tcp_recovery.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/tcp.h>
  3. #include <net/tcp.h>
  4. void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
  5. {
  6. struct tcp_sock *tp = tcp_sk(sk);
  7. tcp_skb_mark_lost_uncond_verify(tp, skb);
  8. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  9. /* Account for retransmits that are lost again */
  10. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  11. tp->retrans_out -= tcp_skb_pcount(skb);
  12. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
  13. tcp_skb_pcount(skb));
  14. }
  15. }
  16. static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
  17. {
  18. return t1 > t2 || (t1 == t2 && after(seq1, seq2));
  19. }
  20. static u32 tcp_rack_reo_wnd(const struct sock *sk)
  21. {
  22. struct tcp_sock *tp = tcp_sk(sk);
  23. if (!tp->reord_seen) {
  24. /* If reordering has not been observed, be aggressive during
  25. * the recovery or starting the recovery by DUPACK threshold.
  26. */
  27. if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
  28. return 0;
  29. if (tp->sacked_out >= tp->reordering &&
  30. !(sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_NO_DUPTHRESH))
  31. return 0;
  32. }
  33. /* To be more reordering resilient, allow min_rtt/4 settling delay.
  34. * Use min_rtt instead of the smoothed RTT because reordering is
  35. * often a path property and less related to queuing or delayed ACKs.
  36. * Upon receiving DSACKs, linearly increase the window up to the
  37. * smoothed RTT.
  38. */
  39. return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
  40. tp->srtt_us >> 3);
  41. }
  42. s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
  43. {
  44. return tp->rack.rtt_us + reo_wnd -
  45. tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp);
  46. }
  47. /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
  48. *
  49. * Marks a packet lost, if some packet sent later has been (s)acked.
  50. * The underlying idea is similar to the traditional dupthresh and FACK
  51. * but they look at different metrics:
  52. *
  53. * dupthresh: 3 OOO packets delivered (packet count)
  54. * FACK: sequence delta to highest sacked sequence (sequence space)
  55. * RACK: sent time delta to the latest delivered packet (time domain)
  56. *
  57. * The advantage of RACK is it applies to both original and retransmitted
  58. * packet and therefore is robust against tail losses. Another advantage
  59. * is being more resilient to reordering by simply allowing some
  60. * "settling delay", instead of tweaking the dupthresh.
  61. *
  62. * When tcp_rack_detect_loss() detects some packets are lost and we
  63. * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
  64. * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
  65. * make us enter the CA_Recovery state.
  66. */
  67. static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
  68. {
  69. struct tcp_sock *tp = tcp_sk(sk);
  70. struct sk_buff *skb, *n;
  71. u32 reo_wnd;
  72. *reo_timeout = 0;
  73. reo_wnd = tcp_rack_reo_wnd(sk);
  74. list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
  75. tcp_tsorted_anchor) {
  76. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  77. s32 remaining;
  78. /* Skip ones marked lost but not yet retransmitted */
  79. if ((scb->sacked & TCPCB_LOST) &&
  80. !(scb->sacked & TCPCB_SACKED_RETRANS))
  81. continue;
  82. if (!tcp_rack_sent_after(tp->rack.mstamp, skb->skb_mstamp,
  83. tp->rack.end_seq, scb->end_seq))
  84. break;
  85. /* A packet is lost if it has not been s/acked beyond
  86. * the recent RTT plus the reordering window.
  87. */
  88. remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
  89. if (remaining <= 0) {
  90. tcp_mark_skb_lost(sk, skb);
  91. list_del_init(&skb->tcp_tsorted_anchor);
  92. } else {
  93. /* Record maximum wait time */
  94. *reo_timeout = max_t(u32, *reo_timeout, remaining);
  95. }
  96. }
  97. }
  98. void tcp_rack_mark_lost(struct sock *sk)
  99. {
  100. struct tcp_sock *tp = tcp_sk(sk);
  101. u32 timeout;
  102. if (!tp->rack.advanced)
  103. return;
  104. /* Reset the advanced flag to avoid unnecessary queue scanning */
  105. tp->rack.advanced = 0;
  106. tcp_rack_detect_loss(sk, &timeout);
  107. if (timeout) {
  108. timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN;
  109. inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
  110. timeout, inet_csk(sk)->icsk_rto);
  111. }
  112. }
  113. /* Record the most recently (re)sent time among the (s)acked packets
  114. * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
  115. * draft-cheng-tcpm-rack-00.txt
  116. */
  117. void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
  118. u64 xmit_time)
  119. {
  120. u32 rtt_us;
  121. rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
  122. if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
  123. /* If the sacked packet was retransmitted, it's ambiguous
  124. * whether the retransmission or the original (or the prior
  125. * retransmission) was sacked.
