rxkad.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. /* Kerberos-based RxRPC security
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <crypto/skcipher.h>
  13. #include <linux/module.h>
  14. #include <linux/net.h>
  15. #include <linux/skbuff.h>
  16. #include <linux/udp.h>
  17. #include <linux/scatterlist.h>
  18. #include <linux/ctype.h>
  19. #include <linux/slab.h>
  20. #include <net/sock.h>
  21. #include <net/af_rxrpc.h>
  22. #include <keys/rxrpc-type.h>
  23. #include "ar-internal.h"
  24. #define RXKAD_VERSION 2
  25. #define MAXKRB5TICKETLEN 1024
  26. #define RXKAD_TKT_TYPE_KERBEROS_V5 256
  27. #define ANAME_SZ 40 /* size of authentication name */
  28. #define INST_SZ 40 /* size of principal's instance */
  29. #define REALM_SZ 40 /* size of principal's auth domain */
  30. #define SNAME_SZ 40 /* size of service name */
  31. struct rxkad_level1_hdr {
  32. __be32 data_size; /* true data size (excluding padding) */
  33. };
  34. struct rxkad_level2_hdr {
  35. __be32 data_size; /* true data size (excluding padding) */
  36. __be32 checksum; /* decrypted data checksum */
  37. };
  38. /*
  39. * this holds a pinned cipher so that keventd doesn't get called by the cipher
  40. * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
  41. * packets
  42. */
  43. static struct crypto_skcipher *rxkad_ci;
  44. static DEFINE_MUTEX(rxkad_ci_mutex);
  45. /*
  46. * initialise connection security
  47. */
  48. static int rxkad_init_connection_security(struct rxrpc_connection *conn)
  49. {
  50. struct crypto_skcipher *ci;
  51. struct rxrpc_key_token *token;
  52. int ret;
  53. _enter("{%d},{%x}", conn->debug_id, key_serial(conn->params.key));
  54. token = conn->params.key->payload.data[0];
  55. conn->security_ix = token->security_index;
  56. ci = crypto_alloc_skcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
  57. if (IS_ERR(ci)) {
  58. _debug("no cipher");
  59. ret = PTR_ERR(ci);
  60. goto error;
  61. }
  62. if (crypto_skcipher_setkey(ci, token->kad->session_key,
  63. sizeof(token->kad->session_key)) < 0)
  64. BUG();
  65. switch (conn->params.security_level) {
  66. case RXRPC_SECURITY_PLAIN:
  67. break;
  68. case RXRPC_SECURITY_AUTH:
  69. conn->size_align = 8;
  70. conn->security_size = sizeof(struct rxkad_level1_hdr);
  71. break;
  72. case RXRPC_SECURITY_ENCRYPT:
  73. conn->size_align = 8;
  74. conn->security_size = sizeof(struct rxkad_level2_hdr);
  75. break;
  76. default:
  77. ret = -EKEYREJECTED;
  78. goto error;
  79. }
  80. conn->cipher = ci;
  81. ret = 0;
  82. error:
  83. _leave(" = %d", ret);
  84. return ret;
  85. }
  86. /*
  87. * prime the encryption state with the invariant parts of a connection's
  88. * description
  89. */
  90. static int rxkad_prime_packet_security(struct rxrpc_connection *conn)
  91. {
  92. struct rxrpc_key_token *token;
  93. SKCIPHER_REQUEST_ON_STACK(req, conn->cipher);
  94. struct scatterlist sg;
  95. struct rxrpc_crypt iv;
  96. __be32 *tmpbuf;
  97. size_t tmpsize = 4 * sizeof(__be32);
  98. _enter("");
  99. if (!conn->params.key)
  100. return 0;
  101. tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
  102. if (!tmpbuf)
  103. return -ENOMEM;
  104. token = conn->params.key->payload.data[0];
  105. memcpy(&iv, token->kad->session_key, sizeof(iv));
  106. tmpbuf[0] = htonl(conn->proto.epoch);
  107. tmpbuf[1] = htonl(conn->proto.cid);
  108. tmpbuf[2] = 0;
  109. tmpbuf[3] = htonl(conn->security_ix);
  110. sg_init_one(&sg, tmpbuf, tmpsize);
  111. skcipher_request_set_tfm(req, conn->cipher);
  112. skcipher_request_set_callback(req, 0, NULL, NULL);
  113. skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
  114. crypto_skcipher_encrypt(req);
  115. skcipher_request_zero(req);
  116. memcpy(&conn->csum_iv, tmpbuf + 2, sizeof(conn->csum_iv));
  117. kfree(tmpbuf);
  118. _leave(" = 0");
  119. return 0;
  120. }
  121. /*
  122. * partially encrypt a packet (level 1 security)
  123. */
  124. static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
  125. struct sk_buff *skb,
  126. u32 data_size,
  127. void *sechdr,
  128. struct skcipher_request *req)
  129. {
  130. struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
  131. struct rxkad_level1_hdr hdr;
  132. struct rxrpc_crypt iv;
  133. struct scatterlist sg;
  134. u16 check;
  135. _enter("");
  136. check = sp->hdr.seq ^ call->call_id;
  137. data_size |= (u32)check << 16;
  138. hdr.data_size = htonl(data_size);
  139. memcpy(sechdr, &hdr, sizeof(hdr));
  140. /* start the encryption afresh */
  141. memset(&iv, 0, sizeof(iv));
  142. sg_init_one(&sg, sechdr, 8);
  143. skcipher_request_set_tfm(req, call->conn->cipher);
  144. skcipher_request_set_callback(req, 0, NULL, NULL);
