123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- local statistics = {}
- local ROOT_2 = math.sqrt(2.0)
- -- Approximations for erf(x) and erfInv(x) from
- -- https://en.wikipedia.org/wiki/Error_function
- local erf
- local erf_inv
- local A = 8 * (math.pi - 3.0)/(3.0 * math.pi * (4.0 - math.pi))
- local B = 4.0 / math.pi
- local C = 2.0/(math.pi * A)
- local D = 1.0 / A
- erf = function(x)
- if x == 0 then return 0; end
- local xSq = x * x
- local aXSq = A * xSq
- local v = math.sqrt(1.0 - math.exp(-xSq * (B + aXSq) / (1.0 + aXSq)))
- return (x > 0 and v) or -v
- end
- erf_inv = function(x)
- if x == 0 then return 0; end
- if x <= -1 or x >= 1 then return nil; end
- local y = math.log(1 - x * x)
- local u = C + 0.5 * y
- local v = math.sqrt(math.sqrt(u * u - D * y) - u)
- return (x > 0 and v) or -v
- end
- local function std_normal(u)
- return ROOT_2 * erf_inv(2.0 * u - 1.0)
- end
- local poisson
- local cdf_table = {}
- local function generate_cdf(lambda_index, lambda)
- local max = math.ceil(4 * lambda)
- local pdf = math.exp(-lambda)
- local cdf = pdf
- local t = { [0] = pdf }
- for i = 1, max - 1 do
- pdf = pdf * lambda / i
- cdf = cdf + pdf
- t[i] = cdf
- end
- return t
- end
- for li = 1, 100 do
- cdf_table[li] = generate_cdf(li, 0.25 * li)
- end
- poisson = function(lambda, max)
- if max < 2 then
- return (math.random() < math.exp(-lambda) and 0) or 1
- elseif lambda >= 2 * max then
- return max
- end
- local u = math.random()
- local lambda_index = math.floor(4 * lambda + 0.5)
- local cdfs = cdf_table[lambda_index]
- if cdfs then
- lambda = 0.25 * lambda_index
- if u < cdfs[0] then return 0; end
- if max > #cdfs then max = #cdfs + 1 else max = math.floor(max); end
- if u >= cdfs[max - 1] then return max; end
- if max > 4 then -- Binary search
- local s = 0
- while s + 1 < max do
- local m = math.floor(0.5 * (s + max))
- if u < cdfs[m] then max = m; else s = m; end
- end
- else
- for i = 1, max - 1 do
- if u < cdfs[i] then return i; end
- end
- end
- return max
- else
- local x = lambda + math.sqrt(lambda) * std_normal(u)
- return (x < 0.5 and 0) or (x >= max - 0.5 and max) or math.floor(x + 0.5)
- end
- end
- -- Error function.
- statistics.erf = erf
- -- Inverse error function.
- statistics.erf_inv = erf_inv
- --- Standard normal distribution function (mean 0, standard deviation 1).
- --
- -- @return
- -- Any real number (actually between -3.0 and 3.0).
- statistics.std_normal = function()
- local u = math.random()
- if u < 0.001 then
- return -3.0
- elseif u > 0.999 then
- return 3.0
- end
- return std_normal(u)
- end
- --- Standard normal distribution function (mean 0, standard deviation 1).
- --
- -- @param mu
- -- The distribution mean.
- -- @param sigma
- -- The distribution standard deviation.
- -- @return
- -- Any real number (actually between -3*sigma and 3*sigma).
- statistics.normal = function(mu, sigma)
- local u = math.random()
- if u < 0.001 then
- return mu - 3.0 * sigma
- elseif u > 0.999 then
- return mu + 3.0 * sigma
- end
- return mu + sigma * std_normal(u)
- end
- --- Poisson distribution function.
- --
- -- @param lambda
- -- The distribution mean and variance.
- -- @param max
- -- The distribution maximum.
- -- @return
- -- An integer between 0 and max (both inclusive).
- statistics.poisson = function(lambda, max)
- lambda, max = tonumber(lambda), tonumber(max)
- if not lambda or not max or lambda <= 0 or max < 1 then return 0; end
- return poisson(lambda, max)
- end
- return statistics
|