tcp_output.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes: Pedro Roque : Retransmit queue handled by TCP.
  22. * : Fragmentation on mtu decrease
  23. * : Segment collapse on retransmit
  24. * : AF independence
  25. *
  26. * Linus Torvalds : send_delayed_ack
  27. * David S. Miller : Charge memory using the right skb
  28. * during syn/ack processing.
  29. * David S. Miller : Output engine completely rewritten.
  30. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
  31. * Cacophonix Gaul : draft-minshall-nagle-01
  32. * J Hadi Salim : ECN support
  33. *
  34. */
  35. #define pr_fmt(fmt) "TCP: " fmt
  36. #include <net/tcp.h>
  37. #include <linux/compiler.h>
  38. #include <linux/gfp.h>
  39. #include <linux/module.h>
  40. #include <linux/static_key.h>
  41. #include <trace/events/tcp.h>
  42. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  43. int push_one, gfp_t gfp);
  44. /* Account for new data that has been sent to the network. */
  45. static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  46. {
  47. struct inet_connection_sock *icsk = inet_csk(sk);
  48. struct tcp_sock *tp = tcp_sk(sk);
  49. unsigned int prior_packets = tp->packets_out;
  50. tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  51. __skb_unlink(skb, &sk->sk_write_queue);
  52. tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  53. if (tp->highest_sack == NULL)
  54. tp->highest_sack = skb;
  55. tp->packets_out += tcp_skb_pcount(skb);
  56. if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  57. tcp_rearm_rto(sk);
  58. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  59. tcp_skb_pcount(skb));
  60. }
  61. /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  62. * window scaling factor due to loss of precision.
  63. * If window has been shrunk, what should we make? It is not clear at all.
  64. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  65. * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  66. * invalid. OK, let's make this for now:
  67. */
  68. static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  69. {
  70. const struct tcp_sock *tp = tcp_sk(sk);
  71. if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  72. (tp->rx_opt.wscale_ok &&
  73. ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
  74. return tp->snd_nxt;
  75. else
  76. return tcp_wnd_end(tp);
  77. }
  78. /* Calculate mss to advertise in SYN segment.
  79. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
  80. *
  81. * 1. It is independent of path mtu.
  82. * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
  83. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
  84. * attached devices, because some buggy hosts are confused by
  85. * large MSS.
  86. * 4. We do not make 3, we advertise MSS, calculated from first
  87. * hop device mtu, but allow to raise it to ip_rt_min_advmss.
  88. * This may be overridden via information stored in routing table.
  89. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
  90. * probably even Jumbo".
  91. */
  92. static __u16 tcp_advertise_mss(struct sock *sk)
  93. {
  94. struct tcp_sock *tp = tcp_sk(sk);
  95. const struct dst_entry *dst = __sk_dst_get(sk);
  96. int mss = tp->advmss;
  97. if (dst) {
  98. unsigned int metric = dst_metric_advmss(dst);
  99. if (metric < mss) {
  100. mss = metric;
  101. tp->advmss = mss;
  102. }
  103. }
  104. return (__u16)mss;
  105. }
  106. /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
  107. * This is the first part of cwnd validation mechanism.
  108. */
  109. void tcp_cwnd_restart(struct sock *sk, s32 delta)
  110. {
  111. struct tcp_sock *tp = tcp_sk(sk);
  112. u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
  113. u32 cwnd = tp->snd_cwnd;
  114. tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
  115. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  116. restart_cwnd = min(restart_cwnd, cwnd);
  117. while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
  118. cwnd >>= 1;
  119. tp->snd_cwnd = max(cwnd, restart_cwnd);
  120. tp->snd_cwnd_stamp = tcp_jiffies32;
  121. tp->snd_cwnd_used = 0;
  122. }
  123. /* Congestion state accounting after a packet has been sent. */
  124. static void tcp_event_data_sent(struct tcp_sock *tp,
  125. struct sock *sk)
  126. {
  127. struct inet_connection_sock *icsk = inet_csk(sk);
  128. const u32 now = tcp_jiffies32;
  129. if (tcp_packets_in_flight(tp) == 0)
  130. tcp_ca_event(sk, CA_EVENT_TX_START);
  131. tp->lsndtime = now;
  132. /* If it is a reply for ato after last received
  133. * packet, enter pingpong mode.
  134. */
  135. if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
  136. icsk->icsk_ack.pingpong = 1;
  137. }
  138. /* Account for an ACK we sent. */
  139. static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
  140. u32 rcv_nxt)
  141. {
  142. struct tcp_sock *tp = tcp_sk(sk);
  143. if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
  144. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
  145. tp->compressed_ack - TCP_FASTRETRANS_THRESH);
  146. tp->compressed_ack = TCP_FASTRETRANS_THRESH;
  147. if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
  148. __sock_put(sk);
  149. }
  150. if (unlikely(rcv_nxt != tp->rcv_nxt))
  151. return; /* Special ACK sent by DCTCP to reflect ECN */
  152. tcp_dec_quickack_mode(sk, pkts);
  153. inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
  154. }
  155. /* Determine a window scaling and initial window to offer.
  156. * Based on the assumption that the given amount of space
  157. * will be offered. Store the results in the tp structure.
  158. * NOTE: for smooth operation initial space offering should
  159. * be a multiple of mss if possible. We assume here that mss >= 1.
  160. * This MUST be enforced by all callers.
  161. */
  162. void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
  163. __u32 *rcv_wnd, __u32 *window_clamp,
  164. int wscale_ok, __u8 *rcv_wscale,
  165. __u32 init_rcv_wnd)
  166. {
  167. unsigned int space = (__space < 0 ? 0 : __space);
  168. /* If no clamp set the clamp to the max possible scaled window */
  169. if (*window_clamp == 0)
  170. (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
  171. space = min(*window_clamp, space);
  172. /* Quantize space offering to a multiple of mss if possible. */
  173. if (space > mss)
  174. space = rounddown(space, mss);
  175. /* NOTE: offering an initial window larger than 32767
  176. * will break some buggy TCP stacks. If the admin tells us
  177. * it is likely we could be speaking with such a buggy stack
  178. * we will truncate our initial window offering to 32K-1
  179. * unless the remote has sent us a window scaling option,
  180. * which we interpret as a sign the remote TCP is not
  181. * misinterpreting the window field as a signed quantity.
  182. */
  183. if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  184. (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
  185. else
  186. (*rcv_wnd) = min_t(u32, space, U16_MAX);
  187. if (init_rcv_wnd)
  188. *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
  189. (*rcv_wscale) = 0;
  190. if (wscale_ok) {
  191. /* Set window scaling on max possible window */
  192. space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
  193. space = max_t(u32, space, sysctl_rmem_max);
  194. space = min_t(u32, space, *window_clamp);
  195. while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
  196. space >>= 1;
  197. (*rcv_wscale)++;
  198. }
  199. }
  200. /* Set the clamp no higher than max representable value */
  201. (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
  202. }
  203. EXPORT_SYMBOL(tcp_select_initial_window);
  204. /* Chose a new window to advertise, update state in tcp_sock for the
  205. * socket, and return result with RFC1323 scaling applied. The return
  206. * value can be stuffed directly into th->window for an outgoing
  207. * frame.
  208. */
  209. static u16 tcp_select_window(struct sock *sk)
  210. {
  211. struct tcp_sock *tp = tcp_sk(sk);
  212. u32 old_win = tp->rcv_wnd;
  213. u32 cur_win = tcp_receive_window(tp);
  214. u32 new_win = __tcp_select_window(sk);
  215. /* Never shrink the offered window */
  216. if (new_win < cur_win) {
  217. /* Danger Will Robinson!
  218. * Don't update rcv_wup/rcv_wnd here or else
  219. * we will not be able to advertise a zero
  220. * window in time. --DaveM
  221. *
  222. * Relax Will Robinson.
  223. */
  224. if (new_win == 0)
  225. NET_INC_STATS(sock_net(sk),
  226. LINUX_MIB_TCPWANTZEROWINDOWADV);
  227. new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
  228. }
  229. tp->rcv_wnd = new_win;
  230. tp->rcv_wup = tp->rcv_nxt;
  231. /* Make sure we do not exceed the maximum possible
  232. * scaled window.
  233. */
  234. if (!tp->rx_opt.rcv_wscale &&
  235. sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
  236. new_win = min(new_win, MAX_TCP_WINDOW);
  237. else
  238. new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
  239. /* RFC1323 scaling applied */
  240. new_win >>= tp->rx_opt.rcv_wscale;
  241. /* If we advertise zero window, disable fast path. */
  242. if (new_win == 0) {
  243. tp->pred_flags = 0;
  244. if (old_win)
  245. NET_INC_STATS(sock_net(sk),
  246. LINUX_MIB_TCPTOZEROWINDOWADV);
  247. } else if (old_win == 0) {
  248. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
  249. }
  250. return new_win;
  251. }
  252. /* Packet ECN state for a SYN-ACK */
  253. static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
  254. {
  255. const struct tcp_sock *tp = tcp_sk(sk);
  256. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
  257. if (!(tp->ecn_flags & TCP_ECN_OK))
  258. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
  259. else if (tcp_ca_needs_ecn(sk) ||
  260. tcp_bpf_ca_needs_ecn(sk))
  261. INET_ECN_xmit(sk);
  262. }
  263. /* Packet ECN state for a SYN. */
  264. static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
  265. {
  266. struct tcp_sock *tp = tcp_sk(sk);
  267. bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
  268. bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
  269. tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
  270. if (!use_ecn) {
  271. const struct dst_entry *dst = __sk_dst_get(sk);
  272. if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
  273. use_ecn = true;
  274. }
  275. tp->ecn_flags = 0;
  276. if (use_ecn) {
  277. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
  278. tp->ecn_flags = TCP_ECN_OK;
  279. if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
  280. INET_ECN_xmit(sk);
  281. }
  282. }
  283. static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
  284. {
  285. if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
  286. /* tp->ecn_flags are cleared at a later point in time when
  287. * SYN ACK is ultimatively being received.
  288. */
  289. TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
  290. }
  291. static void
  292. tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
  293. {
  294. if (inet_rsk(req)->ecn_ok)
  295. th->ece = 1;
  296. }
  297. /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
  298. * be sent.
  299. */
  300. static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
  301. struct tcphdr *th, int tcp_header_len)
  302. {
  303. struct tcp_sock *tp = tcp_sk(sk);
  304. if (tp->ecn_flags & TCP_ECN_OK) {
  305. /* Not-retransmitted data segment: set ECT and inject CWR. */
  306. if (skb->len != tcp_header_len &&
  307. !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
  308. INET_ECN_xmit(sk);
  309. if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
  310. tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
  311. th->cwr = 1;
  312. skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
  313. }
  314. } else if (!tcp_ca_needs_ecn(sk)) {
  315. /* ACK or retransmitted segment: clear ECT|CE */
  316. INET_ECN_dontxmit(sk);
  317. }
  318. if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
  319. th->ece = 1;
  320. }
  321. }
  322. /* Constructs common control bits of non-data skb. If SYN/FIN is present,
  323. * auto increment end seqno.