  145. skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
  146. crypto_skcipher_encrypt(req);
  147. skcipher_request_zero(req);
  148. _leave(" = 0");
  149. return 0;
  150. }
  151. /*
  152. * wholly encrypt a packet (level 2 security)
  153. */
  154. static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
  155. struct sk_buff *skb,
  156. u32 data_size,
  157. void *sechdr,
  158. struct skcipher_request *req)
  159. {
  160. const struct rxrpc_key_token *token;
  161. struct rxkad_level2_hdr rxkhdr;
  162. struct rxrpc_skb_priv *sp;
  163. struct rxrpc_crypt iv;
  164. struct scatterlist sg[16];
  165. struct sk_buff *trailer;
  166. unsigned int len;
  167. u16 check;
  168. int nsg;
  169. int err;
  170. sp = rxrpc_skb(skb);
  171. _enter("");
  172. check = sp->hdr.seq ^ call->call_id;
  173. rxkhdr.data_size = htonl(data_size | (u32)check << 16);
  174. rxkhdr.checksum = 0;
  175. memcpy(sechdr, &rxkhdr, sizeof(rxkhdr));
  176. /* encrypt from the session key */
  177. token = call->conn->params.key->payload.data[0];
  178. memcpy(&iv, token->kad->session_key, sizeof(iv));
  179. sg_init_one(&sg[0], sechdr, sizeof(rxkhdr));
  180. skcipher_request_set_tfm(req, call->conn->cipher);
  181. skcipher_request_set_callback(req, 0, NULL, NULL);
  182. skcipher_request_set_crypt(req, &sg[0], &sg[0], sizeof(rxkhdr), iv.x);
  183. crypto_skcipher_encrypt(req);
  184. /* we want to encrypt the skbuff in-place */
  185. nsg = skb_cow_data(skb, 0, &trailer);
  186. err = -ENOMEM;
  187. if (nsg < 0 || nsg > 16)
  188. goto out;
  189. len = data_size + call->conn->size_align - 1;
  190. len &= ~(call->conn->size_align - 1);
  191. sg_init_table(sg, nsg);
  192. err = skb_to_sgvec(skb, sg, 0, len);
  193. if (unlikely(err < 0))
  194. goto out;
  195. skcipher_request_set_crypt(req, sg, sg, len, iv.x);
  196. crypto_skcipher_encrypt(req);
  197. _leave(" = 0");
  198. err = 0;
  199. out:
  200. skcipher_request_zero(req);
  201. return err;
  202. }
  203. /*
  204. * checksum an RxRPC packet header
  205. */
  206. static int rxkad_secure_packet(struct rxrpc_call *call,
  207. struct sk_buff *skb,
  208. size_t data_size,
  209. void *sechdr)
  210. {
  211. struct rxrpc_skb_priv *sp;
  212. SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
  213. struct rxrpc_crypt iv;
  214. struct scatterlist sg;
  215. u32 x, y;
  216. int ret;
  217. sp = rxrpc_skb(skb);
  218. _enter("{%d{%x}},{#%u},%zu,",
  219. call->debug_id, key_serial(call->conn->params.key),
  220. sp->hdr.seq, data_size);
  221. if (!call->conn->cipher)
  222. return 0;
  223. ret = key_validate(call->conn->params.key);
  224. if (ret < 0)
  225. return ret;
  226. /* continue encrypting from where we left off */
  227. memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
  228. /* calculate the security checksum */
  229. x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
  230. x |= sp->hdr.seq & 0x3fffffff;
  231. call->crypto_buf[0] = htonl(call->call_id);
  232. call->crypto_buf[1] = htonl(x);
  233. sg_init_one(&sg, call->crypto_buf, 8);
  234. skcipher_request_set_tfm(req, call->conn->cipher);
  235. skcipher_request_set_callback(req, 0, NULL, NULL);
  236. skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
  237. crypto_skcipher_encrypt(req);
  238. skcipher_request_zero(req);
  239. y = ntohl(call->crypto_buf[1]);
  240. y = (y >> 16) & 0xffff;
  241. if (y == 0)
  242. y = 1; /* zero checksums are not permitted */
  243. sp->hdr.cksum = y;
  244. switch (call->conn->params.security_level) {
  245. case RXRPC_SECURITY_PLAIN:
  246. ret = 0;
  247. break;
  248. case RXRPC_SECURITY_AUTH:
  249. ret = rxkad_secure_packet_auth(call, skb, data_size, sechdr,
  250. req);
  251. break;
  252. case RXRPC_SECURITY_ENCRYPT:
  253. ret = rxkad_secure_packet_encrypt(call, skb, data_size,
  254. sechdr, req);
  255. break;
  256. default:
  257. ret = -EPERM;
  258. break;
  259. }
  260. _leave(" = %d [set %hx]", ret, y);
  261. return ret;
  262. }
  263. /*
  264. * decrypt partial encryption on a packet (level 1 security)
  265. */
  266. static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
  267. unsigned int offset, unsigned int len,
  268. rxrpc_seq_t seq,
  269. struct skcipher_request *req)
  270. {
  271. struct rxkad_level1_hdr sechdr;
  272. struct rxrpc_crypt iv;
  273. struct scatterlist sg[16];
  274. struct sk_buff *trailer;
  275. bool aborted;
  276. u32 data_size, buf;
  277. u16 check;
  278. int nsg, ret;
  279. _enter("");
  280. if (len < 8) {
  281. aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
  282. RXKADSEALEDINCON);
  283. goto protocol_error;
  284. }
  285. /* Decrypt the skbuff in-place. TODO: We really want to decrypt
  286. * directly into the target buffer.