  126. *
  127. * If the original is lost, there is no ambiguity. Otherwise
  128. * we assume the original can be delayed up to aRTT + min_rtt.
  129. * the aRTT term is bounded by the fast recovery or timeout,
  130. * so it's at least one RTT (i.e., retransmission is at least
  131. * an RTT later).
  132. */
  133. return;
  134. }
  135. tp->rack.advanced = 1;
  136. tp->rack.rtt_us = rtt_us;
  137. if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp,
  138. end_seq, tp->rack.end_seq)) {
  139. tp->rack.mstamp = xmit_time;
  140. tp->rack.end_seq = end_seq;
  141. }
  142. }
  143. /* We have waited long enough to accommodate reordering. Mark the expired
  144. * packets lost and retransmit them.
  145. */
  146. void tcp_rack_reo_timeout(struct sock *sk)
  147. {
  148. struct tcp_sock *tp = tcp_sk(sk);
  149. u32 timeout, prior_inflight;
  150. prior_inflight = tcp_packets_in_flight(tp);
  151. tcp_rack_detect_loss(sk, &timeout);
  152. if (prior_inflight != tcp_packets_in_flight(tp)) {
  153. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
  154. tcp_enter_recovery(sk, false);
  155. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  156. tcp_cwnd_reduction(sk, 1, 0);
  157. }
  158. tcp_xmit_retransmit_queue(sk);
  159. }
  160. if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
  161. tcp_rearm_rto(sk);
  162. }
  163. /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
  164. *
  165. * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded
  166. * by srtt), since there is possibility that spurious retransmission was
  167. * due to reordering delay longer than reo_wnd.
  168. *
  169. * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
  170. * no. of successful recoveries (accounts for full DSACK-based loss
  171. * recovery undo). After that, reset it to default (min_rtt/4).
  172. *
  173. * At max, reo_wnd is incremented only once per rtt. So that the new
  174. * DSACK on which we are reacting, is due to the spurious retx (approx)
  175. * after the reo_wnd has been updated last time.
  176. *
  177. * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
  178. * absolute value to account for change in rtt.
  179. */
  180. void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
  181. {
  182. struct tcp_sock *tp = tcp_sk(sk);
  183. if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_STATIC_REO_WND ||
  184. !rs->prior_delivered)
  185. return;
  186. /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
  187. if (before(rs->prior_delivered, tp->rack.last_delivered))
  188. tp->rack.dsack_seen = 0;
  189. /* Adjust the reo_wnd if update is pending */
  190. if (tp->rack.dsack_seen) {
  191. tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
  192. tp->rack.reo_wnd_steps + 1);
  193. tp->rack.dsack_seen = 0;
  194. tp->rack.last_delivered = tp->delivered;
  195. tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
  196. } else if (!tp->rack.reo_wnd_persist) {
  197. tp->rack.reo_wnd_steps = 1;
  198. }
  199. }
  200. /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
  201. * the next unacked packet upon receiving
  202. * a) three or more DUPACKs to start the fast recovery
  203. * b) an ACK acknowledging new data during the fast recovery.
  204. */
  205. void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
  206. {
  207. const u8 state = inet_csk(sk)->icsk_ca_state;
  208. struct tcp_sock *tp = tcp_sk(sk);
  209. if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
  210. (state == TCP_CA_Recovery && snd_una_advanced)) {
  211. struct sk_buff *skb = tcp_rtx_queue_head(sk);
  212. u32 mss;
  213. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  214. return;
  215. mss = tcp_skb_mss(skb);
  216. if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
  217. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  218. mss, mss, GFP_ATOMIC);
  219. tcp_skb_mark_lost_uncond_verify(tp, skb);
  220. }
  221. }