  324. */
  325. static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
  326. {
  327. skb->ip_summed = CHECKSUM_PARTIAL;
  328. TCP_SKB_CB(skb)->tcp_flags = flags;
  329. TCP_SKB_CB(skb)->sacked = 0;
  330. tcp_skb_pcount_set(skb, 1);
  331. TCP_SKB_CB(skb)->seq = seq;
  332. if (flags & (TCPHDR_SYN | TCPHDR_FIN))
  333. seq++;
  334. TCP_SKB_CB(skb)->end_seq = seq;
  335. }
  336. static inline bool tcp_urg_mode(const struct tcp_sock *tp)
  337. {
  338. return tp->snd_una != tp->snd_up;
  339. }
  340. #define OPTION_SACK_ADVERTISE (1 << 0)
  341. #define OPTION_TS (1 << 1)
  342. #define OPTION_MD5 (1 << 2)
  343. #define OPTION_WSCALE (1 << 3)
  344. #define OPTION_FAST_OPEN_COOKIE (1 << 8)
  345. #define OPTION_SMC (1 << 9)
  346. static void smc_options_write(__be32 *ptr, u16 *options)
  347. {
  348. #if IS_ENABLED(CONFIG_SMC)
  349. if (static_branch_unlikely(&tcp_have_smc)) {
  350. if (unlikely(OPTION_SMC & *options)) {
  351. *ptr++ = htonl((TCPOPT_NOP << 24) |
  352. (TCPOPT_NOP << 16) |
  353. (TCPOPT_EXP << 8) |
  354. (TCPOLEN_EXP_SMC_BASE));
  355. *ptr++ = htonl(TCPOPT_SMC_MAGIC);
  356. }
  357. }
  358. #endif
  359. }
  360. struct tcp_out_options {
  361. u16 options; /* bit field of OPTION_* */
  362. u16 mss; /* 0 to disable */
  363. u8 ws; /* window scale, 0 to disable */
  364. u8 num_sack_blocks; /* number of SACK blocks to include */
  365. u8 hash_size; /* bytes in hash_location */
  366. __u8 *hash_location; /* temporary pointer, overloaded */
  367. __u32 tsval, tsecr; /* need to include OPTION_TS */
  368. struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
  369. };
  370. /* Write previously computed TCP options to the packet.
  371. *
  372. * Beware: Something in the Internet is very sensitive to the ordering of
  373. * TCP options, we learned this through the hard way, so be careful here.
  374. * Luckily we can at least blame others for their non-compliance but from
  375. * inter-operability perspective it seems that we're somewhat stuck with
  376. * the ordering which we have been using if we want to keep working with
  377. * those broken things (not that it currently hurts anybody as there isn't
  378. * particular reason why the ordering would need to be changed).
  379. *
  380. * At least SACK_PERM as the first option is known to lead to a disaster
  381. * (but it may well be that other scenarios fail similarly).
  382. */
  383. static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
  384. struct tcp_out_options *opts)
  385. {
  386. u16 options = opts->options; /* mungable copy */
  387. if (unlikely(OPTION_MD5 & options)) {
  388. *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
  389. (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
  390. /* overload cookie hash location */
  391. opts->hash_location = (__u8 *)ptr;
  392. ptr += 4;
  393. }
  394. if (unlikely(opts->mss)) {
  395. *ptr++ = htonl((TCPOPT_MSS << 24) |
  396. (TCPOLEN_MSS << 16) |
  397. opts->mss);
  398. }
  399. if (likely(OPTION_TS & options)) {
  400. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  401. *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
  402. (TCPOLEN_SACK_PERM << 16) |
  403. (TCPOPT_TIMESTAMP << 8) |
  404. TCPOLEN_TIMESTAMP);
  405. options &= ~OPTION_SACK_ADVERTISE;
  406. } else {
  407. *ptr++ = htonl((TCPOPT_NOP << 24) |
  408. (TCPOPT_NOP << 16) |
  409. (TCPOPT_TIMESTAMP << 8) |
  410. TCPOLEN_TIMESTAMP);
  411. }
  412. *ptr++ = htonl(opts->tsval);
  413. *ptr++ = htonl(opts->tsecr);
  414. }
  415. if (unlikely(OPTION_SACK_ADVERTISE & options)) {
  416. *ptr++ = htonl((TCPOPT_NOP << 24) |
  417. (TCPOPT_NOP << 16) |
  418. (TCPOPT_SACK_PERM << 8) |
  419. TCPOLEN_SACK_PERM);
  420. }
  421. if (unlikely(OPTION_WSCALE & options)) {
  422. *ptr++ = htonl((TCPOPT_NOP << 24) |
  423. (TCPOPT_WINDOW << 16) |
  424. (TCPOLEN_WINDOW << 8) |
  425. opts->ws);
  426. }
  427. if (unlikely(opts->num_sack_blocks)) {
  428. struct tcp_sack_block *sp = tp->rx_opt.dsack ?
  429. tp->duplicate_sack : tp->selective_acks;
  430. int this_sack;
  431. *ptr++ = htonl((TCPOPT_NOP << 24) |
  432. (TCPOPT_NOP << 16) |
  433. (TCPOPT_SACK << 8) |
  434. (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
  435. TCPOLEN_SACK_PERBLOCK)));
  436. for (this_sack = 0; this_sack < opts->num_sack_blocks;
  437. ++this_sack) {
  438. *ptr++ = htonl(sp[this_sack].start_seq);
  439. *ptr++ = htonl(sp[this_sack].end_seq);
  440. }
  441. tp->rx_opt.dsack = 0;
  442. }
  443. if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
  444. struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
  445. u8 *p = (u8 *)ptr;
  446. u32 len; /* Fast Open option length */
  447. if (foc->exp) {
  448. len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
  449. *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
  450. TCPOPT_FASTOPEN_MAGIC);
  451. p += TCPOLEN_EXP_FASTOPEN_BASE;
  452. } else {
  453. len = TCPOLEN_FASTOPEN_BASE + foc->len;
  454. *p++ = TCPOPT_FASTOPEN;
  455. *p++ = len;
  456. }
  457. memcpy(p, foc->val, foc->len);
  458. if ((len & 3) == 2) {
  459. p[foc->len] = TCPOPT_NOP;
  460. p[foc->len + 1] = TCPOPT_NOP;
  461. }
  462. ptr += (len + 3) >> 2;
  463. }
  464. smc_options_write(ptr, &options);
  465. }
  466. static void smc_set_option(const struct tcp_sock *tp,
  467. struct tcp_out_options *opts,
  468. unsigned int *remaining)
  469. {
  470. #if IS_ENABLED(CONFIG_SMC)
  471. if (static_branch_unlikely(&tcp_have_smc)) {
  472. if (tp->syn_smc) {
  473. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  474. opts->options |= OPTION_SMC;
  475. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  476. }
  477. }
  478. }
  479. #endif
  480. }
  481. static void smc_set_option_cond(const struct tcp_sock *tp,
  482. const struct inet_request_sock *ireq,
  483. struct tcp_out_options *opts,
  484. unsigned int *remaining)
  485. {
  486. #if IS_ENABLED(CONFIG_SMC)
  487. if (static_branch_unlikely(&tcp_have_smc)) {
  488. if (tp->syn_smc && ireq->smc_ok) {
  489. if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
  490. opts->options |= OPTION_SMC;
  491. *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
  492. }
  493. }
  494. }
  495. #endif
  496. }
  497. /* Compute TCP options for SYN packets. This is not the final
  498. * network wire format yet.
  499. */
  500. static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
  501. struct tcp_out_options *opts,
  502. struct tcp_md5sig_key **md5)
  503. {
  504. struct tcp_sock *tp = tcp_sk(sk);
  505. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  506. struct tcp_fastopen_request *fastopen = tp->fastopen_req;
  507. *md5 = NULL;
  508. #ifdef CONFIG_TCP_MD5SIG
  509. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  510. *md5 = tp->af_specific->md5_lookup(sk, sk);
  511. if (*md5) {
  512. opts->options |= OPTION_MD5;
  513. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  514. }
  515. }
  516. #endif
  517. /* We always get an MSS option. The option bytes which will be seen in
  518. * normal data packets should timestamps be used, must be in the MSS
  519. * advertised. But we subtract them from tp->mss_cache so that
  520. * calculations in tcp_sendmsg are simpler etc. So account for this
  521. * fact here if necessary. If we don't do this correctly, as a
  522. * receiver we won't recognize data packets as being full sized when we
  523. * should, and thus we won't abide by the delayed ACK rules correctly.
  524. * SACKs don't matter, we never delay an ACK when we have any of those
  525. * going out. */
  526. opts->mss = tcp_advertise_mss(sk);
  527. remaining -= TCPOLEN_MSS_ALIGNED;
  528. if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
  529. opts->options |= OPTION_TS;
  530. opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
  531. opts->tsecr = tp->rx_opt.ts_recent;
  532. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  533. }
  534. if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
  535. opts->ws = tp->rx_opt.rcv_wscale;
  536. opts->options |= OPTION_WSCALE;
  537. remaining -= TCPOLEN_WSCALE_ALIGNED;
  538. }
  539. if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
  540. opts->options |= OPTION_SACK_ADVERTISE;
  541. if (unlikely(!(OPTION_TS & opts->options)))
  542. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  543. }
  544. if (fastopen && fastopen->cookie.len >= 0) {
  545. u32 need = fastopen->cookie.len;
  546. need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  547. TCPOLEN_FASTOPEN_BASE;
  548. need = (need + 3) & ~3U; /* Align to 32 bits */
  549. if (remaining >= need) {
  550. opts->options |= OPTION_FAST_OPEN_COOKIE;
  551. opts->fastopen_cookie = &fastopen->cookie;
  552. remaining -= need;
  553. tp->syn_fastopen = 1;
  554. tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
  555. }
  556. }
  557. smc_set_option(tp, opts, &remaining);
  558. return MAX_TCP_OPTION_SPACE - remaining;
  559. }
  560. /* Set up TCP options for SYN-ACKs. */
  561. static unsigned int tcp_synack_options(const struct sock *sk,
  562. struct request_sock *req,
  563. unsigned int mss, struct sk_buff *skb,
  564. struct tcp_out_options *opts,
  565. const struct tcp_md5sig_key *md5,
  566. struct tcp_fastopen_cookie *foc)
  567. {
  568. struct inet_request_sock *ireq = inet_rsk(req);
  569. unsigned int remaining = MAX_TCP_OPTION_SPACE;
  570. #ifdef CONFIG_TCP_MD5SIG
  571. if (md5) {
  572. opts->options |= OPTION_MD5;
  573. remaining -= TCPOLEN_MD5SIG_ALIGNED;
  574. /* We can't fit any SACK blocks in a packet with MD5 + TS
  575. * options. There was discussion about disabling SACK
  576. * rather than TS in order to fit in better with old,
  577. * buggy kernels, but that was deemed to be unnecessary.