  287. */
  288. nsg = skb_cow_data(skb, 0, &trailer);
  289. if (nsg < 0 || nsg > 16)
  290. goto nomem;
  291. sg_init_table(sg, nsg);
  292. ret = skb_to_sgvec(skb, sg, offset, 8);
  293. if (unlikely(ret < 0))
  294. return ret;
  295. /* start the decryption afresh */
  296. memset(&iv, 0, sizeof(iv));
  297. skcipher_request_set_tfm(req, call->conn->cipher);
  298. skcipher_request_set_callback(req, 0, NULL, NULL);
  299. skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
  300. crypto_skcipher_decrypt(req);
  301. skcipher_request_zero(req);
  302. /* Extract the decrypted packet length */
  303. if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
  304. aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
  305. RXKADDATALEN);
  306. goto protocol_error;
  307. }
  308. offset += sizeof(sechdr);
  309. len -= sizeof(sechdr);
  310. buf = ntohl(sechdr.data_size);
  311. data_size = buf & 0xffff;
  312. check = buf >> 16;
  313. check ^= seq ^ call->call_id;
  314. check &= 0xffff;
  315. if (check != 0) {
  316. aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
  317. RXKADSEALEDINCON);
  318. goto protocol_error;
  319. }
  320. if (data_size > len) {
  321. aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
  322. RXKADDATALEN);
  323. goto protocol_error;
  324. }
  325. _leave(" = 0 [dlen=%x]", data_size);
  326. return 0;
  327. protocol_error:
  328. if (aborted)
  329. rxrpc_send_abort_packet(call);
  330. return -EPROTO;
  331. nomem:
  332. _leave(" = -ENOMEM");
  333. return -ENOMEM;
  334. }
  335. /*
  336. * wholly decrypt a packet (level 2 security)
  337. */
  338. static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
  339. unsigned int offset, unsigned int len,
  340. rxrpc_seq_t seq,
  341. struct skcipher_request *req)
  342. {
  343. const struct rxrpc_key_token *token;
  344. struct rxkad_level2_hdr sechdr;
  345. struct rxrpc_crypt iv;
  346. struct scatterlist _sg[4], *sg;
  347. struct sk_buff *trailer;
  348. bool aborted;
  349. u32 data_size, buf;
  350. u16 check;
  351. int nsg, ret;
  352. _enter(",{%d}", skb->len);
  353. if (len < 8) {
  354. aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
  355. RXKADSEALEDINCON);
  356. goto protocol_error;
  357. }
  358. /* Decrypt the skbuff in-place. TODO: We really want to decrypt
  359. * directly into the target buffer.
  360. */
  361. nsg = skb_cow_data(skb, 0, &trailer);
  362. if (nsg < 0)
  363. goto nomem;
  364. sg = _sg;
  365. if (unlikely(nsg > 4)) {
  366. sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
  367. if (!sg)
  368. goto nomem;
  369. }
  370. sg_init_table(sg, nsg);
  371. ret = skb_to_sgvec(skb, sg, offset, len);
  372. if (unlikely(ret < 0)) {
  373. if (sg != _sg)
  374. kfree(sg);
  375. return ret;
  376. }
  377. /* decrypt from the session key */
  378. token = call->conn->params.key->payload.data[0];
  379. memcpy(&iv, token->kad->session_key, sizeof(iv));
  380. skcipher_request_set_tfm(req, call->conn->cipher);
  381. skcipher_request_set_callback(req, 0, NULL, NULL);
  382. skcipher_request_set_crypt(req, sg, sg, len, iv.x);
  383. crypto_skcipher_decrypt(req);
  384. skcipher_request_zero(req);
  385. if (sg != _sg)
  386. kfree(sg);
  387. /* Extract the decrypted packet length */
  388. if (skb_copy_bits(skb, offset, &sechdr, sizeof(sechdr)) < 0) {
  389. aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
  390. RXKADDATALEN);
  391. goto protocol_error;
  392. }
  393. offset += sizeof(sechdr);
  394. len -= sizeof(sechdr);
  395. buf = ntohl(sechdr.data_size);
  396. data_size = buf & 0xffff;
  397. check = buf >> 16;
  398. check ^= seq ^ call->call_id;
  399. check &= 0xffff;
  400. if (check != 0) {
  401. aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
  402. RXKADSEALEDINCON);
  403. goto protocol_error;
  404. }
  405. if (data_size > len) {
  406. aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
  407. RXKADDATALEN);
  408. goto protocol_error;
  409. }
  410. _leave(" = 0 [dlen=%x]", data_size);
  411. return 0;
  412. protocol_error:
  413. if (aborted)
  414. rxrpc_send_abort_packet(call);
  415. return -EPROTO;
  416. nomem:
  417. _leave(" = -ENOMEM");
  418. return -ENOMEM;
  419. }
  420. /*
  421. * Verify the security on a received packet or subpacket (if part of a
  422. * jumbo packet).
