has 3 columns.
- do_execsql_test 1.1.1 { CREATE VIRTUAL TABLE rt1 USING rtree(id, x1,x2) }
- do_test 1.1.2 { column_count db rt1 } 3
- # EVIDENCE-OF: R-19353-19546 A 2-dimensional R*Tree has 5 columns.
- do_execsql_test 1.2.1 { CREATE VIRTUAL TABLE rt2 USING rtree(id,x1,x2, y1,y2) }
- do_test 1.2.2 { column_count db rt2 } 5
- # EVIDENCE-OF: R-13615-19528 A 3-dimensional R*Tree has 7 columns.
- do_execsql_test 1.3.1 {
- CREATE VIRTUAL TABLE rt3 USING rtree(id, x1,x2, y1,y2, z1,z2)
- }
- do_test 1.3.2 { column_count db rt3 } 7
- # EVIDENCE-OF: R-53479-41922 A 4-dimensional R*Tree has 9 columns.
- do_execsql_test 1.4.1 {
- CREATE VIRTUAL TABLE rt4 USING rtree(id, x1,x2, y1,y2, z1,z2, v1,v2)
- }
- do_test 1.4.2 { column_count db rt4 } 9
- # EVIDENCE-OF: R-13981-28768 And a 5-dimensional R*Tree has 11 columns.
- do_execsql_test 1.5.1 {
- CREATE VIRTUAL TABLE rt5 USING rtree(id, x1,x2, y1,y2, z1,z2, v1,v2, w1,w2)
- }
- do_test 1.5.2 { column_count db rt5 } 11
- # Attempt to create r-tree tables with 6 and 7 dimensions.
- #
- # EVIDENCE-OF: R-61533-25862 The SQLite R*Tree implementation does not
- # support R*Trees wider than 5 dimensions.
- do_catchsql_test 2.1.1 {
- CREATE VIRTUAL TABLE rt6 USING rtree(
- id, x1,x2, y1,y2, z1,z2, v1,v2, w1,w2, a1,a2
- )
- } {1 {Too many columns for an rtree table}}
- do_catchsql_test 2.1.2 {
- CREATE VIRTUAL TABLE rt6 USING rtree(
- id, x1,x2, y1,y2, z1,z2, v1,v2, w1,w2, a1,a2, b1, b2
- )
- } {1 {Too many columns for an rtree table}}
- # Attempt to create r-tree tables with no columns, a single column, or
- # an even number of columns. This and the tests above establish that:
- #
- # EVIDENCE-OF: R-16717-50504 Each R*Tree index is a virtual table with
- # an odd number of columns between 3 and 11.
- foreach {tn cols err} {
- 1 "" "Too few columns for an rtree table"
- 2 "x" "Too few columns for an rtree table"
- 3 "x,y" "Too few columns for an rtree table"
- 4 "a,b,c,d" "Wrong number of columns for an rtree table"
- 5 "a,b,c,d,e,f" "Wrong number of columns for an rtree table"
- 6 "a,b,c,d,e,f,g,h" "Wrong number of columns for an rtree table"
- 7 "a,b,c,d,e,f,g,h,i,j" "Wrong number of columns for an rtree table"
- 8 "a,b,c,d,e,f,g,h,i,j,k,l" "Too many columns for an rtree table"
- } {
- do_catchsql_test 3.$tn "
- CREATE VIRTUAL TABLE xyz USING rtree($cols)
- " [list 1 $err]
- }
- # EVIDENCE-OF: R-17874-21123 The first column of an SQLite R*Tree is
- # similar to an integer primary key column of a normal SQLite table.
- #
- # EVIDENCE-OF: R-46619-65417 The first column is always a 64-bit signed
- # integer primary key.
- #
- # EVIDENCE-OF: R-46866-24036 It may only store a 64-bit signed integer
- # value.
- #
- # EVIDENCE-OF: R-00250-64843 If an attempt is made to insert any other
- # non-integer value into this column, the r-tree module silently
- # converts it to an integer before writing it into the database.
- #
- do_execsql_test 4.0 { CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2) }
- foreach {tn val res} {
- 1 10 10
- 2 10.6 10
- 3 10.99 10
- 4 '123' 123
- 5 X'313233' 123
- 6 -10 -10
- 7 9223372036854775807 9223372036854775807
- 8 -9223372036854775808 -9223372036854775808
- 9 '9223372036854775807' 9223372036854775807
- 10 '-9223372036854775808' -9223372036854775808
- 11 'hello+world' 0
- } {
- do_execsql_test 4.$tn.1 "
- DELETE FROM rt;
- INSERT INTO rt VALUES($val, 10, 20);
- "
- do_execsql_test 4.$tn.2 {
- SELECT typeof(id), id FROM rt
- } [list integer $res]
- }
- # EVIDENCE-OF: R-15544-29079 Inserting a NULL value into this column
- # causes SQLite to automatically generate a new unique primary key
- # value.
- do_execsql_test 5.1 {
- DELETE FROM rt;
- INSERT INTO rt VALUES(100, 1, 2);
- INSERT INTO rt VALUES(NULL, 1, 2);
- }
- do_execsql_test 5.2 { SELECT id FROM rt } {100 101}
- do_execsql_test 5.3 {
- INSERT INTO rt VALUES(9223372036854775807, 1, 2);
- INSERT INTO rt VALUES(NULL, 1, 2);
- }
- do_execsql_test 5.4 {
- SELECT count(*) FROM rt;
- } 4
- do_execsql_test 5.5 {
- SELECT id IN(100, 101, 9223372036854775807) FROM rt ORDER BY 1;
- } {0 1 1 1}
- # EVIDENCE-OF: R-64317-38978 The other columns are pairs, one pair per
- # dimension, containing the minimum and maximum values for that
- # dimension, respectively.
- #
- # Show this by observing that attempts to insert rows with max>min fail.
- #
- do_execsql_test 6.1 {
- CREATE VIRTUAL TABLE rtF USING rtree(id, x1,x2, y1,y2);
- CREATE VIRTUAL TABLE rtI USING rtree_i32(id, x1,x2, y1,y2, z1,z2);
- }
- foreach {tn x1 x2 y1 y2 ok} {
- 1 10.3 20.1 30.9 40.2 1
- 2 10.3 20.1 40.2 30.9 0
- 3 10.3 30.9 20.1 40.2 1
- 4 20.1 10.3 30.9 40.2 0
- } {
- do_test 6.2.$tn {
- catch { db eval { INSERT INTO rtF VALUES(NULL, $x1, $x2, $y1, $y2) } }
- } [expr $ok==0]
- }
- foreach {tn x1 x2 y1 y2 z1 z2 ok} {
- 1 10 20 30 40 50 60 1
- 2 10 20 30 40 60 50 0
- 3 10 20 30 50 40 60 1
- 4 10 20 40 30 50 60 0
- 5 10 30 20 40 50 60 1
- 6 20 10 30 40 50 60 0
- } {
- do_test 6.3.$tn {
- catch { db eval { INSERT INTO rtI VALUES(NULL,$x1,$x2,$y1,$y2,$z1,$z2) } }
- } [expr $ok==0]
- }
- # EVIDENCE-OF: R-08054-15429 The min/max-value pair columns are stored
- # as 32-bit floating point values for "rtree" virtual tables or as
- # 32-bit signed integers in "rtree_i32" virtual tables.
- #
- # Show this by showing that large values are rounded in ways consistent
- # with those two 32-bit types.