  578. */
  579. ireq->tstamp_ok &= !ireq->sack_ok;
  580. }
  581. #endif
  582. /* We always send an MSS option. */
  583. opts->mss = mss;
  584. remaining -= TCPOLEN_MSS_ALIGNED;
  585. if (likely(ireq->wscale_ok)) {
  586. opts->ws = ireq->rcv_wscale;
  587. opts->options |= OPTION_WSCALE;
  588. remaining -= TCPOLEN_WSCALE_ALIGNED;
  589. }
  590. if (likely(ireq->tstamp_ok)) {
  591. opts->options |= OPTION_TS;
  592. opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
  593. opts->tsecr = req->ts_recent;
  594. remaining -= TCPOLEN_TSTAMP_ALIGNED;
  595. }
  596. if (likely(ireq->sack_ok)) {
  597. opts->options |= OPTION_SACK_ADVERTISE;
  598. if (unlikely(!ireq->tstamp_ok))
  599. remaining -= TCPOLEN_SACKPERM_ALIGNED;
  600. }
  601. if (foc != NULL && foc->len >= 0) {
  602. u32 need = foc->len;
  603. need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
  604. TCPOLEN_FASTOPEN_BASE;
  605. need = (need + 3) & ~3U; /* Align to 32 bits */
  606. if (remaining >= need) {
  607. opts->options |= OPTION_FAST_OPEN_COOKIE;
  608. opts->fastopen_cookie = foc;
  609. remaining -= need;
  610. }
  611. }
  612. smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
  613. return MAX_TCP_OPTION_SPACE - remaining;
  614. }
  615. /* Compute TCP options for ESTABLISHED sockets. This is not the
  616. * final wire format yet.
  617. */
  618. static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
  619. struct tcp_out_options *opts,
  620. struct tcp_md5sig_key **md5)
  621. {
  622. struct tcp_sock *tp = tcp_sk(sk);
  623. unsigned int size = 0;
  624. unsigned int eff_sacks;
  625. opts->options = 0;
  626. *md5 = NULL;
  627. #ifdef CONFIG_TCP_MD5SIG
  628. if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
  629. *md5 = tp->af_specific->md5_lookup(sk, sk);
  630. if (*md5) {
  631. opts->options |= OPTION_MD5;
  632. size += TCPOLEN_MD5SIG_ALIGNED;
  633. }
  634. }
  635. #endif
  636. if (likely(tp->rx_opt.tstamp_ok)) {
  637. opts->options |= OPTION_TS;
  638. opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
  639. opts->tsecr = tp->rx_opt.ts_recent;
  640. size += TCPOLEN_TSTAMP_ALIGNED;
  641. }
  642. eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  643. if (unlikely(eff_sacks)) {
  644. const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
  645. opts->num_sack_blocks =
  646. min_t(unsigned int, eff_sacks,
  647. (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
  648. TCPOLEN_SACK_PERBLOCK);
  649. if (likely(opts->num_sack_blocks))
  650. size += TCPOLEN_SACK_BASE_ALIGNED +
  651. opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
  652. }
  653. return size;
  654. }
  655. /* TCP SMALL QUEUES (TSQ)
  656. *
  657. * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
  658. * to reduce RTT and bufferbloat.
  659. * We do this using a special skb destructor (tcp_wfree).
  660. *
  661. * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
  662. * needs to be reallocated in a driver.
  663. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
  664. *
  665. * Since transmit from skb destructor is forbidden, we use a tasklet
  666. * to process all sockets that eventually need to send more skbs.
  667. * We use one tasklet per cpu, with its own queue of sockets.
  668. */
  669. struct tsq_tasklet {
  670. struct tasklet_struct tasklet;
  671. struct list_head head; /* queue of tcp sockets */
  672. };
  673. static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
  674. static void tcp_tsq_write(struct sock *sk)
  675. {
  676. if ((1 << sk->sk_state) &
  677. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
  678. TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
  679. struct tcp_sock *tp = tcp_sk(sk);
  680. if (tp->lost_out > tp->retrans_out &&
  681. tp->snd_cwnd > tcp_packets_in_flight(tp)) {
  682. tcp_mstamp_refresh(tp);
  683. tcp_xmit_retransmit_queue(sk);
  684. }
  685. tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
  686. 0, GFP_ATOMIC);
  687. }
  688. }
  689. static void tcp_tsq_handler(struct sock *sk)
  690. {
  691. bh_lock_sock(sk);
  692. if (!sock_owned_by_user(sk))
  693. tcp_tsq_write(sk);
  694. else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
  695. sock_hold(sk);
  696. bh_unlock_sock(sk);
  697. }
  698. /*
  699. * One tasklet per cpu tries to send more skbs.
  700. * We run in tasklet context but need to disable irqs when
  701. * transferring tsq->head because tcp_wfree() might
  702. * interrupt us (non NAPI drivers)
  703. */
  704. static void tcp_tasklet_func(unsigned long data)
  705. {
  706. struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
  707. LIST_HEAD(list);
  708. unsigned long flags;
  709. struct list_head *q, *n;
  710. struct tcp_sock *tp;
  711. struct sock *sk;
  712. local_irq_save(flags);
  713. list_splice_init(&tsq->head, &list);
  714. local_irq_restore(flags);
  715. list_for_each_safe(q, n, &list) {
  716. tp = list_entry(q, struct tcp_sock, tsq_node);
  717. list_del(&tp->tsq_node);
  718. sk = (struct sock *)tp;
  719. smp_mb__before_atomic();
  720. clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
  721. tcp_tsq_handler(sk);
  722. sk_free(sk);
  723. }
  724. }
  725. #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
  726. TCPF_WRITE_TIMER_DEFERRED | \
  727. TCPF_DELACK_TIMER_DEFERRED | \
  728. TCPF_MTU_REDUCED_DEFERRED)
  729. /**
  730. * tcp_release_cb - tcp release_sock() callback
  731. * @sk: socket
  732. *
  733. * called from release_sock() to perform protocol dependent
  734. * actions before socket release.
  735. */
  736. void tcp_release_cb(struct sock *sk)
  737. {
  738. unsigned long flags, nflags;
  739. /* perform an atomic operation only if at least one flag is set */
  740. do {
  741. flags = sk->sk_tsq_flags;
  742. if (!(flags & TCP_DEFERRED_ALL))
  743. return;
  744. nflags = flags & ~TCP_DEFERRED_ALL;
  745. } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
  746. if (flags & TCPF_TSQ_DEFERRED) {
  747. tcp_tsq_write(sk);
  748. __sock_put(sk);
  749. }
  750. /* Here begins the tricky part :
  751. * We are called from release_sock() with :
  752. * 1) BH disabled
  753. * 2) sk_lock.slock spinlock held
  754. * 3) socket owned by us (sk->sk_lock.owned == 1)
  755. *
  756. * But following code is meant to be called from BH handlers,
  757. * so we should keep BH disabled, but early release socket ownership
  758. */
  759. sock_release_ownership(sk);
  760. if (flags & TCPF_WRITE_TIMER_DEFERRED) {
  761. tcp_write_timer_handler(sk);
  762. __sock_put(sk);
  763. }
  764. if (flags & TCPF_DELACK_TIMER_DEFERRED) {
  765. tcp_delack_timer_handler(sk);
  766. __sock_put(sk);
  767. }
  768. if (flags & TCPF_MTU_REDUCED_DEFERRED) {
  769. inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
  770. __sock_put(sk);
  771. }
  772. }
  773. EXPORT_SYMBOL(tcp_release_cb);
  774. void __init tcp_tasklet_init(void)
  775. {
  776. int i;
  777. for_each_possible_cpu(i) {
  778. struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
  779. INIT_LIST_HEAD(&tsq->head);
  780. tasklet_init(&tsq->tasklet,
  781. tcp_tasklet_func,
  782. (unsigned long)tsq);
  783. }
  784. }
  785. /*
  786. * Write buffer destructor automatically called from kfree_skb.
  787. * We can't xmit new skbs from this context, as we might already
  788. * hold qdisc lock.
  789. */
  790. void tcp_wfree(struct sk_buff *skb)
  791. {
  792. struct sock *sk = skb->sk;
  793. struct tcp_sock *tp = tcp_sk(sk);
  794. unsigned long flags, nval, oval;
  795. /* Keep one reference on sk_wmem_alloc.
  796. * Will be released by sk_free() from here or tcp_tasklet_func()
  797. */
  798. WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
  799. /* If this softirq is serviced by ksoftirqd, we are likely under stress.
  800. * Wait until our queues (qdisc + devices) are drained.
  801. * This gives :
  802. * - less callbacks to tcp_write_xmit(), reducing stress (batches)
  803. * - chance for incoming ACK (processed by another cpu maybe)
  804. * to migrate this flow (skb->ooo_okay will be eventually set)
  805. */
  806. if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
  807. goto out;
  808. for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
  809. struct tsq_tasklet *tsq;
  810. bool empty;
  811. if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
  812. goto out;
  813. nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
  814. nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
  815. if (nval != oval)
  816. continue;
  817. /* queue this socket to tasklet queue */
  818. local_irq_save(flags);
  819. tsq = this_cpu_ptr(&tsq_tasklet);
  820. empty = list_empty(&tsq->head);
  821. list_add(&tp->tsq_node, &tsq->head);
  822. if (empty)
  823. tasklet_schedule(&tsq->tasklet);
  824. local_irq_restore(flags);
  825. return;
  826. }
  827. out:
  828. sk_free(sk);
  829. }
  830. /* Note: Called under soft irq.
  831. * We can call TCP stack right away, unless socket is owned by user.
  832. */
  833. enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
  834. {
  835. struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
  836. struct sock *sk = (struct sock *)tp;
  837. tcp_tsq_handler(sk);
  838. sock_put(sk);
  839. return HRTIMER_NORESTART;
  840. }
  841. static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
  842. {
  843. u64 len_ns;
  844. u32 rate;
  845. if (!tcp_needs_internal_pacing(sk))
  846. return;
  847. rate = sk->sk_pacing_rate;
  848. if (!rate || rate == ~0U)
  849. return;
  850. len_ns = (u64)skb->len * NSEC_PER_SEC;
  851. do_div(len_ns, rate);
  852. hrtimer_start(&tcp_sk(sk)->pacing_timer,
  853. ktime_add_ns(ktime_get(), len_ns),
  854. HRTIMER_MODE_ABS_PINNED_SOFT);
  855. sock_hold(sk);
  856. }
  857. static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
  858. {
  859. skb->skb_mstamp = tp->tcp_mstamp;
  860. list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
  861. }
  862. /* This routine actually transmits TCP packets queued in by
  863. * tcp_do_sendmsg(). This is used by both the initial
  864. * transmission and possible later retransmissions.
  865. * All SKB's seen here are completely headerless. It is our
  866. * job to build the TCP header, and pass the packet down to
  867. * IP so it can do the same plus pass the packet off to the
  868. * device.
  869. *
  870. * We are working here with either a clone of the original
  871. * SKB, or a fresh unique copy made by the retransmit engine.