  423. */
  424. static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb,
  425. unsigned int offset, unsigned int len,
  426. rxrpc_seq_t seq, u16 expected_cksum)
  427. {
  428. SKCIPHER_REQUEST_ON_STACK(req, call->conn->cipher);
  429. struct rxrpc_crypt iv;
  430. struct scatterlist sg;
  431. bool aborted;
  432. u16 cksum;
  433. u32 x, y;
  434. _enter("{%d{%x}},{#%u}",
  435. call->debug_id, key_serial(call->conn->params.key), seq);
  436. if (!call->conn->cipher)
  437. return 0;
  438. /* continue encrypting from where we left off */
  439. memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
  440. /* validate the security checksum */
  441. x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
  442. x |= seq & 0x3fffffff;
  443. call->crypto_buf[0] = htonl(call->call_id);
  444. call->crypto_buf[1] = htonl(x);
  445. sg_init_one(&sg, call->crypto_buf, 8);
  446. skcipher_request_set_tfm(req, call->conn->cipher);
  447. skcipher_request_set_callback(req, 0, NULL, NULL);
  448. skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
  449. crypto_skcipher_encrypt(req);
  450. skcipher_request_zero(req);
  451. y = ntohl(call->crypto_buf[1]);
  452. cksum = (y >> 16) & 0xffff;
  453. if (cksum == 0)
  454. cksum = 1; /* zero checksums are not permitted */
  455. if (cksum != expected_cksum) {
  456. aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
  457. RXKADSEALEDINCON);
  458. goto protocol_error;
  459. }
  460. switch (call->conn->params.security_level) {
  461. case RXRPC_SECURITY_PLAIN:
  462. return 0;
  463. case RXRPC_SECURITY_AUTH:
  464. return rxkad_verify_packet_1(call, skb, offset, len, seq, req);
  465. case RXRPC_SECURITY_ENCRYPT:
  466. return rxkad_verify_packet_2(call, skb, offset, len, seq, req);
  467. default:
  468. return -ENOANO;
  469. }
  470. protocol_error:
  471. if (aborted)
  472. rxrpc_send_abort_packet(call);
  473. return -EPROTO;
  474. }
  475. /*
  476. * Locate the data contained in a packet that was partially encrypted.
  477. */
  478. static void rxkad_locate_data_1(struct rxrpc_call *call, struct sk_buff *skb,
  479. unsigned int *_offset, unsigned int *_len)
  480. {
  481. struct rxkad_level1_hdr sechdr;
  482. if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
  483. BUG();
  484. *_offset += sizeof(sechdr);
  485. *_len = ntohl(sechdr.data_size) & 0xffff;
  486. }
  487. /*
  488. * Locate the data contained in a packet that was completely encrypted.
  489. */
  490. static void rxkad_locate_data_2(struct rxrpc_call *call, struct sk_buff *skb,
  491. unsigned int *_offset, unsigned int *_len)
  492. {
  493. struct rxkad_level2_hdr sechdr;
  494. if (skb_copy_bits(skb, *_offset, &sechdr, sizeof(sechdr)) < 0)
  495. BUG();
  496. *_offset += sizeof(sechdr);
  497. *_len = ntohl(sechdr.data_size) & 0xffff;
  498. }
  499. /*
  500. * Locate the data contained in an already decrypted packet.
  501. */
  502. static void rxkad_locate_data(struct rxrpc_call *call, struct sk_buff *skb,
  503. unsigned int *_offset, unsigned int *_len)
  504. {
  505. switch (call->conn->params.security_level) {
  506. case RXRPC_SECURITY_AUTH:
  507. rxkad_locate_data_1(call, skb, _offset, _len);
  508. return;
  509. case RXRPC_SECURITY_ENCRYPT:
  510. rxkad_locate_data_2(call, skb, _offset, _len);
  511. return;
  512. default:
  513. return;
  514. }
  515. }
  516. /*
  517. * issue a challenge
  518. */
  519. static int rxkad_issue_challenge(struct rxrpc_connection *conn)
  520. {
  521. struct rxkad_challenge challenge;
  522. struct rxrpc_wire_header whdr;
  523. struct msghdr msg;
  524. struct kvec iov[2];
  525. size_t len;
  526. u32 serial;
  527. int ret;
  528. _enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
  529. ret = key_validate(conn->params.key);
  530. if (ret < 0)
  531. return ret;
  532. get_random_bytes(&conn->security_nonce, sizeof(conn->security_nonce));
  533. challenge.version = htonl(2);
  534. challenge.nonce = htonl(conn->security_nonce);
  535. challenge.min_level = htonl(0);
  536. challenge.__padding = 0;
  537. msg.msg_name = &conn->params.peer->srx.transport;
  538. msg.msg_namelen = conn->params.peer->srx.transport_len;
  539. msg.msg_control = NULL;
  540. msg.msg_controllen = 0;
  541. msg.msg_flags = 0;
  542. whdr.epoch = htonl(conn->proto.epoch);
  543. whdr.cid = htonl(conn->proto.cid);
  544. whdr.callNumber = 0;
  545. whdr.seq = 0;
  546. whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
  547. whdr.flags = conn->out_clientflag;
  548. whdr.userStatus = 0;
  549. whdr.securityIndex = conn->security_ix;
  550. whdr._rsvd = 0;
  551. whdr.serviceId = htons(conn->service_id);
  552. iov[0].iov_base = &whdr;