- do_execsql_test 7.1 {
- DELETE FROM rtI;
- INSERT INTO rtI VALUES(
- 0, -2000000000, 2000000000, -5000000000, 5000000000,
- -1000000000000, 10000000000000
- );
- SELECT * FROM rtI;
- } {
- 0 -2000000000 2000000000 -705032704 705032704 727379968 1316134912
- }
- do_execsql_test 7.2 {
- DELETE FROM rtF;
- INSERT INTO rtF VALUES(
- 0, -2000000000, 2000000000,
- -1000000000000, 10000000000000
- );
- SELECT * FROM rtF;
- } {
- 0 -2000000000.0 2000000000.0 -1000000126976.0 10000000876544.0
- }
- # EVIDENCE-OF: R-47371-54529 Unlike regular SQLite tables which can
- # store data in a variety of datatypes and formats, the R*Tree rigidly
- # enforce these storage types.
- #
- # EVIDENCE-OF: R-39153-14977 If any other type of value is inserted into
- # such a column, the r-tree module silently converts it to the required
- # type before writing the new record to the database.
- do_execsql_test 8.1 {
- DELETE FROM rtI;
- INSERT INTO rtI VALUES(
- 1, 'hello world', X'616263', NULL, 44.5, 1000, 9999.9999
- );
- SELECT * FROM rtI;
- } {
- 1 0 0 0 44 1000 9999
- }
- do_execsql_test 8.2 {
- SELECT
- typeof(x1), typeof(x2), typeof(y1), typeof(y2), typeof(z1), typeof(z2)
- FROM rtI
- } {integer integer integer integer integer integer}
- do_execsql_test 8.3 {
- DELETE FROM rtF;
- INSERT INTO rtF VALUES(
- 1, 'hello world', X'616263', NULL, 44
- );
- SELECT * FROM rtF;
- } {
- 1 0.0 0.0 0.0 44.0
- }
- do_execsql_test 8.4 {
- SELECT
- typeof(x1), typeof(x2), typeof(y1), typeof(y2)
- FROM rtF
- } {real real real real}
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3.1 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-2
- reset_db
- foreach {tn name clist} {
- 1 t1 "id x1 x2"
- 2 t2 "id x1 x2 y1 y2 z1 z2"
- } {
- # EVIDENCE-OF: R-15142-18077 A new R*Tree index is created as follows:
- # CREATE VIRTUAL TABLE <name> USING rtree(<column-names>);
- do_execsql_test 1.$tn.1 "
- CREATE VIRTUAL TABLE $name USING rtree([join $clist ,])
- "
- # EVIDENCE-OF: R-51698-09302 The <name> is the name your
- # application chooses for the R*Tree index and <column-names> is a
- # comma separated list of between 3 and 11 columns.
- do_test 1.$tn.2 { column_name_list db $name } [list {*}$clist]
- # EVIDENCE-OF: R-50130-53472 The virtual <name> table creates
- # three shadow tables to actually store its content.
- do_execsql_test 1.$tn.3 {
- SELECT count(*) FROM sqlite_schema
- } [expr 1+3]
- # EVIDENCE-OF: R-45256-35998 The names of these shadow tables are:
- # <name>_node <name>_rowid <name>_parent
- do_execsql_test 1.$tn.4 {
- SELECT name FROM sqlite_schema WHERE rootpage>0 ORDER BY 1
- } [list ${name}_node ${name}_parent ${name}_rowid]
- do_execsql_test 1.$tn.5 "DROP TABLE $name"
- }
- # EVIDENCE-OF: R-11241-54478 As an example, consider creating a
- # two-dimensional R*Tree index for use in spatial queries: CREATE
- # VIRTUAL TABLE demo_index USING rtree( id, -- Integer primary key minX,
- # maxX, -- Minimum and maximum X coordinate minY, maxY -- Minimum and
- # maximum Y coordinate );
- do_execsql_test 2.0 {
- CREATE VIRTUAL TABLE demo_index USING rtree(
- id, -- Integer primary key
- minX, maxX, -- Minimum and maximum X coordinate
- minY, maxY -- Minimum and maximum Y coordinate
- );
- INSERT INTO demo_index VALUES(1,2,3,4,5);
- INSERT INTO demo_index VALUES(6,7,8,9,10);
- }
- # EVIDENCE-OF: R-02287-33529 The shadow tables are ordinary SQLite data
- # tables.
- #
- # Ordinary tables. With ordinary sqlite_schema entries.
- do_execsql_test 2.1 {
- SELECT type, name, sql FROM sqlite_schema WHERE sql NOT LIKE '%virtual%'
- } {
- table demo_index_rowid
- {CREATE TABLE "demo_index_rowid"(rowid INTEGER PRIMARY KEY,nodeno)}
- table demo_index_node
- {CREATE TABLE "demo_index_node"(nodeno INTEGER PRIMARY KEY,data)}
- table demo_index_parent
- {CREATE TABLE "demo_index_parent"(nodeno INTEGER PRIMARY KEY,parentnode)}
- }
- # EVIDENCE-OF: R-10863-13089 You can query them directly if you like,
- # though this unlikely to reveal anything particularly useful.
- #
- # Querying:
- do_execsql_test 2.2 {
- SELECT count(*) FROM demo_index_node;
- SELECT count(*) FROM demo_index_rowid;
- SELECT count(*) FROM demo_index_parent;
- } {1 2 0}
- # EVIDENCE-OF: R-05650-46070 And you can UPDATE, DELETE, INSERT or even
- # DROP the shadow tables, though doing so will corrupt your R*Tree
- # index.
- do_execsql_test 2.3 {
- DELETE FROM demo_index_rowid;
- INSERT INTO demo_index_parent VALUES(2, 3);
- UPDATE demo_index_node SET data = 'hello world'
- }
- do_catchsql_test 2.4 {
- SELECT * FROM demo_index WHERE minX>10 AND maxX<30
- } {1 {database disk image is malformed}}
- do_execsql_test 2.5 {
- DROP TABLE demo_index_rowid
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3.1.1 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-3
- reset_db
- # EVIDENCE-OF: R-44253-50720 In the argments to "rtree" in the CREATE
- # VIRTUAL TABLE statement, the names of the columns are taken from the
- # first token of each argument. All subsequent tokens within each
- # argument are silently ignored.
- #
- foreach {tn cols lCol} {
- 1 {(id TEXT, x1 TEXT, x2 TEXT, y1 TEXT, y2 TEXT)} {id x1 x2 y1 y2}
- 2 {(id TEXT, x1 UNIQUE, x2 TEXT, y1 NOT NULL, y2 TEXT)} {id x1 x2 y1 y2}
- 3 {(id, x1 DEFAULT 4, x2 TEXT, y1 NOT NULL, y2 TEXT)} {id x1 x2 y1 y2}
- } {
- do_execsql_test 1.$tn.1 " CREATE VIRTUAL TABLE abc USING rtree $cols "
- do_test 1.$tn.2 { column_name_list db abc } $lCol
- # EVIDENCE-OF: R-52032-06717 This means, for example, that if you try to
- # give a column a type affinity or add a constraint such as UNIQUE or
- # NOT NULL or DEFAULT to a column, those extra tokens are accepted as
- # valid, but they do not change the behavior of the rtree.
- # Show there are no UNIQUE constraints
- do_execsql_test 1.$tn.3 {
- INSERT INTO abc VALUES(1, 10.0, 20.0, 10.0, 20.0);
- INSERT INTO abc VALUES(2, 10.0, 20.0, 10.0, 20.0);
- }
- # Show the default values have not been modified
- do_execsql_test 1.$tn.4 {
- INSERT INTO abc DEFAULT VALUES;
- SELECT * FROM abc WHERE rowid NOT IN (1,2)
- } {3 0.0 0.0 0.0 0.0}
- # Show that there are no NOT NULL constraints
- do_execsql_test 1.$tn.5 {
- INSERT INTO abc VALUES(NULL, NULL, NULL, NULL, NULL);
- SELECT * FROM abc WHERE rowid NOT IN (1,2,3)
- } {4 0.0 0.0 0.0 0.0}
- # EVIDENCE-OF: R-06893-30579 In an RTREE virtual table, the first column
- # always has a type affinity of INTEGER and all other data columns have
- # a type affinity of REAL.