  872. */
  873. static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
  874. int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
  875. {
  876. const struct inet_connection_sock *icsk = inet_csk(sk);
  877. struct inet_sock *inet;
  878. struct tcp_sock *tp;
  879. struct tcp_skb_cb *tcb;
  880. struct tcp_out_options opts;
  881. unsigned int tcp_options_size, tcp_header_size;
  882. struct sk_buff *oskb = NULL;
  883. struct tcp_md5sig_key *md5;
  884. struct tcphdr *th;
  885. int err;
  886. BUG_ON(!skb || !tcp_skb_pcount(skb));
  887. tp = tcp_sk(sk);
  888. if (clone_it) {
  889. TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
  890. - tp->snd_una;
  891. oskb = skb;
  892. tcp_skb_tsorted_save(oskb) {
  893. if (unlikely(skb_cloned(oskb)))
  894. skb = pskb_copy(oskb, gfp_mask);
  895. else
  896. skb = skb_clone(oskb, gfp_mask);
  897. } tcp_skb_tsorted_restore(oskb);
  898. if (unlikely(!skb))
  899. return -ENOBUFS;
  900. }
  901. skb->skb_mstamp = tp->tcp_mstamp;
  902. inet = inet_sk(sk);
  903. tcb = TCP_SKB_CB(skb);
  904. memset(&opts, 0, sizeof(opts));
  905. if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
  906. tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
  907. else
  908. tcp_options_size = tcp_established_options(sk, skb, &opts,
  909. &md5);
  910. tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
  911. /* if no packet is in qdisc/device queue, then allow XPS to select
  912. * another queue. We can be called from tcp_tsq_handler()
  913. * which holds one reference to sk.
  914. *
  915. * TODO: Ideally, in-flight pure ACK packets should not matter here.
  916. * One way to get this would be to set skb->truesize = 2 on them.
  917. */
  918. skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
  919. /* If we had to use memory reserve to allocate this skb,
  920. * this might cause drops if packet is looped back :
  921. * Other socket might not have SOCK_MEMALLOC.
  922. * Packets not looped back do not care about pfmemalloc.
  923. */
  924. skb->pfmemalloc = 0;
  925. skb_push(skb, tcp_header_size);
  926. skb_reset_transport_header(skb);
  927. skb_orphan(skb);
  928. skb->sk = sk;
  929. skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
  930. skb_set_hash_from_sk(skb, sk);
  931. refcount_add(skb->truesize, &sk->sk_wmem_alloc);
  932. skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
  933. /* Build TCP header and checksum it. */
  934. th = (struct tcphdr *)skb->data;
  935. th->source = inet->inet_sport;
  936. th->dest = inet->inet_dport;
  937. th->seq = htonl(tcb->seq);
  938. th->ack_seq = htonl(rcv_nxt);
  939. *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
  940. tcb->tcp_flags);
  941. th->check = 0;
  942. th->urg_ptr = 0;
  943. /* The urg_mode check is necessary during a below snd_una win probe */
  944. if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
  945. if (before(tp->snd_up, tcb->seq + 0x10000)) {
  946. th->urg_ptr = htons(tp->snd_up - tcb->seq);
  947. th->urg = 1;
  948. } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
  949. th->urg_ptr = htons(0xFFFF);
  950. th->urg = 1;
  951. }
  952. }
  953. tcp_options_write((__be32 *)(th + 1), tp, &opts);
  954. skb_shinfo(skb)->gso_type = sk->sk_gso_type;
  955. if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
  956. th->window = htons(tcp_select_window(sk));
  957. tcp_ecn_send(sk, skb, th, tcp_header_size);
  958. } else {
  959. /* RFC1323: The window in SYN & SYN/ACK segments
  960. * is never scaled.
  961. */
  962. th->window = htons(min(tp->rcv_wnd, 65535U));
  963. }
  964. #ifdef CONFIG_TCP_MD5SIG
  965. /* Calculate the MD5 hash, as we have all we need now */
  966. if (md5) {
  967. sk_nocaps_add(sk, NETIF_F_GSO_MASK);
  968. tp->af_specific->calc_md5_hash(opts.hash_location,
  969. md5, sk, skb);
  970. }
  971. #endif
  972. icsk->icsk_af_ops->send_check(sk, skb);
  973. if (likely(tcb->tcp_flags & TCPHDR_ACK))
  974. tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
  975. if (skb->len != tcp_header_size) {
  976. tcp_event_data_sent(tp, sk);
  977. tp->data_segs_out += tcp_skb_pcount(skb);
  978. tp->bytes_sent += skb->len - tcp_header_size;
  979. tcp_internal_pacing(sk, skb);
  980. }
  981. if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
  982. TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
  983. tcp_skb_pcount(skb));
  984. tp->segs_out += tcp_skb_pcount(skb);
  985. /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
  986. skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
  987. skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
  988. /* Our usage of tstamp should remain private */
  989. skb->tstamp = 0;
  990. /* Cleanup our debris for IP stacks */
  991. memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
  992. sizeof(struct inet6_skb_parm)));
  993. err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
  994. if (unlikely(err > 0)) {
  995. tcp_enter_cwr(sk);
  996. err = net_xmit_eval(err);
  997. }
  998. if (!err && oskb) {
  999. tcp_update_skb_after_send(tp, oskb);
  1000. tcp_rate_skb_sent(sk, oskb);
  1001. }
  1002. return err;
  1003. }
  1004. static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
  1005. gfp_t gfp_mask)
  1006. {
  1007. return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
  1008. tcp_sk(sk)->rcv_nxt);
  1009. }
  1010. /* This routine just queues the buffer for sending.
  1011. *
  1012. * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
  1013. * otherwise socket can stall.
  1014. */
  1015. static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
  1016. {
  1017. struct tcp_sock *tp = tcp_sk(sk);
  1018. /* Advance write_seq and place onto the write_queue. */
  1019. tp->write_seq = TCP_SKB_CB(skb)->end_seq;
  1020. __skb_header_release(skb);
  1021. tcp_add_write_queue_tail(sk, skb);
  1022. sk->sk_wmem_queued += skb->truesize;
  1023. sk_mem_charge(sk, skb->truesize);
  1024. }
  1025. /* Initialize TSO segments for a packet. */
  1026. static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1027. {
  1028. if (skb->len <= mss_now) {
  1029. /* Avoid the costly divide in the normal
  1030. * non-TSO case.
  1031. */
  1032. tcp_skb_pcount_set(skb, 1);
  1033. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1034. } else {
  1035. tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
  1036. TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
  1037. }
  1038. }
  1039. /* Pcount in the middle of the write queue got changed, we need to do various
  1040. * tweaks to fix counters
  1041. */
  1042. static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
  1043. {
  1044. struct tcp_sock *tp = tcp_sk(sk);
  1045. tp->packets_out -= decr;
  1046. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1047. tp->sacked_out -= decr;
  1048. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1049. tp->retrans_out -= decr;
  1050. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  1051. tp->lost_out -= decr;
  1052. /* Reno case is special. Sigh... */
  1053. if (tcp_is_reno(tp) && decr > 0)
  1054. tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
  1055. if (tp->lost_skb_hint &&
  1056. before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
  1057. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1058. tp->lost_cnt_hint -= decr;
  1059. tcp_verify_left_out(tp);
  1060. }
  1061. static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
  1062. {
  1063. return TCP_SKB_CB(skb)->txstamp_ack ||
  1064. (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
  1065. }
  1066. static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
  1067. {
  1068. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1069. if (unlikely(tcp_has_tx_tstamp(skb)) &&
  1070. !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
  1071. struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
  1072. u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  1073. shinfo->tx_flags &= ~tsflags;
  1074. shinfo2->tx_flags |= tsflags;
  1075. swap(shinfo->tskey, shinfo2->tskey);
  1076. TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
  1077. TCP_SKB_CB(skb)->txstamp_ack = 0;
  1078. }
  1079. }
  1080. static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
  1081. {
  1082. TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
  1083. TCP_SKB_CB(skb)->eor = 0;
  1084. }
  1085. /* Insert buff after skb on the write or rtx queue of sk. */
  1086. static void tcp_insert_write_queue_after(struct sk_buff *skb,
  1087. struct sk_buff *buff,
  1088. struct sock *sk,
  1089. enum tcp_queue tcp_queue)
  1090. {
  1091. if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
  1092. __skb_queue_after(&sk->sk_write_queue, skb, buff);
  1093. else
  1094. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  1095. }
  1096. /* Function to create two new TCP segments. Shrinks the given segment
  1097. * to the specified size and appends a new segment with the rest of the
  1098. * packet to the list. This won't be called frequently, I hope.
  1099. * Remember, these are still headerless SKBs at this point.
  1100. */
  1101. int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1102. struct sk_buff *skb, u32 len,
  1103. unsigned int mss_now, gfp_t gfp)
  1104. {
  1105. struct tcp_sock *tp = tcp_sk(sk);
  1106. struct sk_buff *buff;
  1107. int nsize, old_factor;
  1108. long limit;
  1109. int nlen;
  1110. u8 flags;
  1111. if (WARN_ON(len > skb->len))
  1112. return -EINVAL;
  1113. nsize = skb_headlen(skb) - len;
  1114. if (nsize < 0)
  1115. nsize = 0;
  1116. /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
  1117. * We need some allowance to not penalize applications setting small
  1118. * SO_SNDBUF values.
  1119. * Also allow first and last skb in retransmit queue to be split.
  1120. */
  1121. limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
  1122. if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
  1123. tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
  1124. skb != tcp_rtx_queue_head(sk) &&
  1125. skb != tcp_rtx_queue_tail(sk))) {
  1126. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
  1127. return -ENOMEM;
  1128. }
  1129. if (skb_unclone(skb, gfp))
  1130. return -ENOMEM;
  1131. /* Get a new skb... force flag on. */
  1132. buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
  1133. if (!buff)
  1134. return -ENOMEM; /* We'll just try again later. */
  1135. sk->sk_wmem_queued += buff->truesize;
  1136. sk_mem_charge(sk, buff->truesize);
  1137. nlen = skb->len - len - nsize;
  1138. buff->truesize += nlen;
  1139. skb->truesize -= nlen;
  1140. /* Correct the sequence numbers. */
  1141. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1142. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1143. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1144. /* PSH and FIN should only be set in the second packet. */
  1145. flags = TCP_SKB_CB(skb)->tcp_flags;
  1146. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1147. TCP_SKB_CB(buff)->tcp_flags = flags;
  1148. TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
  1149. tcp_skb_fragment_eor(skb, buff);
  1150. skb_split(skb, buff, len);
  1151. buff->ip_summed = CHECKSUM_PARTIAL;
  1152. buff->tstamp = skb->tstamp;
  1153. tcp_fragment_tstamp(skb, buff);
  1154. old_factor = tcp_skb_pcount(skb);
  1155. /* Fix up tso_factor for both original and new SKB. */
  1156. tcp_set_skb_tso_segs(skb, mss_now);
  1157. tcp_set_skb_tso_segs(buff, mss_now);
  1158. /* Update delivered info for the new segment */
  1159. TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
  1160. /* If this packet has been sent out already, we must
  1161. * adjust the various packet counters.