  553. iov[0].iov_len = sizeof(whdr);
  554. iov[1].iov_base = &challenge;
  555. iov[1].iov_len = sizeof(challenge);
  556. len = iov[0].iov_len + iov[1].iov_len;
  557. serial = atomic_inc_return(&conn->serial);
  558. whdr.serial = htonl(serial);
  559. _proto("Tx CHALLENGE %%%u", serial);
  560. ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 2, len);
  561. if (ret < 0) {
  562. trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
  563. rxrpc_tx_point_rxkad_challenge);
  564. return -EAGAIN;
  565. }
  566. conn->params.peer->last_tx_at = ktime_get_seconds();
  567. trace_rxrpc_tx_packet(conn->debug_id, &whdr,
  568. rxrpc_tx_point_rxkad_challenge);
  569. _leave(" = 0");
  570. return 0;
  571. }
  572. /*
  573. * send a Kerberos security response
  574. */
  575. static int rxkad_send_response(struct rxrpc_connection *conn,
  576. struct rxrpc_host_header *hdr,
  577. struct rxkad_response *resp,
  578. const struct rxkad_key *s2)
  579. {
  580. struct rxrpc_wire_header whdr;
  581. struct msghdr msg;
  582. struct kvec iov[3];
  583. size_t len;
  584. u32 serial;
  585. int ret;
  586. _enter("");
  587. msg.msg_name = &conn->params.peer->srx.transport;
  588. msg.msg_namelen = conn->params.peer->srx.transport_len;
  589. msg.msg_control = NULL;
  590. msg.msg_controllen = 0;
  591. msg.msg_flags = 0;
  592. memset(&whdr, 0, sizeof(whdr));
  593. whdr.epoch = htonl(hdr->epoch);
  594. whdr.cid = htonl(hdr->cid);
  595. whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
  596. whdr.flags = conn->out_clientflag;
  597. whdr.securityIndex = hdr->securityIndex;
  598. whdr.serviceId = htons(hdr->serviceId);
  599. iov[0].iov_base = &whdr;
  600. iov[0].iov_len = sizeof(whdr);
  601. iov[1].iov_base = resp;
  602. iov[1].iov_len = sizeof(*resp);
  603. iov[2].iov_base = (void *)s2->ticket;
  604. iov[2].iov_len = s2->ticket_len;
  605. len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
  606. serial = atomic_inc_return(&conn->serial);
  607. whdr.serial = htonl(serial);
  608. _proto("Tx RESPONSE %%%u", serial);
  609. ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 3, len);
  610. if (ret < 0) {
  611. trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
  612. rxrpc_tx_point_rxkad_response);
  613. return -EAGAIN;
  614. }
  615. conn->params.peer->last_tx_at = ktime_get_seconds();
  616. _leave(" = 0");
  617. return 0;
  618. }
  619. /*
  620. * calculate the response checksum
  621. */
  622. static void rxkad_calc_response_checksum(struct rxkad_response *response)
  623. {
  624. u32 csum = 1000003;
  625. int loop;
  626. u8 *p = (u8 *) response;
  627. for (loop = sizeof(*response); loop > 0; loop--)
  628. csum = csum * 0x10204081 + *p++;
  629. response->encrypted.checksum = htonl(csum);
  630. }
  631. /*
  632. * encrypt the response packet
  633. */
  634. static void rxkad_encrypt_response(struct rxrpc_connection *conn,
  635. struct rxkad_response *resp,
  636. const struct rxkad_key *s2)
  637. {
  638. SKCIPHER_REQUEST_ON_STACK(req, conn->cipher);
  639. struct rxrpc_crypt iv;
  640. struct scatterlist sg[1];
  641. /* continue encrypting from where we left off */
  642. memcpy(&iv, s2->session_key, sizeof(iv));
  643. sg_init_table(sg, 1);
  644. sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
  645. skcipher_request_set_tfm(req, conn->cipher);
  646. skcipher_request_set_callback(req, 0, NULL, NULL);
  647. skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
  648. crypto_skcipher_encrypt(req);
  649. skcipher_request_zero(req);
  650. }
  651. /*
  652. * respond to a challenge packet
  653. */
  654. static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
  655. struct sk_buff *skb,
  656. u32 *_abort_code)
  657. {
  658. const struct rxrpc_key_token *token;
  659. struct rxkad_challenge challenge;
  660. struct rxkad_response *resp;
  661. struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
  662. const char *eproto;
  663. u32 version, nonce, min_level, abort_code;
  664. int ret;
  665. _enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
  666. eproto = tracepoint_string("chall_no_key");
  667. abort_code = RX_PROTOCOL_ERROR;
  668. if (!conn->params.key)
  669. goto protocol_error;
  670. abort_code = RXKADEXPIRED;
  671. ret = key_validate(conn->params.key);
  672. if (ret < 0)
  673. goto other_error;
  674. eproto = tracepoint_string("chall_short");
  675. abort_code = RXKADPACKETSHORT;
  676. if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
  677. &challenge, sizeof(challenge)) < 0)
  678. goto protocol_error;
  679. version = ntohl(challenge.version);
  680. nonce = ntohl(challenge.nonce);
  681. min_level = ntohl(challenge.min_level);