- do_execsql_test 1.$tn.5 {
- INSERT INTO abc VALUES('5', '5', '5', '5', '5');
- SELECT * FROM abc WHERE rowid NOT IN (1,2,3,4)
- } {5 5.0 5.0 5.0 5.0}
- do_execsql_test 1.$tn.6 {
- SELECT type FROM pragma_table_info('abc') ORDER BY cid
- } {INT REAL REAL REAL REAL}
- do_execsql_test 1.$tn.7 " CREATE VIRTUAL TABLE abc2 USING rtree_i32 $cols "
- # EVIDENCE-OF: R-06224-52418 In an RTREE_I32 virtual table, all columns
- # have type affinity of INTEGER.
- do_execsql_test 1.$tn.8 {
- INSERT INTO abc2 VALUES('6.0', '6.0', '6.0', '6.0', '6.0');
- SELECT * FROM abc2
- } {6 6 6 6 6}
- do_execsql_test 1.$tn.9 {
- SELECT type FROM pragma_table_info('abc2') ORDER BY cid
- } {INT INT INT INT INT}
- do_execsql_test 1.$tn.10 {
- DROP TABLE abc;
- DROP TABLE abc2;
- }
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3.2 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-4
- reset_db
- # EVIDENCE-OF: R-36195-31555 The usual INSERT, UPDATE, and DELETE
- # commands work on an R*Tree index just like on regular tables.
- #
- # Create a regular table and an rtree table. Perform INSERT, UPDATE and
- # DELETE operations, then observe that the contents of the two tables
- # are identical.
- do_execsql_test 1.0 {
- CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2);
- CREATE TABLE t1(id INTEGER PRIMARY KEY, x1 REAL, x2 REAL);
- }
- foreach {tn sql} {
- 1 "INSERT INTO %TBL% VALUES(5, 11,12)"
- 2 "INSERT INTO %TBL% VALUES(11, -11,14.5)"
- 3 "UPDATE %TBL% SET x1=-99 WHERE id=11"
- 4 "DELETE FROM %TBL% WHERE x2=14.5"
- 5 "DELETE FROM %TBL%"
- } {
- set sql1 [string map {%TBL% rt} $sql]
- set sql2 [string map {%TBL% t1} $sql]
- do_execsql_test 1.$tn.0 $sql1
- do_execsql_test 1.$tn.1 $sql2
- set data1 [execsql {SELECT * FROM rt ORDER BY 1}]
- set data2 [execsql {SELECT * FROM t1 ORDER BY 1}]
- set res [expr {$data1==$data2}]
- do_test 1.$tn.2 {set res} 1
- }
- # EVIDENCE-OF: R-56987-45305
- do_execsql_test 2.0 {
- CREATE VIRTUAL TABLE demo_index USING rtree(
- id, -- Integer primary key
- minX, maxX, -- Minimum and maximum X coordinate
- minY, maxY -- Minimum and maximum Y coordinate
- );
- INSERT INTO demo_index VALUES
- (28215, -80.781227, -80.604706, 35.208813, 35.297367),
- (28216, -80.957283, -80.840599, 35.235920, 35.367825),
- (28217, -80.960869, -80.869431, 35.133682, 35.208233),
- (28226, -80.878983, -80.778275, 35.060287, 35.154446),
- (28227, -80.745544, -80.555382, 35.130215, 35.236916),
- (28244, -80.844208, -80.841988, 35.223728, 35.225471),
- (28262, -80.809074, -80.682938, 35.276207, 35.377747),
- (28269, -80.851471, -80.735718, 35.272560, 35.407925),
- (28270, -80.794983, -80.728966, 35.059872, 35.161823),
- (28273, -80.994766, -80.875259, 35.074734, 35.172836),
- (28277, -80.876793, -80.767586, 35.001709, 35.101063),
- (28278, -81.058029, -80.956375, 35.044701, 35.223812),
- (28280, -80.844208, -80.841972, 35.225468, 35.227203),
- (28282, -80.846382, -80.844193, 35.223972, 35.225655);
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3.3 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-5
- do_execsql_test 1.0 {
- INSERT INTO demo_index
- SELECT NULL, minX, maxX, minY+0.2, maxY+0.2 FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX+0.2, maxX+0.2, minY, maxY FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX, maxX, minY+0.4, maxY+0.4 FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX+0.4, maxX+0.4, minY, maxY FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX, maxX, minY+0.8, maxY+0.8 FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX+0.8, maxX+0.8, minY, maxY FROM demo_index;
- SELECT count(*) FROM demo_index;
- } {896}
- proc do_vmstep_test {tn sql expr} {
- execsql $sql
- set step [db status vmstep]
- do_test $tn.$step "expr {[subst $expr]}" 1
- }
- # EVIDENCE-OF: R-45880-07724 Any valid query will work against an R*Tree
- # index.
- do_execsql_test 1.1.0 {
- CREATE TABLE demo_tbl AS SELECT * FROM demo_index;
- }
- foreach {tn sql} {
- 1 {SELECT * FROM %TBL% ORDER BY 1}
- 2 {SELECT max(minX) FROM %TBL% ORDER BY 1}
- 3 {SELECT max(minX) FROM %TBL% GROUP BY round(minY) ORDER BY 1}
- } {
- set sql1 [string map {%TBL% demo_index} $sql]
- set sql2 [string map {%TBL% demo_tbl} $sql]
- do_execsql_test 1.1.$tn $sql1 [execsql $sql2]
- }
- # EVIDENCE-OF: R-60814-18273 The R*Tree implementation just makes some
- # kinds of queries especially efficient.
- #
- # The second query is more efficient than the first.
- do_vmstep_test 1.2.1 {SELECT * FROM demo_index WHERE +rowid=28269} {$step>2000}
- do_vmstep_test 1.2.2 {SELECT * FROM demo_index WHERE rowid=28269} {$step<100}
- # EVIDENCE-OF: R-37800-50174 Queries against the primary key are
- # efficient: SELECT * FROM demo_index WHERE id=28269;
- do_vmstep_test 2.2 { SELECT * FROM demo_index WHERE id=28269 } {$step < 100}
- # EVIDENCE-OF: R-35847-18866 The big reason for using an R*Tree is so
- # that you can efficiently do range queries against the coordinate
- # ranges.
- #
- # EVIDENCE-OF: R-49927-54202
- do_vmstep_test 2.3 {
- SELECT id FROM demo_index
- WHERE minX<=-80.77470 AND maxX>=-80.77470
- AND minY<=35.37785 AND maxY>=35.37785;
- } {$step < 100}
- # EVIDENCE-OF: R-12823-37176 The query above will quickly locate all
- # zipcodes that contain the SQLite main office in their bounding box,
- # even if the R*Tree contains many entries.
- #
- do_execsql_test 2.4 {
- SELECT id FROM demo_index
- WHERE minX<=-80.77470 AND maxX>=-80.77470
- AND minY<=35.37785 AND maxY>=35.37785;
- } {
- 28322 28269
- }
- # EVIDENCE-OF: R-07351-00257 For example, to find all zipcode bounding
- # boxes that overlap with the 28269 zipcode: SELECT A.id FROM demo_index
- # AS A, demo_index AS B WHERE A.maxX>=B.minX AND A.minX<=B.maxX
- # AND A.maxY>=B.minY AND A.minY<=B.maxY AND B.id=28269;
- #
- # Also check that it is efficient
- #
- # EVIDENCE-OF: R-39094-01937 This second query will find both 28269
- # entry (since every bounding box overlaps with itself) and also other
- # zipcode that is close enough to 28269 that their bounding boxes
- # overlap.
- #
- # 28269 is there in the result.