  1162. */
  1163. if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
  1164. int diff = old_factor - tcp_skb_pcount(skb) -
  1165. tcp_skb_pcount(buff);
  1166. if (diff)
  1167. tcp_adjust_pcount(sk, skb, diff);
  1168. }
  1169. /* Link BUFF into the send queue. */
  1170. __skb_header_release(buff);
  1171. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1172. if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
  1173. list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
  1174. return 0;
  1175. }
  1176. /* This is similar to __pskb_pull_tail(). The difference is that pulled
  1177. * data is not copied, but immediately discarded.
  1178. */
  1179. static int __pskb_trim_head(struct sk_buff *skb, int len)
  1180. {
  1181. struct skb_shared_info *shinfo;
  1182. int i, k, eat;
  1183. eat = min_t(int, len, skb_headlen(skb));
  1184. if (eat) {
  1185. __skb_pull(skb, eat);
  1186. len -= eat;
  1187. if (!len)
  1188. return 0;
  1189. }
  1190. eat = len;
  1191. k = 0;
  1192. shinfo = skb_shinfo(skb);
  1193. for (i = 0; i < shinfo->nr_frags; i++) {
  1194. int size = skb_frag_size(&shinfo->frags[i]);
  1195. if (size <= eat) {
  1196. skb_frag_unref(skb, i);
  1197. eat -= size;
  1198. } else {
  1199. shinfo->frags[k] = shinfo->frags[i];
  1200. if (eat) {
  1201. shinfo->frags[k].page_offset += eat;
  1202. skb_frag_size_sub(&shinfo->frags[k], eat);
  1203. eat = 0;
  1204. }
  1205. k++;
  1206. }
  1207. }
  1208. shinfo->nr_frags = k;
  1209. skb->data_len -= len;
  1210. skb->len = skb->data_len;
  1211. return len;
  1212. }
  1213. /* Remove acked data from a packet in the transmit queue. */
  1214. int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
  1215. {
  1216. u32 delta_truesize;
  1217. if (skb_unclone(skb, GFP_ATOMIC))
  1218. return -ENOMEM;
  1219. delta_truesize = __pskb_trim_head(skb, len);
  1220. TCP_SKB_CB(skb)->seq += len;
  1221. skb->ip_summed = CHECKSUM_PARTIAL;
  1222. if (delta_truesize) {
  1223. skb->truesize -= delta_truesize;
  1224. sk->sk_wmem_queued -= delta_truesize;
  1225. sk_mem_uncharge(sk, delta_truesize);
  1226. sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
  1227. }
  1228. /* Any change of skb->len requires recalculation of tso factor. */
  1229. if (tcp_skb_pcount(skb) > 1)
  1230. tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
  1231. return 0;
  1232. }
  1233. /* Calculate MSS not accounting any TCP options. */
  1234. static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1235. {
  1236. const struct tcp_sock *tp = tcp_sk(sk);
  1237. const struct inet_connection_sock *icsk = inet_csk(sk);
  1238. int mss_now;
  1239. /* Calculate base mss without TCP options:
  1240. It is MMS_S - sizeof(tcphdr) of rfc1122
  1241. */
  1242. mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
  1243. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1244. if (icsk->icsk_af_ops->net_frag_header_len) {
  1245. const struct dst_entry *dst = __sk_dst_get(sk);
  1246. if (dst && dst_allfrag(dst))
  1247. mss_now -= icsk->icsk_af_ops->net_frag_header_len;
  1248. }
  1249. /* Clamp it (mss_clamp does not include tcp options) */
  1250. if (mss_now > tp->rx_opt.mss_clamp)
  1251. mss_now = tp->rx_opt.mss_clamp;
  1252. /* Now subtract optional transport overhead */
  1253. mss_now -= icsk->icsk_ext_hdr_len;
  1254. /* Then reserve room for full set of TCP options and 8 bytes of data */
  1255. mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
  1256. return mss_now;
  1257. }
  1258. /* Calculate MSS. Not accounting for SACKs here. */
  1259. int tcp_mtu_to_mss(struct sock *sk, int pmtu)
  1260. {
  1261. /* Subtract TCP options size, not including SACKs */
  1262. return __tcp_mtu_to_mss(sk, pmtu) -
  1263. (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
  1264. }
  1265. /* Inverse of above */
  1266. int tcp_mss_to_mtu(struct sock *sk, int mss)
  1267. {
  1268. const struct tcp_sock *tp = tcp_sk(sk);
  1269. const struct inet_connection_sock *icsk = inet_csk(sk);
  1270. int mtu;
  1271. mtu = mss +
  1272. tp->tcp_header_len +
  1273. icsk->icsk_ext_hdr_len +
  1274. icsk->icsk_af_ops->net_header_len;
  1275. /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
  1276. if (icsk->icsk_af_ops->net_frag_header_len) {
  1277. const struct dst_entry *dst = __sk_dst_get(sk);
  1278. if (dst && dst_allfrag(dst))
  1279. mtu += icsk->icsk_af_ops->net_frag_header_len;
  1280. }
  1281. return mtu;
  1282. }
  1283. EXPORT_SYMBOL(tcp_mss_to_mtu);
  1284. /* MTU probing init per socket */
  1285. void tcp_mtup_init(struct sock *sk)
  1286. {
  1287. struct tcp_sock *tp = tcp_sk(sk);
  1288. struct inet_connection_sock *icsk = inet_csk(sk);
  1289. struct net *net = sock_net(sk);
  1290. icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
  1291. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
  1292. icsk->icsk_af_ops->net_header_len;
  1293. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
  1294. icsk->icsk_mtup.probe_size = 0;
  1295. if (icsk->icsk_mtup.enabled)
  1296. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1297. }
  1298. EXPORT_SYMBOL(tcp_mtup_init);
  1299. /* This function synchronize snd mss to current pmtu/exthdr set.
  1300. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
  1301. for TCP options, but includes only bare TCP header.
  1302. tp->rx_opt.mss_clamp is mss negotiated at connection setup.
  1303. It is minimum of user_mss and mss received with SYN.
  1304. It also does not include TCP options.
  1305. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
  1306. tp->mss_cache is current effective sending mss, including
  1307. all tcp options except for SACKs. It is evaluated,
  1308. taking into account current pmtu, but never exceeds
  1309. tp->rx_opt.mss_clamp.
  1310. NOTE1. rfc1122 clearly states that advertised MSS
  1311. DOES NOT include either tcp or ip options.
  1312. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
  1313. are READ ONLY outside this function. --ANK (980731)
  1314. */
  1315. unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
  1316. {
  1317. struct tcp_sock *tp = tcp_sk(sk);
  1318. struct inet_connection_sock *icsk = inet_csk(sk);
  1319. int mss_now;
  1320. if (icsk->icsk_mtup.search_high > pmtu)
  1321. icsk->icsk_mtup.search_high = pmtu;
  1322. mss_now = tcp_mtu_to_mss(sk, pmtu);
  1323. mss_now = tcp_bound_to_half_wnd(tp, mss_now);
  1324. /* And store cached results */
  1325. icsk->icsk_pmtu_cookie = pmtu;
  1326. if (icsk->icsk_mtup.enabled)
  1327. mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
  1328. tp->mss_cache = mss_now;
  1329. return mss_now;
  1330. }
  1331. EXPORT_SYMBOL(tcp_sync_mss);
  1332. /* Compute the current effective MSS, taking SACKs and IP options,
  1333. * and even PMTU discovery events into account.
  1334. */
  1335. unsigned int tcp_current_mss(struct sock *sk)
  1336. {
  1337. const struct tcp_sock *tp = tcp_sk(sk);
  1338. const struct dst_entry *dst = __sk_dst_get(sk);
  1339. u32 mss_now;
  1340. unsigned int header_len;
  1341. struct tcp_out_options opts;
  1342. struct tcp_md5sig_key *md5;
  1343. mss_now = tp->mss_cache;
  1344. if (dst) {
  1345. u32 mtu = dst_mtu(dst);
  1346. if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
  1347. mss_now = tcp_sync_mss(sk, mtu);
  1348. }
  1349. header_len = tcp_established_options(sk, NULL, &opts, &md5) +
  1350. sizeof(struct tcphdr);
  1351. /* The mss_cache is sized based on tp->tcp_header_len, which assumes
  1352. * some common options. If this is an odd packet (because we have SACK
  1353. * blocks etc) then our calculated header_len will be different, and
  1354. * we have to adjust mss_now correspondingly */
  1355. if (header_len != tp->tcp_header_len) {
  1356. int delta = (int) header_len - tp->tcp_header_len;
  1357. mss_now -= delta;
  1358. }
  1359. return mss_now;
  1360. }
  1361. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  1362. * As additional protections, we do not touch cwnd in retransmission phases,
  1363. * and if application hit its sndbuf limit recently.
  1364. */
  1365. static void tcp_cwnd_application_limited(struct sock *sk)
  1366. {
  1367. struct tcp_sock *tp = tcp_sk(sk);
  1368. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  1369. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  1370. /* Limited by application or receiver window. */
  1371. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  1372. u32 win_used = max(tp->snd_cwnd_used, init_win);
  1373. if (win_used < tp->snd_cwnd) {
  1374. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  1375. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  1376. }
  1377. tp->snd_cwnd_used = 0;
  1378. }
  1379. tp->snd_cwnd_stamp = tcp_jiffies32;
  1380. }
  1381. static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
  1382. {
  1383. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1384. struct tcp_sock *tp = tcp_sk(sk);
  1385. /* Track the maximum number of outstanding packets in each
  1386. * window, and remember whether we were cwnd-limited then.
  1387. */
  1388. if (!before(tp->snd_una, tp->max_packets_seq) ||
  1389. tp->packets_out > tp->max_packets_out) {
  1390. tp->max_packets_out = tp->packets_out;
  1391. tp->max_packets_seq = tp->snd_nxt;
  1392. tp->is_cwnd_limited = is_cwnd_limited;
  1393. }
  1394. if (tcp_is_cwnd_limited(sk)) {
  1395. /* Network is feed fully. */
  1396. tp->snd_cwnd_used = 0;
  1397. tp->snd_cwnd_stamp = tcp_jiffies32;
  1398. } else {
  1399. /* Network starves. */
  1400. if (tp->packets_out > tp->snd_cwnd_used)
  1401. tp->snd_cwnd_used = tp->packets_out;
  1402. if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
  1403. (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
  1404. !ca_ops->cong_control)
  1405. tcp_cwnd_application_limited(sk);
  1406. /* The following conditions together indicate the starvation
  1407. * is caused by insufficient sender buffer:
  1408. * 1) just sent some data (see tcp_write_xmit)
  1409. * 2) not cwnd limited (this else condition)
  1410. * 3) no more data to send (tcp_write_queue_empty())
  1411. * 4) application is hitting buffer limit (SOCK_NOSPACE)
  1412. */
  1413. if (tcp_write_queue_empty(sk) && sk->sk_socket &&
  1414. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
  1415. (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
  1416. tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
  1417. }
  1418. }
  1419. /* Minshall's variant of the Nagle send check. */
  1420. static bool tcp_minshall_check(const struct tcp_sock *tp)
  1421. {
  1422. return after(tp->snd_sml, tp->snd_una) &&
  1423. !after(tp->snd_sml, tp->snd_nxt);
  1424. }
  1425. /* Update snd_sml if this skb is under mss
  1426. * Note that a TSO packet might end with a sub-mss segment
  1427. * The test is really :
  1428. * if ((skb->len % mss) != 0)
  1429. * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1430. * But we can avoid doing the divide again given we already have
  1431. * skb_pcount = skb->len / mss_now
  1432. */
  1433. static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
  1434. const struct sk_buff *skb)
  1435. {
  1436. if (skb->len < tcp_skb_pcount(skb) * mss_now)
  1437. tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
  1438. }
  1439. /* Return false, if packet can be sent now without violation Nagle's rules:
  1440. * 1. It is full sized. (provided by caller in %partial bool)
  1441. * 2. Or it contains FIN. (already checked by caller)
  1442. * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
  1443. * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
  1444. * With Minshall's modification: all sent small packets are ACKed.