  682. _proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
  683. sp->hdr.serial, version, nonce, min_level);
  684. eproto = tracepoint_string("chall_ver");
  685. abort_code = RXKADINCONSISTENCY;
  686. if (version != RXKAD_VERSION)
  687. goto protocol_error;
  688. abort_code = RXKADLEVELFAIL;
  689. ret = -EACCES;
  690. if (conn->params.security_level < min_level)
  691. goto other_error;
  692. token = conn->params.key->payload.data[0];
  693. /* build the response packet */
  694. resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
  695. if (!resp)
  696. return -ENOMEM;
  697. resp->version = htonl(RXKAD_VERSION);
  698. resp->encrypted.epoch = htonl(conn->proto.epoch);
  699. resp->encrypted.cid = htonl(conn->proto.cid);
  700. resp->encrypted.securityIndex = htonl(conn->security_ix);
  701. resp->encrypted.inc_nonce = htonl(nonce + 1);
  702. resp->encrypted.level = htonl(conn->params.security_level);
  703. resp->kvno = htonl(token->kad->kvno);
  704. resp->ticket_len = htonl(token->kad->ticket_len);
  705. resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
  706. resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
  707. resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
  708. resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
  709. /* calculate the response checksum and then do the encryption */
  710. rxkad_calc_response_checksum(resp);
  711. rxkad_encrypt_response(conn, resp, token->kad);
  712. ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
  713. kfree(resp);
  714. return ret;
  715. protocol_error:
  716. trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
  717. ret = -EPROTO;
  718. other_error:
  719. *_abort_code = abort_code;
  720. return ret;
  721. }
  722. /*
  723. * decrypt the kerberos IV ticket in the response
  724. */
  725. static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
  726. struct sk_buff *skb,
  727. void *ticket, size_t ticket_len,
  728. struct rxrpc_crypt *_session_key,
  729. time64_t *_expiry,
  730. u32 *_abort_code)
  731. {
  732. struct skcipher_request *req;
  733. struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
  734. struct rxrpc_crypt iv, key;
  735. struct scatterlist sg[1];
  736. struct in_addr addr;
  737. unsigned int life;
  738. const char *eproto;
  739. time64_t issue, now;
  740. bool little_endian;
  741. int ret;
  742. u32 abort_code;
  743. u8 *p, *q, *name, *end;
  744. _enter("{%d},{%x}", conn->debug_id, key_serial(conn->server_key));
  745. *_expiry = 0;
  746. ret = key_validate(conn->server_key);
  747. if (ret < 0) {
  748. switch (ret) {
  749. case -EKEYEXPIRED:
  750. abort_code = RXKADEXPIRED;
  751. goto other_error;
  752. default:
  753. abort_code = RXKADNOAUTH;
  754. goto other_error;
  755. }
  756. }
  757. ASSERT(conn->server_key->payload.data[0] != NULL);
  758. ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
  759. memcpy(&iv, &conn->server_key->payload.data[2], sizeof(iv));
  760. ret = -ENOMEM;
  761. req = skcipher_request_alloc(conn->server_key->payload.data[0],
  762. GFP_NOFS);
  763. if (!req)
  764. goto temporary_error;
  765. sg_init_one(&sg[0], ticket, ticket_len);
  766. skcipher_request_set_callback(req, 0, NULL, NULL);
  767. skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
  768. crypto_skcipher_decrypt(req);
  769. skcipher_request_free(req);
  770. p = ticket;
  771. end = p + ticket_len;
  772. #define Z(field) \
  773. ({ \
  774. u8 *__str = p; \
  775. eproto = tracepoint_string("rxkad_bad_"#field); \
  776. q = memchr(p, 0, end - p); \
  777. if (!q || q - p > (field##_SZ)) \
  778. goto bad_ticket; \
  779. for (; p < q; p++) \
  780. if (!isprint(*p)) \
  781. goto bad_ticket; \
  782. p++; \
  783. __str; \
  784. })
  785. /* extract the ticket flags */
  786. _debug("KIV FLAGS: %x", *p);
  787. little_endian = *p & 1;
  788. p++;
  789. /* extract the authentication name */
  790. name = Z(ANAME);
  791. _debug("KIV ANAME: %s", name);
  792. /* extract the principal's instance */
  793. name = Z(INST);
  794. _debug("KIV INST : %s", name);
  795. /* extract the principal's authentication domain */
  796. name = Z(REALM);
  797. _debug("KIV REALM: %s", name);
  798. eproto = tracepoint_string("rxkad_bad_len");
  799. if (end - p < 4 + 8 + 4 + 2)
  800. goto bad_ticket;
  801. /* get the IPv4 address of the entity that requested the ticket */
  802. memcpy(&addr, p, sizeof(addr));
  803. p += 4;
  804. _debug("KIV ADDR : %pI4", &addr);
  805. /* get the session key from the ticket */
  806. memcpy(&key, p, sizeof(key));
  807. p += 8;
  808. _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
  809. memcpy(_session_key, &key, sizeof(key));