- #
- do_vmstep_test 2.5.1 {
- SELECT A.id FROM demo_index AS A, demo_index AS B
- WHERE A.maxX>=B.minX AND A.minX<=B.maxX
- AND A.maxY>=B.minY AND A.minY<=B.maxY
- AND B.id=28269
- } {$step < 100}
- do_execsql_test 2.5.2 {
- SELECT A.id FROM demo_index AS A, demo_index AS B
- WHERE A.maxX>=B.minX AND A.minX<=B.maxX
- AND A.maxY>=B.minY AND A.minY<=B.maxY
- AND B.id=28269 ORDER BY +A.id;
- } {
- 28215
- 28216
- 28262
- 28269
- 28286
- 28287
- 28291
- 28293
- 28298
- 28313
- 28320
- 28322
- 28336
- }
- # EVIDENCE-OF: R-02723-34107 Note that it is not necessary for all
- # coordinates in an R*Tree index to be constrained in order for the
- # index search to be efficient.
- #
- # EVIDENCE-OF: R-22490-27246 One might, for example, want to query all
- # objects that overlap with the 35th parallel: SELECT id FROM demo_index
- # WHERE maxY>=35.0 AND minY<=35.0;
- do_vmstep_test 2.6.1 {
- SELECT id FROM demo_index
- WHERE maxY>=35.0 AND minY<=35.0;
- } {$step < 100}
- do_execsql_test 2.6.2 {
- SELECT id FROM demo_index
- WHERE maxY>=35.0 AND minY<=35.0;
- } {}
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3.4 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-6
- reset_db
- # EVIDENCE-OF: R-08327-00674 By default, coordinates are stored in an
- # R*Tree using 32-bit floating point values.
- #
- # EVIDENCE-OF: R-22000-53613 The default virtual table ("rtree") stores
- # coordinates as single-precision (4-byte) floating point numbers.
- #
- # Show this by showing that rounding is consistent with 32-bit float
- # rounding.
- do_execsql_test 1.0 {
- CREATE VIRTUAL TABLE rt USING rtree(id, a,b);
- }
- do_execsql_test 1.1 {
- INSERT INTO rt VALUES(14, -1000000000000, 1000000000000);
- SELECT * FROM rt;
- } {14 -1000000126976.0 1000000126976.0}
- # EVIDENCE-OF: R-39127-51288 When a coordinate cannot be exactly
- # represented by a 32-bit floating point number, the lower-bound
- # coordinates are rounded down and the upper-bound coordinates are
- # rounded up.
- foreach {tn val} {
- 1 100000000000
- 2 200000000000
- 3 300000000000
- 4 400000000000
- 5 -100000000000
- 6 -200000000000
- 7 -300000000000
- 8 -400000000000
- } {
- set val [expr $val]
- do_execsql_test 2.$tn.0 {DELETE FROM rt}
- do_execsql_test 2.$tn.1 {INSERT INTO rt VALUES(23, $val, $val)}
- do_execsql_test 2.$tn.2 {
- SELECT $val>=a, $val<=b, a!=b FROM rt
- } {1 1 1}
- }
- do_execsql_test 3.0 {
- DROP TABLE rt;
- CREATE VIRTUAL TABLE rt USING rtree(id, x1,x2, y1,y2);
- }
- # EVIDENCE-OF: R-45870-62834 Thus, bounding boxes might be slightly
- # larger than specified, but will never be any smaller.
- foreach {tn x1 x2 y1 y2} {
- 1 100000000000 200000000000 300000000000 400000000000
- } {
- set val [expr $val]
- do_execsql_test 3.$tn.0 {DELETE FROM rt}
- do_execsql_test 3.$tn.1 {INSERT INTO rt VALUES(23, $x1, $x2, $y1, $y2)}
- do_execsql_test 3.$tn.2 {
- SELECT (x2-x1)*(y2-y1) >= ($x2-$x1)*($y2-$y1) FROM rt
- } {1}
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 3.5 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-7
- reset_db
- # EVIDENCE-OF: R-55979-39402 It is the nature of the Guttman R-Tree
- # algorithm that any write might radically restructure the tree, and in
- # the process change the scan order of the nodes.
- #
- # In the test below, the INSERT marked "THIS INSERT!!" does not affect
- # the results of queries with an ORDER BY, but does affect the results
- # of one without an ORDER BY. Therefore the INSERT changed the scan
- # order.
- do_execsql_test 1.0 {
- CREATE VIRTUAL TABLE rt USING rtree(id, minX, maxX);
- WITH s(i) AS (
- SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<51
- )
- INSERT INTO rt SELECT NULL, i%10, (i%10)+5 FROM s
- }
- do_execsql_test 1.1 { SELECT count(*) FROM rt_node } 1
- do_test 1.2 {
- set res1 [db eval {SELECT * FROM rt WHERE maxX < 30}]
- set res1o [db eval {SELECT * FROM rt WHERE maxX < 30 ORDER BY +id}]
- db eval { INSERT INTO rt VALUES(NULL, 50, 50) } ;# THIS INSERT!!
- set res2 [db eval {SELECT * FROM rt WHERE maxX < 30}]
- set res2o [db eval {SELECT * FROM rt WHERE maxX < 30 ORDER BY +id}]
- list [expr {$res1==$res2}] [expr {$res1o==$res2o}]
- } {0 1}
- do_execsql_test 1.3 { SELECT count(*) FROM rt_node } 3
- # EVIDENCE-OF: R-00683-48865 For this reason, it is not generally
- # possible to modify the R-Tree in the middle of a query of the R-Tree.
- # Attempts to do so will fail with a SQLITE_LOCKED "database table is
- # locked" error.
- #
- # SQLITE_LOCKED==6
- #
- do_test 1.4 {
- set nCnt 3
- db eval { SELECT * FROM rt WHERE minX>0 AND maxX<12 } {
- incr nCnt -1
- if {$nCnt==0} {
- set rc [catch {db eval {
- INSERT INTO rt VALUES(NULL, 51, 51);
- }} msg]
- set errorcode [db errorcode]
- break
- }
- }
- list $errorcode $rc $msg
- } {6 1 {database table is locked}}
- # EVIDENCE-OF: R-19740-29710 So, for example, suppose an application
- # runs one query against an R-Tree like this: SELECT id FROM demo_index
- # WHERE maxY>=35.0 AND minY<=35.0; Then for each "id" value
- # returned, suppose the application creates an UPDATE statement like the
- # following and binds the "id" value returned against the "?1"
- # parameter: UPDATE demo_index SET maxY=maxY+0.5 WHERE id=?1;
- #
- # EVIDENCE-OF: R-52919-32711 Then the UPDATE might fail with an
- # SQLITE_LOCKED error.
- do_execsql_test 2.0 {
- CREATE VIRTUAL TABLE demo_index USING rtree(
- id, -- Integer primary key
- minX, maxX, -- Minimum and maximum X coordinate
- minY, maxY -- Minimum and maximum Y coordinate
- );
- INSERT INTO demo_index VALUES
- (28215, -80.781227, -80.604706, 35.208813, 35.297367),
- (28216, -80.957283, -80.840599, 35.235920, 35.367825),
- (28217, -80.960869, -80.869431, 35.133682, 35.208233),
- (28226, -80.878983, -80.778275, 35.060287, 35.154446);
- }
- do_test 2.1 {
- db eval { SELECT id FROM demo_index WHERE maxY>=35.0 AND minY<=35.0 } {
- set rc [catch {
- db eval { UPDATE demo_index SET maxY=maxY+0.5 WHERE id=$id }
- } msg]
- set errorcode [db errorcode]
- break
- }
- list $errorcode $rc $msg
- } {6 1 {database table is locked}}
- # EVIDENCE-OF: R-32604-49843 Ordinary tables in SQLite are able to read
- # and write at the same time.