  1445. */
  1446. static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
  1447. int nonagle)
  1448. {
  1449. return partial &&
  1450. ((nonagle & TCP_NAGLE_CORK) ||
  1451. (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
  1452. }
  1453. /* Return how many segs we'd like on a TSO packet,
  1454. * to send one TSO packet per ms
  1455. */
  1456. static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
  1457. int min_tso_segs)
  1458. {
  1459. u32 bytes, segs;
  1460. bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
  1461. sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
  1462. /* Goal is to send at least one packet per ms,
  1463. * not one big TSO packet every 100 ms.
  1464. * This preserves ACK clocking and is consistent
  1465. * with tcp_tso_should_defer() heuristic.
  1466. */
  1467. segs = max_t(u32, bytes / mss_now, min_tso_segs);
  1468. return segs;
  1469. }
  1470. /* Return the number of segments we want in the skb we are transmitting.
  1471. * See if congestion control module wants to decide; otherwise, autosize.
  1472. */
  1473. static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
  1474. {
  1475. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1476. u32 min_tso, tso_segs;
  1477. min_tso = ca_ops->min_tso_segs ?
  1478. ca_ops->min_tso_segs(sk) :
  1479. sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
  1480. tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
  1481. return min_t(u32, tso_segs, sk->sk_gso_max_segs);
  1482. }
  1483. /* Returns the portion of skb which can be sent right away */
  1484. static unsigned int tcp_mss_split_point(const struct sock *sk,
  1485. const struct sk_buff *skb,
  1486. unsigned int mss_now,
  1487. unsigned int max_segs,
  1488. int nonagle)
  1489. {
  1490. const struct tcp_sock *tp = tcp_sk(sk);
  1491. u32 partial, needed, window, max_len;
  1492. window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1493. max_len = mss_now * max_segs;
  1494. if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
  1495. return max_len;
  1496. needed = min(skb->len, window);
  1497. if (max_len <= needed)
  1498. return max_len;
  1499. partial = needed % mss_now;
  1500. /* If last segment is not a full MSS, check if Nagle rules allow us
  1501. * to include this last segment in this skb.
  1502. * Otherwise, we'll split the skb at last MSS boundary
  1503. */
  1504. if (tcp_nagle_check(partial != 0, tp, nonagle))
  1505. return needed - partial;
  1506. return needed;
  1507. }
  1508. /* Can at least one segment of SKB be sent right now, according to the
  1509. * congestion window rules? If so, return how many segments are allowed.
  1510. */
  1511. static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
  1512. const struct sk_buff *skb)
  1513. {
  1514. u32 in_flight, cwnd, halfcwnd;
  1515. /* Don't be strict about the congestion window for the final FIN. */
  1516. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
  1517. tcp_skb_pcount(skb) == 1)
  1518. return 1;
  1519. in_flight = tcp_packets_in_flight(tp);
  1520. cwnd = tp->snd_cwnd;
  1521. if (in_flight >= cwnd)
  1522. return 0;
  1523. /* For better scheduling, ensure we have at least
  1524. * 2 GSO packets in flight.
  1525. */
  1526. halfcwnd = max(cwnd >> 1, 1U);
  1527. return min(halfcwnd, cwnd - in_flight);
  1528. }
  1529. /* Initialize TSO state of a skb.
  1530. * This must be invoked the first time we consider transmitting
  1531. * SKB onto the wire.
  1532. */
  1533. static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
  1534. {
  1535. int tso_segs = tcp_skb_pcount(skb);
  1536. if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
  1537. tcp_set_skb_tso_segs(skb, mss_now);
  1538. tso_segs = tcp_skb_pcount(skb);
  1539. }
  1540. return tso_segs;
  1541. }
  1542. /* Return true if the Nagle test allows this packet to be
  1543. * sent now.
  1544. */
  1545. static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
  1546. unsigned int cur_mss, int nonagle)
  1547. {
  1548. /* Nagle rule does not apply to frames, which sit in the middle of the
  1549. * write_queue (they have no chances to get new data).
  1550. *
  1551. * This is implemented in the callers, where they modify the 'nonagle'
  1552. * argument based upon the location of SKB in the send queue.
  1553. */
  1554. if (nonagle & TCP_NAGLE_PUSH)
  1555. return true;
  1556. /* Don't use the nagle rule for urgent data (or for the final FIN). */
  1557. if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
  1558. return true;
  1559. if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
  1560. return true;
  1561. return false;
  1562. }
  1563. /* Does at least the first segment of SKB fit into the send window? */
  1564. static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
  1565. const struct sk_buff *skb,
  1566. unsigned int cur_mss)
  1567. {
  1568. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  1569. if (skb->len > cur_mss)
  1570. end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
  1571. return !after(end_seq, tcp_wnd_end(tp));
  1572. }
  1573. /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
  1574. * which is put after SKB on the list. It is very much like
  1575. * tcp_fragment() except that it may make several kinds of assumptions
  1576. * in order to speed up the splitting operation. In particular, we
  1577. * know that all the data is in scatter-gather pages, and that the
  1578. * packet has never been sent out before (and thus is not cloned).
  1579. */
  1580. static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
  1581. struct sk_buff *skb, unsigned int len,
  1582. unsigned int mss_now, gfp_t gfp)
  1583. {
  1584. struct sk_buff *buff;
  1585. int nlen = skb->len - len;
  1586. u8 flags;
  1587. /* All of a TSO frame must be composed of paged data. */
  1588. if (skb->len != skb->data_len)
  1589. return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
  1590. buff = sk_stream_alloc_skb(sk, 0, gfp, true);
  1591. if (unlikely(!buff))
  1592. return -ENOMEM;
  1593. sk->sk_wmem_queued += buff->truesize;
  1594. sk_mem_charge(sk, buff->truesize);
  1595. buff->truesize += nlen;
  1596. skb->truesize -= nlen;
  1597. /* Correct the sequence numbers. */
  1598. TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
  1599. TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
  1600. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
  1601. /* PSH and FIN should only be set in the second packet. */
  1602. flags = TCP_SKB_CB(skb)->tcp_flags;
  1603. TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
  1604. TCP_SKB_CB(buff)->tcp_flags = flags;
  1605. /* This packet was never sent out yet, so no SACK bits. */
  1606. TCP_SKB_CB(buff)->sacked = 0;
  1607. tcp_skb_fragment_eor(skb, buff);
  1608. buff->ip_summed = CHECKSUM_PARTIAL;
  1609. skb_split(skb, buff, len);
  1610. tcp_fragment_tstamp(skb, buff);
  1611. /* Fix up tso_factor for both original and new SKB. */
  1612. tcp_set_skb_tso_segs(skb, mss_now);
  1613. tcp_set_skb_tso_segs(buff, mss_now);
  1614. /* Link BUFF into the send queue. */
  1615. __skb_header_release(buff);
  1616. tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
  1617. return 0;
  1618. }
  1619. /* Try to defer sending, if possible, in order to minimize the amount
  1620. * of TSO splitting we do. View it as a kind of TSO Nagle test.
  1621. *
  1622. * This algorithm is from John Heffner.
  1623. */
  1624. static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
  1625. bool *is_cwnd_limited,
  1626. bool *is_rwnd_limited,
  1627. u32 max_segs)
  1628. {
  1629. const struct inet_connection_sock *icsk = inet_csk(sk);
  1630. u32 age, send_win, cong_win, limit, in_flight;
  1631. struct tcp_sock *tp = tcp_sk(sk);
  1632. struct sk_buff *head;
  1633. int win_divisor;
  1634. if (icsk->icsk_ca_state >= TCP_CA_Recovery)
  1635. goto send_now;
  1636. /* Avoid bursty behavior by allowing defer
  1637. * only if the last write was recent.
  1638. */
  1639. if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
  1640. goto send_now;
  1641. in_flight = tcp_packets_in_flight(tp);
  1642. BUG_ON(tcp_skb_pcount(skb) <= 1);
  1643. BUG_ON(tp->snd_cwnd <= in_flight);
  1644. send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  1645. /* From in_flight test above, we know that cwnd > in_flight. */
  1646. cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
  1647. limit = min(send_win, cong_win);
  1648. /* If a full-sized TSO skb can be sent, do it. */
  1649. if (limit >= max_segs * tp->mss_cache)
  1650. goto send_now;
  1651. /* Middle in queue won't get any more data, full sendable already? */
  1652. if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
  1653. goto send_now;
  1654. win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
  1655. if (win_divisor) {
  1656. u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
  1657. /* If at least some fraction of a window is available,
  1658. * just use it.
  1659. */
  1660. chunk /= win_divisor;
  1661. if (limit >= chunk)
  1662. goto send_now;
  1663. } else {
  1664. /* Different approach, try not to defer past a single
  1665. * ACK. Receiver should ACK every other full sized
  1666. * frame, so if we have space for more than 3 frames
  1667. * then send now.
  1668. */
  1669. if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
  1670. goto send_now;
  1671. }
  1672. /* TODO : use tsorted_sent_queue ? */
  1673. head = tcp_rtx_queue_head(sk);
  1674. if (!head)
  1675. goto send_now;
  1676. age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
  1677. /* If next ACK is likely to come too late (half srtt), do not defer */
  1678. if (age < (tp->srtt_us >> 4))
  1679. goto send_now;
  1680. /* Ok, it looks like it is advisable to defer.
  1681. * Three cases are tracked :
  1682. * 1) We are cwnd-limited
  1683. * 2) We are rwnd-limited
  1684. * 3) We are application limited.