  810. /* get the ticket's lifetime */
  811. life = *p++ * 5 * 60;
  812. _debug("KIV LIFE : %u", life);
  813. /* get the issue time of the ticket */
  814. if (little_endian) {
  815. __le32 stamp;
  816. memcpy(&stamp, p, 4);
  817. issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
  818. } else {
  819. __be32 stamp;
  820. memcpy(&stamp, p, 4);
  821. issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
  822. }
  823. p += 4;
  824. now = ktime_get_real_seconds();
  825. _debug("KIV ISSUE: %llx [%llx]", issue, now);
  826. /* check the ticket is in date */
  827. if (issue > now) {
  828. abort_code = RXKADNOAUTH;
  829. ret = -EKEYREJECTED;
  830. goto other_error;
  831. }
  832. if (issue < now - life) {
  833. abort_code = RXKADEXPIRED;
  834. ret = -EKEYEXPIRED;
  835. goto other_error;
  836. }
  837. *_expiry = issue + life;
  838. /* get the service name */
  839. name = Z(SNAME);
  840. _debug("KIV SNAME: %s", name);
  841. /* get the service instance name */
  842. name = Z(INST);
  843. _debug("KIV SINST: %s", name);
  844. return 0;
  845. bad_ticket:
  846. trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
  847. abort_code = RXKADBADTICKET;
  848. ret = -EPROTO;
  849. other_error:
  850. *_abort_code = abort_code;
  851. return ret;
  852. temporary_error:
  853. return ret;
  854. }
  855. /*
  856. * decrypt the response packet
  857. */
  858. static void rxkad_decrypt_response(struct rxrpc_connection *conn,
  859. struct rxkad_response *resp,
  860. const struct rxrpc_crypt *session_key)
  861. {
  862. SKCIPHER_REQUEST_ON_STACK(req, rxkad_ci);
  863. struct scatterlist sg[1];
  864. struct rxrpc_crypt iv;
  865. _enter(",,%08x%08x",
  866. ntohl(session_key->n[0]), ntohl(session_key->n[1]));
  867. ASSERT(rxkad_ci != NULL);
  868. mutex_lock(&rxkad_ci_mutex);
  869. if (crypto_skcipher_setkey(rxkad_ci, session_key->x,
  870. sizeof(*session_key)) < 0)
  871. BUG();
  872. memcpy(&iv, session_key, sizeof(iv));
  873. sg_init_table(sg, 1);
  874. sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
  875. skcipher_request_set_tfm(req, rxkad_ci);
  876. skcipher_request_set_callback(req, 0, NULL, NULL);
  877. skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
  878. crypto_skcipher_decrypt(req);
  879. skcipher_request_zero(req);
  880. mutex_unlock(&rxkad_ci_mutex);
  881. _leave("");
  882. }
  883. /*
  884. * verify a response
  885. */
  886. static int rxkad_verify_response(struct rxrpc_connection *conn,
  887. struct sk_buff *skb,
  888. u32 *_abort_code)
  889. {
  890. struct rxkad_response *response;
  891. struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
  892. struct rxrpc_crypt session_key;
  893. const char *eproto;
  894. time64_t expiry;
  895. void *ticket;
  896. u32 abort_code, version, kvno, ticket_len, level;
  897. __be32 csum;
  898. int ret, i;
  899. _enter("{%d,%x}", conn->debug_id, key_serial(conn->server_key));
  900. ret = -ENOMEM;
  901. response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
  902. if (!response)
  903. goto temporary_error;
  904. eproto = tracepoint_string("rxkad_rsp_short");
  905. abort_code = RXKADPACKETSHORT;
  906. if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
  907. response, sizeof(*response)) < 0)
  908. goto protocol_error;
  909. if (!pskb_pull(skb, sizeof(*response)))
  910. BUG();
  911. version = ntohl(response->version);
  912. ticket_len = ntohl(response->ticket_len);
  913. kvno = ntohl(response->kvno);
  914. _proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
  915. sp->hdr.serial, version, kvno, ticket_len);
  916. eproto = tracepoint_string("rxkad_rsp_ver");
  917. abort_code = RXKADINCONSISTENCY;
  918. if (version != RXKAD_VERSION)
  919. goto protocol_error;
  920. eproto = tracepoint_string("rxkad_rsp_tktlen");
  921. abort_code = RXKADTICKETLEN;
  922. if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
  923. goto protocol_error;
  924. eproto = tracepoint_string("rxkad_rsp_unkkey");
  925. abort_code = RXKADUNKNOWNKEY;
  926. if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
  927. goto protocol_error;
  928. /* extract the kerberos ticket and decrypt and decode it */
  929. ret = -ENOMEM;
  930. ticket = kmalloc(ticket_len, GFP_NOFS);
  931. if (!ticket)
  932. goto temporary_error;
  933. eproto = tracepoint_string("rxkad_tkt_short");
  934. abort_code = RXKADPACKETSHORT;
  935. if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
  936. ticket, ticket_len) < 0)
  937. goto protocol_error_free;
  938. ret = rxkad_decrypt_ticket(conn, skb, ticket, ticket_len, &session_key,
  939. &expiry, _abort_code);
  940. if (ret < 0)
  941. goto temporary_error_free_resp;