- #
- do_execsql_test 3.0 {
- CREATE TABLE x1(a INTEGER PRIMARY KEY, b, c);
- INSERT INTO x1 VALUES(1, 1, 1);
- INSERT INTO x1 VALUES(2, 2, 2);
- INSERT INTO x1 VALUES(3, 3, 3);
- INSERT INTO x1 VALUES(4, 4, 4);
- }
- do_test 3.1 {
- unset -nocomplain res
- set res [list]
- db eval { SELECT * FROM x1 } {
- lappend res $a $b $c
- switch -- $a {
- 1 {
- db eval { INSERT INTO x1 VALUES(5, 5, 5) }
- }
- 2 {
- db eval { UPDATE x1 SET c=20 WHERE a=2 }
- }
- 3 {
- db eval { DELETE FROM x1 WHERE c IN (3,4) }
- }
- }
- }
- set res
- } {1 1 1 2 2 2 3 3 3 5 5 5}
- do_execsql_test 3.2 {
- SELECT * FROM x1
- } {1 1 1 2 2 20 5 5 5}
- # EVIDENCE-OF: R-06177-00576 And R-Tree can appear to read and write at
- # the same time in some circumstances, if it can figure out how to
- # reliably run the query to completion before starting the update.
- #
- # In 8.2, it can, it 8.1, it cannot.
- do_test 8.1 {
- db eval { SELECT * FROM rt } {
- set rc [catch { db eval { INSERT INTO rt VALUES(53,53,53) } } msg]
- break;
- }
- list $rc $msg
- } {1 {database table is locked}}
- do_test 8.2 {
- db eval { SELECT * FROM rt ORDER BY +id } {
- set rc [catch { db eval { INSERT INTO rt VALUES(53,53,53) } } msg]
- break
- }
- list $rc $msg
- } {0 {}}
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 4 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-8
- reset_db
- # EVIDENCE-OF: R-21062-30088 For the example above, one might create an
- # auxiliary table as follows: CREATE TABLE demo_data( id INTEGER PRIMARY
- # KEY, -- primary key objname TEXT, -- name of the object objtype TEXT,
- # -- object type boundary BLOB -- detailed boundary of object );
- #
- # One might.
- #
- do_execsql_test 1.0 {
- CREATE TABLE demo_data(
- id INTEGER PRIMARY KEY, -- primary key
- objname TEXT, -- name of the object
- objtype TEXT, -- object type
- boundary BLOB -- detailed boundary of object
- );
- }
- do_execsql_test 1.1 {
- CREATE VIRTUAL TABLE demo_index USING rtree(
- id, -- Integer primary key
- minX, maxX, -- Minimum and maximum X coordinate
- minY, maxY -- Minimum and maximum Y coordinate
- );
- INSERT INTO demo_index VALUES
- (28215, -80.781227, -80.604706, 35.208813, 35.297367),
- (28216, -80.957283, -80.840599, 35.235920, 35.367825),
- (28217, -80.960869, -80.869431, 35.133682, 35.208233),
- (28226, -80.878983, -80.778275, 35.060287, 35.154446),
- (28227, -80.745544, -80.555382, 35.130215, 35.236916),
- (28244, -80.844208, -80.841988, 35.223728, 35.225471),
- (28262, -80.809074, -80.682938, 35.276207, 35.377747),
- (28269, -80.851471, -80.735718, 35.272560, 35.407925),
- (28270, -80.794983, -80.728966, 35.059872, 35.161823),
- (28273, -80.994766, -80.875259, 35.074734, 35.172836),
- (28277, -80.876793, -80.767586, 35.001709, 35.101063),
- (28278, -81.058029, -80.956375, 35.044701, 35.223812),
- (28280, -80.844208, -80.841972, 35.225468, 35.227203),
- (28282, -80.846382, -80.844193, 35.223972, 35.225655);
- INSERT INTO demo_index
- SELECT NULL, minX, maxX, minY+0.2, maxY+0.2 FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX+0.2, maxX+0.2, minY, maxY FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX, maxX, minY+0.4, maxY+0.4 FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX+0.4, maxX+0.4, minY, maxY FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX, maxX, minY+0.8, maxY+0.8 FROM demo_index;
- INSERT INTO demo_index
- SELECT NULL, minX+0.8, maxX+0.8, minY, maxY FROM demo_index;
- INSERT INTO demo_data(id) SELECT id FROM demo_index;
- SELECT count(*) FROM demo_index;
- } {896}
- set ::contained_in 0
- proc contained_in {args} {incr ::contained_in ; return 0}
- db func contained_in contained_in
- # EVIDENCE-OF: R-32671-43888 Then an efficient way to find the specific
- # ZIP code for the main SQLite office would be to run a query like this:
- # SELECT objname FROM demo_data, demo_index WHERE
- # demo_data.id=demo_index.id AND contained_in(demo_data.boundary,
- # 35.37785, -80.77470) AND minX<=-80.77470 AND maxX>=-80.77470 AND
- # minY<=35.37785 AND maxY>=35.37785;
- do_vmstep_test 1.2 {
- SELECT objname FROM demo_data, demo_index
- WHERE demo_data.id=demo_index.id
- AND contained_in(demo_data.boundary, 35.37785, -80.77470)
- AND minX<=-80.77470 AND maxX>=-80.77470
- AND minY<=35.37785 AND maxY>=35.37785;
- } {$step<100}
- set ::contained_in1 $::contained_in
- # EVIDENCE-OF: R-32761-23915 One would get the same answer without the
- # use of the R*Tree index using the following simpler query: SELECT
- # objname FROM demo_data WHERE contained_in(demo_data.boundary,
- # 35.37785, -80.77470);
- set ::contained_in 0
- do_vmstep_test 1.3 {
- SELECT objname FROM demo_data
- WHERE contained_in(demo_data.boundary, 35.37785, -80.77470);
- } {$step>3200}
- # EVIDENCE-OF: R-40261-32799 The problem with this latter query is that
- # it must apply the contained_in() function to all entries in the
- # demo_data table.
- #
- # 896 of them, IIRC.
- do_test 1.4 {
- set ::contained_in
- } 896
- # EVIDENCE-OF: R-24212-52761 The use of the R*Tree in the penultimate
- # query reduces the number of calls to contained_in() function to a
- # small subset of the entire table.
- #
- # 2 is a small subset of 896.
- #
- # EVIDENCE-OF: R-39057-63901 The R*Tree index did not find the exact
- # answer itself, it merely limited the search space.
- #
- # contained_in() filtered out those 2 rows.
- do_test 1.5 {
- set ::contained_in1
- } {2}
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 4.1 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-9
- reset_db
- # EVIDENCE-OF: R-46566-43213 Beginning with SQLite version 3.24.0
- # (2018-06-04), r-tree tables can have auxiliary columns that store
- # arbitrary data. Auxiliary columns can be used in place of secondary
- # tables such as "demo_data".
- #
- # EVIDENCE-OF: R-41287-48160 Auxiliary columns are marked with a "+"
- # symbol before the column name.
- #
- # This interface cannot conveniently be used to prove anything about
- # versions of SQLite prior to 3.24.0.
- #
- do_execsql_test 1.0 {
- CREATE VIRTUAL TABLE rta USING rtree(
- id, u1,u2, v1,v2, +aux
- );
- INSERT INTO rta(aux) VALUES(NULL);
- INSERT INTO rta(aux) VALUES(45);
- INSERT INTO rta(aux) VALUES(22.3);
- INSERT INTO rta(aux) VALUES('hello');
- INSERT INTO rta(aux) VALUES(X'ABCD');
- SELECT typeof(aux), quote(aux) FROM rta;
- } {
- null NULL
- integer 45
- real 22.3
- text 'hello'
- blob X'ABCD'
- }
- # EVIDENCE-OF: R-30514-26093 Auxiliary columns must come after all of
- # the coordinate boundary columns.