  1685. */
  1686. if (cong_win < send_win) {
  1687. if (cong_win <= skb->len) {
  1688. *is_cwnd_limited = true;
  1689. return true;
  1690. }
  1691. } else {
  1692. if (send_win <= skb->len) {
  1693. *is_rwnd_limited = true;
  1694. return true;
  1695. }
  1696. }
  1697. /* If this packet won't get more data, do not wait. */
  1698. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1699. goto send_now;
  1700. return true;
  1701. send_now:
  1702. return false;
  1703. }
  1704. static inline void tcp_mtu_check_reprobe(struct sock *sk)
  1705. {
  1706. struct inet_connection_sock *icsk = inet_csk(sk);
  1707. struct tcp_sock *tp = tcp_sk(sk);
  1708. struct net *net = sock_net(sk);
  1709. u32 interval;
  1710. s32 delta;
  1711. interval = net->ipv4.sysctl_tcp_probe_interval;
  1712. delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
  1713. if (unlikely(delta >= interval * HZ)) {
  1714. int mss = tcp_current_mss(sk);
  1715. /* Update current search range */
  1716. icsk->icsk_mtup.probe_size = 0;
  1717. icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
  1718. sizeof(struct tcphdr) +
  1719. icsk->icsk_af_ops->net_header_len;
  1720. icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
  1721. /* Update probe time stamp */
  1722. icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
  1723. }
  1724. }
  1725. static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
  1726. {
  1727. struct sk_buff *skb, *next;
  1728. skb = tcp_send_head(sk);
  1729. tcp_for_write_queue_from_safe(skb, next, sk) {
  1730. if (len <= skb->len)
  1731. break;
  1732. if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
  1733. return false;
  1734. len -= skb->len;
  1735. }
  1736. return true;
  1737. }
  1738. /* Create a new MTU probe if we are ready.
  1739. * MTU probe is regularly attempting to increase the path MTU by
  1740. * deliberately sending larger packets. This discovers routing
  1741. * changes resulting in larger path MTUs.
  1742. *
  1743. * Returns 0 if we should wait to probe (no cwnd available),
  1744. * 1 if a probe was sent,
  1745. * -1 otherwise
  1746. */
  1747. static int tcp_mtu_probe(struct sock *sk)
  1748. {
  1749. struct inet_connection_sock *icsk = inet_csk(sk);
  1750. struct tcp_sock *tp = tcp_sk(sk);
  1751. struct sk_buff *skb, *nskb, *next;
  1752. struct net *net = sock_net(sk);
  1753. int probe_size;
  1754. int size_needed;
  1755. int copy, len;
  1756. int mss_now;
  1757. int interval;
  1758. /* Not currently probing/verifying,
  1759. * not in recovery,
  1760. * have enough cwnd, and
  1761. * not SACKing (the variable headers throw things off)
  1762. */
  1763. if (likely(!icsk->icsk_mtup.enabled ||
  1764. icsk->icsk_mtup.probe_size ||
  1765. inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
  1766. tp->snd_cwnd < 11 ||
  1767. tp->rx_opt.num_sacks || tp->rx_opt.dsack))
  1768. return -1;
  1769. /* Use binary search for probe_size between tcp_mss_base,
  1770. * and current mss_clamp. if (search_high - search_low)
  1771. * smaller than a threshold, backoff from probing.
  1772. */
  1773. mss_now = tcp_current_mss(sk);
  1774. probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
  1775. icsk->icsk_mtup.search_low) >> 1);
  1776. size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
  1777. interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
  1778. /* When misfortune happens, we are reprobing actively,
  1779. * and then reprobe timer has expired. We stick with current
  1780. * probing process by not resetting search range to its orignal.
  1781. */
  1782. if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
  1783. interval < net->ipv4.sysctl_tcp_probe_threshold) {
  1784. /* Check whether enough time has elaplased for
  1785. * another round of probing.
  1786. */
  1787. tcp_mtu_check_reprobe(sk);
  1788. return -1;
  1789. }
  1790. /* Have enough data in the send queue to probe? */
  1791. if (tp->write_seq - tp->snd_nxt < size_needed)
  1792. return -1;
  1793. if (tp->snd_wnd < size_needed)
  1794. return -1;
  1795. if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
  1796. return 0;
  1797. /* Do we need to wait to drain cwnd? With none in flight, don't stall */
  1798. if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
  1799. if (!tcp_packets_in_flight(tp))
  1800. return -1;
  1801. else
  1802. return 0;
  1803. }
  1804. if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
  1805. return -1;
  1806. /* We're allowed to probe. Build it now. */
  1807. nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
  1808. if (!nskb)
  1809. return -1;
  1810. sk->sk_wmem_queued += nskb->truesize;
  1811. sk_mem_charge(sk, nskb->truesize);
  1812. skb = tcp_send_head(sk);
  1813. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
  1814. TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
  1815. TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
  1816. TCP_SKB_CB(nskb)->sacked = 0;
  1817. nskb->csum = 0;
  1818. nskb->ip_summed = CHECKSUM_PARTIAL;
  1819. tcp_insert_write_queue_before(nskb, skb, sk);
  1820. tcp_highest_sack_replace(sk, skb, nskb);
  1821. len = 0;
  1822. tcp_for_write_queue_from_safe(skb, next, sk) {
  1823. copy = min_t(int, skb->len, probe_size - len);
  1824. skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
  1825. if (skb->len <= copy) {
  1826. /* We've eaten all the data from this skb.
  1827. * Throw it away. */
  1828. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1829. /* If this is the last SKB we copy and eor is set
  1830. * we need to propagate it to the new skb.
  1831. */
  1832. TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
  1833. tcp_skb_collapse_tstamp(nskb, skb);
  1834. tcp_unlink_write_queue(skb, sk);
  1835. sk_wmem_free_skb(sk, skb);
  1836. } else {
  1837. TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
  1838. ~(TCPHDR_FIN|TCPHDR_PSH);
  1839. if (!skb_shinfo(skb)->nr_frags) {
  1840. skb_pull(skb, copy);
  1841. } else {
  1842. __pskb_trim_head(skb, copy);
  1843. tcp_set_skb_tso_segs(skb, mss_now);
  1844. }
  1845. TCP_SKB_CB(skb)->seq += copy;
  1846. }
  1847. len += copy;
  1848. if (len >= probe_size)
  1849. break;
  1850. }
  1851. tcp_init_tso_segs(nskb, nskb->len);
  1852. /* We're ready to send. If this fails, the probe will
  1853. * be resegmented into mss-sized pieces by tcp_write_xmit().
  1854. */
  1855. if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
  1856. /* Decrement cwnd here because we are sending
  1857. * effectively two packets. */
  1858. tp->snd_cwnd--;
  1859. tcp_event_new_data_sent(sk, nskb);
  1860. icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
  1861. tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
  1862. tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
  1863. return 1;
  1864. }
  1865. return -1;
  1866. }
  1867. static bool tcp_pacing_check(const struct sock *sk)
  1868. {
  1869. return tcp_needs_internal_pacing(sk) &&
  1870. hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
  1871. }
  1872. /* TCP Small Queues :
  1873. * Control number of packets in qdisc/devices to two packets / or ~1 ms.
  1874. * (These limits are doubled for retransmits)
  1875. * This allows for :
  1876. * - better RTT estimation and ACK scheduling
  1877. * - faster recovery
  1878. * - high rates
  1879. * Alas, some drivers / subsystems require a fair amount
  1880. * of queued bytes to ensure line rate.
  1881. * One example is wifi aggregation (802.11 AMPDU)
  1882. */
  1883. static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
  1884. unsigned int factor)
  1885. {
  1886. unsigned int limit;
  1887. limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
  1888. limit = min_t(u32, limit,
  1889. sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
  1890. limit <<= factor;
  1891. if (refcount_read(&sk->sk_wmem_alloc) > limit) {
  1892. /* Always send skb if rtx queue is empty.
  1893. * No need to wait for TX completion to call us back,
  1894. * after softirq/tasklet schedule.
  1895. * This helps when TX completions are delayed too much.
  1896. */
  1897. if (tcp_rtx_queue_empty(sk))
  1898. return false;
  1899. set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
  1900. /* It is possible TX completion already happened
  1901. * before we set TSQ_THROTTLED, so we must
  1902. * test again the condition.
  1903. */
  1904. smp_mb__after_atomic();
  1905. if (refcount_read(&sk->sk_wmem_alloc) > limit)
  1906. return true;
  1907. }
  1908. return false;
  1909. }
  1910. static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
  1911. {
  1912. const u32 now = tcp_jiffies32;
  1913. enum tcp_chrono old = tp->chrono_type;
  1914. if (old > TCP_CHRONO_UNSPEC)
  1915. tp->chrono_stat[old - 1] += now - tp->chrono_start;
  1916. tp->chrono_start = now;
  1917. tp->chrono_type = new;
  1918. }
  1919. void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
  1920. {
  1921. struct tcp_sock *tp = tcp_sk(sk);
  1922. /* If there are multiple conditions worthy of tracking in a
  1923. * chronograph then the highest priority enum takes precedence
  1924. * over the other conditions. So that if something "more interesting"
  1925. * starts happening, stop the previous chrono and start a new one.
  1926. */
  1927. if (type > tp->chrono_type)
  1928. tcp_chrono_set(tp, type);
  1929. }
  1930. void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
  1931. {
  1932. struct tcp_sock *tp = tcp_sk(sk);
  1933. /* There are multiple conditions worthy of tracking in a
  1934. * chronograph, so that the highest priority enum takes
  1935. * precedence over the other conditions (see tcp_chrono_start).
  1936. * If a condition stops, we only stop chrono tracking if
  1937. * it's the "most interesting" or current chrono we are
  1938. * tracking and starts busy chrono if we have pending data.
  1939. */
  1940. if (tcp_rtx_and_write_queues_empty(sk))
  1941. tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
  1942. else if (type == tp->chrono_type)
  1943. tcp_chrono_set(tp, TCP_CHRONO_BUSY);
  1944. }
  1945. /* This routine writes packets to the network. It advances the
  1946. * send_head. This happens as incoming acks open up the remote
  1947. * window for us.
  1948. *
  1949. * LARGESEND note: !tcp_urg_mode is overkill, only frames between
  1950. * snd_up-64k-mss .. snd_up cannot be large. However, taking into
  1951. * account rare use of URG, this is not a big flaw.
  1952. *
  1953. * Send at most one packet when push_one > 0. Temporarily ignore
  1954. * cwnd limit to force at most one packet out when push_one == 2.
  1955. * Returns true, if no segments are in flight and we have queued segments,
  1956. * but cannot send anything now because of SWS or another problem.
  1957. */
  1958. static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  1959. int push_one, gfp_t gfp)
  1960. {
  1961. struct tcp_sock *tp = tcp_sk(sk);
  1962. struct sk_buff *skb;
  1963. unsigned int tso_segs, sent_pkts;
  1964. int cwnd_quota;
  1965. int result;
  1966. bool is_cwnd_limited = false, is_rwnd_limited = false;
  1967. u32 max_segs;
  1968. sent_pkts = 0;
  1969. tcp_mstamp_refresh(tp);
  1970. if (!push_one) {
  1971. /* Do MTU probing. */
  1972. result = tcp_mtu_probe(sk);
  1973. if (!result) {
  1974. return false;
  1975. } else if (result > 0) {
  1976. sent_pkts = 1;
  1977. }
  1978. }
  1979. max_segs = tcp_tso_segs(sk, mss_now);
  1980. while ((skb = tcp_send_head(sk))) {
  1981. unsigned int limit;
  1982. if (tcp_pacing_check(sk))
  1983. break;
  1984. tso_segs = tcp_init_tso_segs(skb, mss_now);
  1985. BUG_ON(!tso_segs);
  1986. if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
  1987. /* "skb_mstamp" is used as a start point for the retransmit timer */
  1988. tcp_update_skb_after_send(tp, skb);
  1989. goto repair; /* Skip network transmission */
  1990. }
  1991. cwnd_quota = tcp_cwnd_test(tp, skb);
  1992. if (!cwnd_quota) {
  1993. if (push_one == 2)
  1994. /* Force out a loss probe pkt. */
  1995. cwnd_quota = 1;
  1996. else
  1997. break;
  1998. }
  1999. if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
  2000. is_rwnd_limited = true;
  2001. break;
  2002. }
  2003. if (tso_segs == 1) {
  2004. if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
  2005. (tcp_skb_is_last(sk, skb) ?