  942. /* use the session key from inside the ticket to decrypt the
  943. * response */
  944. rxkad_decrypt_response(conn, response, &session_key);
  945. eproto = tracepoint_string("rxkad_rsp_param");
  946. abort_code = RXKADSEALEDINCON;
  947. if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
  948. goto protocol_error_free;
  949. if (ntohl(response->encrypted.cid) != conn->proto.cid)
  950. goto protocol_error_free;
  951. if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
  952. goto protocol_error_free;
  953. csum = response->encrypted.checksum;
  954. response->encrypted.checksum = 0;
  955. rxkad_calc_response_checksum(response);
  956. eproto = tracepoint_string("rxkad_rsp_csum");
  957. if (response->encrypted.checksum != csum)
  958. goto protocol_error_free;
  959. spin_lock(&conn->channel_lock);
  960. for (i = 0; i < RXRPC_MAXCALLS; i++) {
  961. struct rxrpc_call *call;
  962. u32 call_id = ntohl(response->encrypted.call_id[i]);
  963. eproto = tracepoint_string("rxkad_rsp_callid");
  964. if (call_id > INT_MAX)
  965. goto protocol_error_unlock;
  966. eproto = tracepoint_string("rxkad_rsp_callctr");
  967. if (call_id < conn->channels[i].call_counter)
  968. goto protocol_error_unlock;
  969. eproto = tracepoint_string("rxkad_rsp_callst");
  970. if (call_id > conn->channels[i].call_counter) {
  971. call = rcu_dereference_protected(
  972. conn->channels[i].call,
  973. lockdep_is_held(&conn->channel_lock));
  974. if (call && call->state < RXRPC_CALL_COMPLETE)
  975. goto protocol_error_unlock;
  976. conn->channels[i].call_counter = call_id;
  977. }
  978. }
  979. spin_unlock(&conn->channel_lock);
  980. eproto = tracepoint_string("rxkad_rsp_seq");
  981. abort_code = RXKADOUTOFSEQUENCE;
  982. if (ntohl(response->encrypted.inc_nonce) != conn->security_nonce + 1)
  983. goto protocol_error_free;
  984. eproto = tracepoint_string("rxkad_rsp_level");
  985. abort_code = RXKADLEVELFAIL;
  986. level = ntohl(response->encrypted.level);
  987. if (level > RXRPC_SECURITY_ENCRYPT)
  988. goto protocol_error_free;
  989. conn->params.security_level = level;
  990. /* create a key to hold the security data and expiration time - after
  991. * this the connection security can be handled in exactly the same way
  992. * as for a client connection */
  993. ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
  994. if (ret < 0)
  995. goto temporary_error_free_ticket;
  996. kfree(ticket);
  997. kfree(response);
  998. _leave(" = 0");
  999. return 0;
  1000. protocol_error_unlock:
  1001. spin_unlock(&conn->channel_lock);
  1002. protocol_error_free:
  1003. kfree(ticket);
  1004. protocol_error:
  1005. kfree(response);
  1006. trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
  1007. *_abort_code = abort_code;
  1008. return -EPROTO;
  1009. temporary_error_free_ticket:
  1010. kfree(ticket);
  1011. temporary_error_free_resp:
  1012. kfree(response);
  1013. temporary_error:
  1014. /* Ignore the response packet if we got a temporary error such as
  1015. * ENOMEM. We just want to send the challenge again. Note that we
  1016. * also come out this way if the ticket decryption fails.
  1017. */
  1018. return ret;
  1019. }
  1020. /*
  1021. * clear the connection security
  1022. */
  1023. static void rxkad_clear(struct rxrpc_connection *conn)
  1024. {
  1025. _enter("");
  1026. if (conn->cipher)
  1027. crypto_free_skcipher(conn->cipher);
  1028. }
  1029. /*
  1030. * Initialise the rxkad security service.
  1031. */
  1032. static int rxkad_init(void)
  1033. {
  1034. /* pin the cipher we need so that the crypto layer doesn't invoke
  1035. * keventd to go get it */
  1036. rxkad_ci = crypto_alloc_skcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
  1037. return PTR_ERR_OR_ZERO(rxkad_ci);
  1038. }
  1039. /*
  1040. * Clean up the rxkad security service.
  1041. */
  1042. static void rxkad_exit(void)
  1043. {
  1044. if (rxkad_ci)
  1045. crypto_free_skcipher(rxkad_ci);
  1046. }
  1047. /*
  1048. * RxRPC Kerberos-based security
  1049. */
  1050. const struct rxrpc_security rxkad = {
  1051. .name = "rxkad",
  1052. .security_index = RXRPC_SECURITY_RXKAD,
  1053. .init = rxkad_init,
  1054. .exit = rxkad_exit,
  1055. .init_connection_security = rxkad_init_connection_security,
  1056. .prime_packet_security = rxkad_prime_packet_security,
  1057. .secure_packet = rxkad_secure_packet,
  1058. .verify_packet = rxkad_verify_packet,
  1059. .locate_data = rxkad_locate_data,
  1060. .issue_challenge = rxkad_issue_challenge,
  1061. .respond_to_challenge = rxkad_respond_to_challenge,
  1062. .verify_response = rxkad_verify_response,
  1063. .clear = rxkad_clear,
  1064. };