- foreach {tn cols} {
- 1 "id x1,x2, +extra, y1,y2"
- 2 "extra, +id x1,x2, y1,y2"
- 3 "id, x1,+x2, extra, y1,y2"
- } {
- do_catchsql_test 2.$tn "
- CREATE VIRTUAL TABLE rrr USING rtree($cols)
- " {1 {Auxiliary rtree columns must be last}}
- }
- do_catchsql_test 3.0 {
- CREATE VIRTUAL TABLE rrr USING rtree(+id, extra, x1, x2);
- } {1 {near "+": syntax error}}
- # EVIDENCE-OF: R-01280-03635 An RTREE table can have no more than 100
- # columns total. In other words, the count of columns including the
- # integer primary key column, the coordinate boundary columns, and all
- # auxiliary columns must be 100 or less.
- do_catchsql_test 3.1 {
- CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2,
- +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09,
- +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19,
- +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29,
- +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39,
- +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49,
- +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59,
- +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69,
- +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79,
- +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89,
- +c90, +c91, +c92, +c93, +c94, +c95, +c96
- );
- } {0 {}}
- do_catchsql_test 3.2 {
- DROP TABLE r1;
- CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2,
- +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09,
- +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19,
- +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29,
- +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39,
- +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49,
- +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59,
- +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69,
- +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79,
- +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89,
- +c90, +c91, +c92, +c93, +c94, +c95, +c96, +c97
- );
- } {1 {Too many columns for an rtree table}}
- do_catchsql_test 3.3 {
- CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2, v1,v2,
- +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09,
- +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19,
- +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29,
- +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39,
- +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49,
- +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59,
- +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69,
- +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79,
- +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89,
- +c90, +c91, +c92, +c93, +c94,
- );
- } {0 {}}
- do_catchsql_test 3.4 {
- DROP TABLE r1;
- CREATE VIRTUAL TABLE r1 USING rtree(intid, u1,u2, v1,v2,
- +c00, +c01, +c02, +c03, +c04, +c05, +c06, +c07, +c08, +c09,
- +c10, +c11, +c12, +c13, +c14, +c15, +c16, +c17, +c18, +c19,
- +c20, +c21, +c22, +c23, +c24, +c25, +c26, +c27, +c28, +c29,
- +c30, +c31, +c32, +c33, +c34, +c35, +c36, +c37, +c38, +c39,
- +c40, +c41, +c42, +c43, +c44, +c45, +c46, +c47, +c48, +c49,
- +c50, +c51, +c52, +c53, +c54, +c55, +c56, +c57, +c58, +c59,
- +c60, +c61, +c62, +c63, +c64, +c65, +c66, +c67, +c68, +c69,
- +c70, +c71, +c72, +c73, +c74, +c75, +c76, +c77, +c78, +c79,
- +c80, +c81, +c82, +c83, +c84, +c85, +c86, +c87, +c88, +c89,
- +c90, +c91, +c92, +c93, +c94, +c95,
- );
- } {1 {Too many columns for an rtree table}}
- # EVIDENCE-OF: R-05552-15084
- do_execsql_test 4.0 {
- CREATE VIRTUAL TABLE demo_index2 USING rtree(
- id, -- Integer primary key
- minX, maxX, -- Minimum and maximum X coordinate
- minY, maxY, -- Minimum and maximum Y coordinate
- +objname TEXT, -- name of the object
- +objtype TEXT, -- object type
- +boundary BLOB -- detailed boundary of object
- );
- }
- do_execsql_test 4.1 {
- CREATE VIRTUAL TABLE demo_index USING rtree(
- id, -- Integer primary key
- minX, maxX, -- Minimum and maximum X coordinate
- minY, maxY -- Minimum and maximum Y coordinate
- );
- CREATE TABLE demo_data(
- id INTEGER PRIMARY KEY, -- primary key
- objname TEXT, -- name of the object
- objtype TEXT, -- object type
- boundary BLOB -- detailed boundary of object
- );
- INSERT INTO demo_index2(id) VALUES(1);
- INSERT INTO demo_index(id) VALUES(1);
- INSERT INTO demo_data(id) VALUES(1);
- }
- do_test 4.2 {
- catch { array unset R }
- db eval {SELECT * FROM demo_index2} R { set r1 [array names R] }
- catch { array unset R }
- db eval {SELECT * FROM demo_index NATURAL JOIN demo_data } R {
- set r2 [array names R]
- }
- expr {$r1==$r2}
- } {1}
- # EVIDENCE-OF: R-26099-32169 SELECT objname FROM demo_index2 WHERE
- # contained_in(boundary, 35.37785, -80.77470) AND minX<=-80.77470 AND
- # maxX>=-80.77470 AND minY<=35.37785 AND maxY>=35.37785;
- do_execsql_test 4.3.1 {
- DELETE FROM demo_index2;
- INSERT INTO demo_index2(id,minX,maxX,minY,maxY) VALUES
- (28215, -80.781227, -80.604706, 35.208813, 35.297367),
- (28216, -80.957283, -80.840599, 35.235920, 35.367825),
- (28217, -80.960869, -80.869431, 35.133682, 35.208233),
- (28226, -80.878983, -80.778275, 35.060287, 35.154446),
- (28227, -80.745544, -80.555382, 35.130215, 35.236916),
- (28244, -80.844208, -80.841988, 35.223728, 35.225471),
- (28262, -80.809074, -80.682938, 35.276207, 35.377747),
- (28269, -80.851471, -80.735718, 35.272560, 35.407925),
- (28270, -80.794983, -80.728966, 35.059872, 35.161823),
- (28273, -80.994766, -80.875259, 35.074734, 35.172836),
- (28277, -80.876793, -80.767586, 35.001709, 35.101063),
- (28278, -81.058029, -80.956375, 35.044701, 35.223812),
- (28280, -80.844208, -80.841972, 35.225468, 35.227203),
- (28282, -80.846382, -80.844193, 35.223972, 35.225655);
- }
- set ::contained_in 0
- proc contained_in {args} {
- incr ::contained_in
- return 0
- }
- db func contained_in contained_in
- do_execsql_test 4.3.2 {
- SELECT objname FROM demo_index2
- WHERE contained_in(boundary, 35.37785, -80.77470)
- AND minX<=-80.77470 AND maxX>=-80.77470
- AND minY<=35.37785 AND maxY>=35.37785;
- }
- do_test 4.3.3 {
- # Function invoked only once because r-tree filtering happened first.
- set ::contained_in
- } 1
- set ::contained_in 0
- do_execsql_test 4.3.4 {
- SELECT objname FROM demo_index2
- WHERE contained_in(boundary, 35.37785, -80.77470)
- }
- do_test 4.3.3 {
- # Function invoked 14 times because no r-tree filtering. Inefficient.
- set ::contained_in
- } 14
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 4.1.1 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-9
- reset_db
- # EVIDENCE-OF: R-24021-02490 For auxiliary columns, only the name of the
- # column matters. The type affinity is ignored.
- #
- # EVIDENCE-OF: R-39906-44154 Constraints such as NOT NULL, UNIQUE,
- # REFERENCES, or CHECK are also ignored.
- do_execsql_test 1.0 { PRAGMA foreign_keys = on }
- foreach {tn auxcol nm} {
- 1 "+extra INTEGER" extra
- 2 "+extra TEXT" extra
- 3 "+extra BLOB" extra
- 4 "+extra REAL" extra
- 5 "+col NOT NULL" col
- 6 "+col CHECK (col IS NOT NULL)" col
- 7 "+col REFERENCES tbl(x)" col
- } {
- do_execsql_test 1.$tn.1 "
- CREATE VIRTUAL TABLE rt USING rtree_i32(k, a,b, $auxcol)
- "
- # Check that the aux column has no affinity. Or NOT NULL constraint.
- # And that the aux column is the child key of an FK constraint.
- #
- do_execsql_test 1.$tn.2 "
- INSERT INTO rt($nm) VALUES(NULL), (45), (-123.2), ('456'), (X'ABCD');
- SELECT typeof($nm), quote($nm) FROM rt;
- " {
- null NULL
- integer 45
- real -123.2
- text '456'
- blob X'ABCD'
- }
- # Check that there is no UNIQUE constraint either.
- #
- do_execsql_test 1.$tn.3 "
- INSERT INTO rt($nm) VALUES('xyz'), ('xyz'), ('xyz');
- "
- do_execsql_test 1.$tn.2 {
- DROP TABLE rt
- }
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 5 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-10
- # EVIDENCE-OF: R-21011-43790 If integer coordinates are desired, declare
- # the table using "rtree_i32" instead: CREATE VIRTUAL TABLE intrtree
- # USING rtree_i32(id,x0,x1,y0,y1,z0,z1);
- do_execsql_test 1.0 {
- CREATE VIRTUAL TABLE intrtree USING rtree_i32(id,x0,x1,y0,y1,z0,z1);
- INSERT INTO intrtree DEFAULT VALUES;
- SELECT typeof(x0) FROM intrtree;
- } {integer}
- # EVIDENCE-OF: R-09193-49806 An rtree_i32 stores coordinates as 32-bit
- # signed integers.
- #
- # Show that coordinates are cast in a way consistent with casting to
- # a signed 32-bit integer.
- do_execsql_test 1.1 {
- DELETE FROM intrtree;
- INSERT INTO intrtree VALUES(333,
- 1<<44, (1<<44)+1,
- 10000000000, 10000000001,
- -10000000001, -10000000000
- );
- SELECT * FROM intrtree;
- } {
- 333 0 1 1410065408 1410065409 -1410065409 -1410065408
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 7.1 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-11
- reset_db
- # This command assumes that the argument is a node blob for a 2 dimensional
- # i32 r-tree table. It decodes and returns a list of cells from the node
- # as a list. Each cell is itself a list of the following form:
- #
- # {$rowid $minX $maxX $minY $maxY}
- #
- # For internal (non-leaf) nodes, the rowid is replaced by the child node
- # number.
- #
- proc rnode {aData} {
- set nDim 2
- set nData [string length $aData]
- set nBytePerCell [expr (8 + 2*$nDim*4)]
- binary scan [string range $aData 2 3] S nCell
- set res [list]
- for {set i 0} {$i < $nCell} {incr i} {
- set iOff [expr $i*$nBytePerCell+4]
- set cell [string range $aData $iOff [expr $iOff+$nBytePerCell-1]]
- binary scan $cell WIIII rowid x1 x2 y1 y2
- lappend res [list $rowid $x1 $x2 $y1 $y2]
- }
- return $res
- }
- # aData must be a node blob. This command returns true if the node contains
- # rowid $rowid, or false otherwise.
- #
- proc rnode_contains {aData rowid} {
- set L [rnode $aData]
- foreach cell $L {
- set r [lindex $cell 0]
- if {$r==$rowid} { return 1 }
- }
- return 0
- }
- proc rnode_replace_cell {aData iCell cell} {
- set aCell [binary format WIIII {*}$cell]
- set nDim 2
- set nBytePerCell [expr (8 + 2*$nDim*4)]
- set iOff [expr $iCell*$nBytePerCell+4]
- set aNew [binary format a*a*a* \
- [string range $aData 0 $iOff-1] \
- $aCell \
- [string range $aData $iOff+$nBytePerCell end] \
- ]
- return $aNew
- }
- db function rnode rnode
- db function rnode_contains rnode_contains
- db function rnode_replace_cell rnode_replace_cell
- foreach {tn nm} {
- 1 x1
- 2 asdfghjkl
- 3 hello_world
- } {
- do_execsql_test 1.$tn.1 "
- CREATE VIRTUAL TABLE $nm USING rtree(a,b,c,d,e);
- "
- # EVIDENCE-OF: R-33789-46762 The content of an R*Tree index is actually
- # stored in three ordinary SQLite tables with names derived from the
- # name of the R*Tree.
- #
- # EVIDENCE-OF: R-39849-06566 This is their schema: CREATE TABLE
- # %_node(nodeno INTEGER PRIMARY KEY, data) CREATE TABLE %_parent(nodeno
- # INTEGER PRIMARY KEY, parentnode) CREATE TABLE %_rowid(rowid INTEGER
- # PRIMARY KEY, nodeno)
- #
- # EVIDENCE-OF: R-07489-10051 The "%" in the name of each shadow table is
- # replaced by the name of the R*Tree virtual table. So, if the name of
- # the R*Tree table is "xyz" then the three shadow tables would be
- # "xyz_node", "xyz_parent", and "xyz_rowid".
- do_execsql_test 1.$tn.2 {
- SELECT sql FROM sqlite_schema WHERE name!=$nm ORDER BY 1
- } [string map [list % $nm] "
- {CREATE TABLE \"%_node\"(nodeno INTEGER PRIMARY KEY,data)}
- {CREATE TABLE \"%_parent\"(nodeno INTEGER PRIMARY KEY,parentnode)}
- {CREATE TABLE \"%_rowid\"(rowid INTEGER PRIMARY KEY,nodeno)}
- "]
- do_execsql_test 1.$tn "DROP TABLE $nm"
- }
- # EVIDENCE-OF: R-51070-59303 There is one entry in the %_node table for
- # each R*Tree node.
- #
- # The following creates a 6 node r-tree structure.
- #
- do_execsql_test 2.0 {
- CREATE VIRTUAL TABLE r1 USING rtree_i32(i, x1,x2, y1,y2);
- WITH t(i) AS (
- VALUES(1) UNION SELECT i+1 FROM t WHERE i<110
- )
- INSERT INTO r1 SELECT i, (i%10), (i%10)+2, (i%6), (i%7)+6 FROM t;
- }
- do_execsql_test 2.1 {
- SELECT count(*) FROM r1_node;
- } 6
- # EVIDENCE-OF: R-27261-09153 All nodes other than the root have an entry
- # in the %_parent shadow table that identifies the parent node.
- #
- # In this case nodes 2-6 are the children of node 1.
- #
- do_execsql_test 2.3 {
- SELECT nodeno, parentnode FROM r1_parent
- } {2 1 3 1 4 1 5 1 6 1}
- # EVIDENCE-OF: R-02358-35037 The %_rowid shadow table maps entry rowids
- # to the node that contains that entry.
- #
- do_execsql_test 2.4 {
- SELECT 'failed' FROM r1_rowid WHERE 0==rnode_contains(
- (SELECT data FROM r1_node WHERE nodeno=r1_rowid.nodeno), rowid
- )
- }
- do_test 2.5 {
- db eval { SELECT nodeno, data FROM r1_node WHERE nodeno!=1 } {
- set L [rnode $data]
- foreach cell $L {
- set rowid [lindex $cell 0]
- set rowid_nodeno 0
- db eval {SELECT nodeno AS rowid_nodeno FROM r1_rowid WHERE rowid=$rowid} {
- break
- }
- if {$rowid_nodeno!=$nodeno} { error "data mismatch!" }
- }
- }
- } {}
- # EVIDENCE-OF: R-65201-22208 Extra columns appended to the %_rowid table
- # hold the content of auxiliary columns.
- #
- # EVIDENCE-OF: R-44161-28345 The names of these extra %_rowid columns
- # are probably not the same as the actual auxiliary column names.
- #
- # In this case, the auxiliary columns are named "e1" and "e2". The
- # extra %_rowid columns are named "a0" and "a1".
- #
- do_execsql_test 3.0 {
- CREATE VIRTUAL TABLE rtaux USING rtree(id, x1,x2, y1,y2, +e1, +e2);
- SELECT sql FROM sqlite_schema WHERE name='rtaux_rowid';
- } {
- {CREATE TABLE "rtaux_rowid"(rowid INTEGER PRIMARY KEY,nodeno,a0,a1)}
- }
- do_execsql_test 3.1 {
- INSERT INTO rtaux(e1, e2) VALUES('hello', 'world'), (123, 456);
- }
- do_execsql_test 3.2 {
- SELECT a0, a1 FROM rtaux_rowid;
- } {
- hello world 123 456
- }
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- # Section 7.2 of documentation.
- #-------------------------------------------------------------------------
- #-------------------------------------------------------------------------
- set testprefix rtreedoc-12
- reset_db
- forcedelete test.db2
- db function rnode rnode
- db function rnode_contains rnode_contains
- db function rnode_replace_cell rnode_replace_cell
- # EVIDENCE-OF: R-13571-45795 The scalar SQL function rtreecheck(R) or
- # rtreecheck(S,R) runs an integrity check on the rtree table named R
- # contained within database S.
- #
- # EVIDENCE-OF: R-36011-59963 The function returns a human-language
- # description of any problems found, or the string 'ok' if everything is
- # ok.
- #
- do_execsql_test 1.0 {
- CREATE VIRTUAL TABLE rt1 USING rtree(id, a, b);
- WITH s(i) AS (
- VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<200
- )
- INSERT INTO rt1 SELECT i, i, i FROM s;
- ATTACH 'test.db2' AS 'aux';
- CREATE VIRTUAL TABLE aux.rt1 USING rtree(id, a, b);
- INSERT INTO aux.rt1 SELECT * FROM rt1;
- }
- do_execsql_test 1.1.1 { SELECT rtreecheck('rt1'); } {ok}
- do_execsql_test 1.1.2 { SELECT rtreecheck('main', 'rt1'); } {ok}
- do_execsql_test 1.1.3 { SELECT rtreecheck('aux', 'rt1'); } {ok}
- do_catchsql_test 1.1.4 {
- SELECT rtreecheck('nosuchdb', 'rt1');
- } {1 {SQL logic error}}
- # Corrupt the table in database 'main':
- do_execsql_test 1.2.1 { UPDATE rt1_node SET nodeno=21 WHERE nodeno=3; }
- do_execsql_test 1.2.1 { SELECT rtreecheck('rt1')=='ok'; } {0}
- do_execsql_test 1.2.2 { SELECT rtreecheck('main', 'rt1')=='ok'; } {0}
- do_execsql_test 1.2.3 { SELECT rtreecheck('aux', 'rt1')=='ok'; } {1}
- do_execsql_test 1.2.4 { UPDATE rt1_node SET nodeno=3 WHERE nodeno=21; }
- # Corrupt the table in database 'aux':
- do_execsql_test 1.2.1 { UPDATE aux.rt1_node SET nodeno=21 WHERE nodeno=3; }
- do_execsql_test 1.2.1 { SELECT rtreecheck('rt1')=='ok'; } {1}
- do_execsql_test 1.2.2 { SELECT rtreecheck('main', 'rt1')=='ok'; } {1}
- do_execsql_test 1.2.3 { SELECT rtreecheck('aux', 'rt1')=='ok'; } {0}
- do_execsql_test 1.2.4 { UPDATE rt1_node SET nodeno=3 WHERE nodeno=21; }
- # EVIDENCE-OF: R-45759-33459 Example: To verify that an R*Tree named
- # "demo_index" is well-formed and internally consistent, run: SELECT
- # rtreecheck('demo_index');
- do_execsql_test 2.0 {
- CREATE VIRTUAL TABLE demo_index USING rtree(id, x1,x2, y1,y2);
- INSERT INTO demo_index SELECT id, a, b, a, b FROM rt1;
- }
- do_execsql_test 2.1 { SELECT rtreecheck('demo_index') } {ok}
- do_execsql_test 2.2 {
- UPDATE demo_index_rowid SET nodeno=44 WHERE rowid=44;
- SELECT rtreecheck('demo_index');
- } {{Found (44 -> 44) in %_rowid table, expected (44 -> 4)}}
- do_execsql_test 3.0 {
- CREATE VIRTUAL TABLE rt2 USING rtree_i32(id, a, b, c, d);
- WITH s(i) AS (
- VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<200
- )
- INSERT INTO rt2 SELECT i, i, i+2, i, i+2 FROM s;
- }
- # EVIDENCE-OF: R-02555-31045 for each dimension, (coord1 <= coord2).
- #
- execsql BEGIN
- do_test 3.1 {
- set cell [
- lindex [execsql {SELECT rnode(data) FROM rt2_node WHERE nodeno=3}] 0 3
- ]
- set cell [list [lindex $cell 0] \
- [lindex $cell 2] [lindex $cell 1] \
- [lindex $cell 3] [lindex $cell 4] \
- ]
- execsql {
- UPDATE rt2_node SET data=rnode_replace_cell(data, 3, $cell) WHERE nodeno=3
- }
- execsql { SELECT rtreecheck('rt2') }
- } {{Dimension 0 of cell 3 on node 3 is corrupt}}
- execsql ROLLBACK
- # EVIDENCE-OF: R-13844-15873 unless the cell is on the root node, that
- # the cell is bounded by the parent cell on the parent node.
- #
- execsql BEGIN
- do_test 3.2 {
- set cell [
- lindex [execsql {SELECT rnode(data) FROM rt2_node WHERE nodeno=3}] 0 3
- ]
- lset cell 3 450
- lset cell 4 451
- execsql {
- UPDATE rt2_node SET data=rnode_replace_cell(data, 3, $cell) WHERE nodeno=3
- }
- execsql { SELECT rtreecheck('rt2') }
- } {{Dimension 1 of cell 3 on node 3 is corrupt relative to parent}}
- execsql ROLLBACK
- # EVIDENCE-OF: R-02505-03621 for leaf nodes, that there is an entry in
- # the %_rowid table corresponding to the cell's rowid value that points
- # to the correct node.
- #
- execsql BEGIN
- do_test 3.3 {
- execsql {
- UPDATE rt2_rowid SET rowid=452 WHERE rowid=100
- }
- execsql { SELECT rtreecheck('rt2') }
- } {{Mapping (100 -> 6) missing from %_rowid table}}
- execsql ROLLBACK
- # EVIDENCE-OF: R-50927-02218 for cells on non-leaf nodes, that there is
- # an entry in the %_parent table mapping from the cell's child node to
- # the node that it resides on.
- #
- execsql BEGIN
- do_test 3.4.1 {
- execsql {
- UPDATE rt2_parent SET parentnode=123 WHERE nodeno=3
- }
- execsql { SELECT rtreecheck('rt2') }
- } {{Found (3 -> 123) in %_parent table, expected (3 -> 1)}}
- execsql ROLLBACK
- execsql BEGIN
- do_test 3.4.2 {
- execsql {
- UPDATE rt2_parent SET nodeno=123 WHERE nodeno=3
- }
- execsql { SELECT rtreecheck('rt2') }
- } {{Mapping (3 -> 1) missing from %_parent table}}
- execsql ROLLBACK
- # EVIDENCE-OF: R-23235-09153 That there are the same number of entries
- # in the %_rowid table as there are leaf cells in the r-tree structure,
- # and that there is a leaf cell that corresponds to each entry in the
- # %_rowid table.
- execsql BEGIN
- do_test 3.5 {
- execsql { INSERT INTO rt2_rowid VALUES(1000, 1000) }
- execsql { SELECT rtreecheck('rt2') }
- } {{Wrong number of entries in %_rowid table - expected 200, actual 201}}
- execsql ROLLBACK
- # EVIDENCE-OF: R-62800-43436 That there are the same number of entries
- # in the %_parent table as there are non-leaf cells in the r-tree
- # structure, and that there is a non-leaf cell that corresponds to each
- # entry in the %_parent table.
- execsql BEGIN
- do_test 3.6 {
- execsql { INSERT INTO rt2_parent VALUES(1000, 1000) }
- execsql { SELECT rtreecheck('rt2') }
- } {{Wrong number of entries in %_parent table - expected 10, actual 11}}
- execsql ROLLBACK
- finish_test
|