  2006. nonagle : TCP_NAGLE_PUSH))))
  2007. break;
  2008. } else {
  2009. if (!push_one &&
  2010. tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
  2011. &is_rwnd_limited, max_segs))
  2012. break;
  2013. }
  2014. limit = mss_now;
  2015. if (tso_segs > 1 && !tcp_urg_mode(tp))
  2016. limit = tcp_mss_split_point(sk, skb, mss_now,
  2017. min_t(unsigned int,
  2018. cwnd_quota,
  2019. max_segs),
  2020. nonagle);
  2021. if (skb->len > limit &&
  2022. unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  2023. skb, limit, mss_now, gfp)))
  2024. break;
  2025. if (tcp_small_queue_check(sk, skb, 0))
  2026. break;
  2027. /* Argh, we hit an empty skb(), presumably a thread
  2028. * is sleeping in sendmsg()/sk_stream_wait_memory().
  2029. * We do not want to send a pure-ack packet and have
  2030. * a strange looking rtx queue with empty packet(s).
  2031. */
  2032. if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
  2033. break;
  2034. if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
  2035. break;
  2036. repair:
  2037. /* Advance the send_head. This one is sent out.
  2038. * This call will increment packets_out.
  2039. */
  2040. tcp_event_new_data_sent(sk, skb);
  2041. tcp_minshall_update(tp, mss_now, skb);
  2042. sent_pkts += tcp_skb_pcount(skb);
  2043. if (push_one)
  2044. break;
  2045. }
  2046. if (is_rwnd_limited)
  2047. tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
  2048. else
  2049. tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
  2050. if (likely(sent_pkts)) {
  2051. if (tcp_in_cwnd_reduction(sk))
  2052. tp->prr_out += sent_pkts;
  2053. /* Send one loss probe per tail loss episode. */
  2054. if (push_one != 2)
  2055. tcp_schedule_loss_probe(sk, false);
  2056. is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
  2057. tcp_cwnd_validate(sk, is_cwnd_limited);
  2058. return false;
  2059. }
  2060. return !tp->packets_out && !tcp_write_queue_empty(sk);
  2061. }
  2062. bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
  2063. {
  2064. struct inet_connection_sock *icsk = inet_csk(sk);
  2065. struct tcp_sock *tp = tcp_sk(sk);
  2066. u32 timeout, rto_delta_us;
  2067. int early_retrans;
  2068. /* Don't do any loss probe on a Fast Open connection before 3WHS
  2069. * finishes.
  2070. */
  2071. if (tp->fastopen_rsk)
  2072. return false;
  2073. early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
  2074. /* Schedule a loss probe in 2*RTT for SACK capable connections
  2075. * not in loss recovery, that are either limited by cwnd or application.
  2076. */
  2077. if ((early_retrans != 3 && early_retrans != 4) ||
  2078. !tp->packets_out || !tcp_is_sack(tp) ||
  2079. (icsk->icsk_ca_state != TCP_CA_Open &&
  2080. icsk->icsk_ca_state != TCP_CA_CWR))
  2081. return false;
  2082. /* Probe timeout is 2*rtt. Add minimum RTO to account
  2083. * for delayed ack when there's one outstanding packet. If no RTT
  2084. * sample is available then probe after TCP_TIMEOUT_INIT.
  2085. */
  2086. if (tp->srtt_us) {
  2087. timeout = usecs_to_jiffies(tp->srtt_us >> 2);
  2088. if (tp->packets_out == 1)
  2089. timeout += TCP_RTO_MIN;
  2090. else
  2091. timeout += TCP_TIMEOUT_MIN;
  2092. } else {
  2093. timeout = TCP_TIMEOUT_INIT;
  2094. }
  2095. /* If the RTO formula yields an earlier time, then use that time. */
  2096. rto_delta_us = advancing_rto ?
  2097. jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
  2098. tcp_rto_delta_us(sk); /* How far in future is RTO? */
  2099. if (rto_delta_us > 0)
  2100. timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
  2101. inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
  2102. TCP_RTO_MAX);
  2103. return true;
  2104. }
  2105. /* Thanks to skb fast clones, we can detect if a prior transmit of
  2106. * a packet is still in a qdisc or driver queue.
  2107. * In this case, there is very little point doing a retransmit !
  2108. */
  2109. static bool skb_still_in_host_queue(const struct sock *sk,
  2110. const struct sk_buff *skb)
  2111. {
  2112. if (unlikely(skb_fclone_busy(sk, skb))) {
  2113. NET_INC_STATS(sock_net(sk),
  2114. LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
  2115. return true;
  2116. }
  2117. return false;
  2118. }
  2119. /* When probe timeout (PTO) fires, try send a new segment if possible, else
  2120. * retransmit the last segment.
  2121. */
  2122. void tcp_send_loss_probe(struct sock *sk)
  2123. {
  2124. struct tcp_sock *tp = tcp_sk(sk);
  2125. struct sk_buff *skb;
  2126. int pcount;
  2127. int mss = tcp_current_mss(sk);
  2128. skb = tcp_send_head(sk);
  2129. if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
  2130. pcount = tp->packets_out;
  2131. tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
  2132. if (tp->packets_out > pcount)
  2133. goto probe_sent;
  2134. goto rearm_timer;
  2135. }
  2136. skb = skb_rb_last(&sk->tcp_rtx_queue);
  2137. if (unlikely(!skb)) {
  2138. WARN_ONCE(tp->packets_out,
  2139. "invalid inflight: %u state %u cwnd %u mss %d\n",
  2140. tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
  2141. inet_csk(sk)->icsk_pending = 0;
  2142. return;
  2143. }
  2144. /* At most one outstanding TLP retransmission. */
  2145. if (tp->tlp_high_seq)
  2146. goto rearm_timer;
  2147. if (skb_still_in_host_queue(sk, skb))
  2148. goto rearm_timer;
  2149. pcount = tcp_skb_pcount(skb);
  2150. if (WARN_ON(!pcount))
  2151. goto rearm_timer;
  2152. if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
  2153. if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  2154. (pcount - 1) * mss, mss,
  2155. GFP_ATOMIC)))
  2156. goto rearm_timer;
  2157. skb = skb_rb_next(skb);
  2158. }
  2159. if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
  2160. goto rearm_timer;
  2161. if (__tcp_retransmit_skb(sk, skb, 1))
  2162. goto rearm_timer;
  2163. /* Record snd_nxt for loss detection. */
  2164. tp->tlp_high_seq = tp->snd_nxt;
  2165. probe_sent:
  2166. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
  2167. /* Reset s.t. tcp_rearm_rto will restart timer from now */
  2168. inet_csk(sk)->icsk_pending = 0;
  2169. rearm_timer:
  2170. tcp_rearm_rto(sk);
  2171. }
  2172. /* Push out any pending frames which were held back due to
  2173. * TCP_CORK or attempt at coalescing tiny packets.
  2174. * The socket must be locked by the caller.
  2175. */
  2176. void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
  2177. int nonagle)
  2178. {
  2179. /* If we are closed, the bytes will have to remain here.
  2180. * In time closedown will finish, we empty the write queue and
  2181. * all will be happy.
  2182. */
  2183. if (unlikely(sk->sk_state == TCP_CLOSE))
  2184. return;
  2185. if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
  2186. sk_gfp_mask(sk, GFP_ATOMIC)))
  2187. tcp_check_probe_timer(sk);
  2188. }
  2189. /* Send _single_ skb sitting at the send head. This function requires
  2190. * true push pending frames to setup probe timer etc.
  2191. */
  2192. void tcp_push_one(struct sock *sk, unsigned int mss_now)
  2193. {
  2194. struct sk_buff *skb = tcp_send_head(sk);
  2195. BUG_ON(!skb || skb->len < mss_now);
  2196. tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
  2197. }
  2198. /* This function returns the amount that we can raise the
  2199. * usable window based on the following constraints
  2200. *
  2201. * 1. The window can never be shrunk once it is offered (RFC 793)
  2202. * 2. We limit memory per socket
  2203. *
  2204. * RFC 1122:
  2205. * "the suggested [SWS] avoidance algorithm for the receiver is to keep
  2206. * RECV.NEXT + RCV.WIN fixed until:
  2207. * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
  2208. *
  2209. * i.e. don't raise the right edge of the window until you can raise
  2210. * it at least MSS bytes.
  2211. *
  2212. * Unfortunately, the recommended algorithm breaks header prediction,
  2213. * since header prediction assumes th->window stays fixed.
  2214. *
  2215. * Strictly speaking, keeping th->window fixed violates the receiver
  2216. * side SWS prevention criteria. The problem is that under this rule
  2217. * a stream of single byte packets will cause the right side of the
  2218. * window to always advance by a single byte.
  2219. *
  2220. * Of course, if the sender implements sender side SWS prevention
  2221. * then this will not be a problem.
  2222. *
  2223. * BSD seems to make the following compromise:
  2224. *
  2225. * If the free space is less than the 1/4 of the maximum
  2226. * space available and the free space is less than 1/2 mss,
  2227. * then set the window to 0.
  2228. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
  2229. * Otherwise, just prevent the window from shrinking
  2230. * and from being larger than the largest representable value.
  2231. *
  2232. * This prevents incremental opening of the window in the regime
  2233. * where TCP is limited by the speed of the reader side taking
  2234. * data out of the TCP receive queue. It does nothing about
  2235. * those cases where the window is constrained on the sender side
  2236. * because the pipeline is full.
  2237. *
  2238. * BSD also seems to "accidentally" limit itself to windows that are a
  2239. * multiple of MSS, at least until the free space gets quite small.
  2240. * This would appear to be a side effect of the mbuf implementation.
  2241. * Combining these two algorithms results in the observed behavior
  2242. * of having a fixed window size at almost all times.
  2243. *
  2244. * Below we obtain similar behavior by forcing the offered window to
  2245. * a multiple of the mss when it is feasible to do so.
  2246. *
  2247. * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
  2248. * Regular options like TIMESTAMP are taken into account.
  2249. */
  2250. u32 __tcp_select_window(struct sock *sk)
  2251. {
  2252. struct inet_connection_sock *icsk = inet_csk(sk);
  2253. struct tcp_sock *tp = tcp_sk(sk);
  2254. /* MSS for the peer's data. Previous versions used mss_clamp
  2255. * here. I don't know if the value based on our guesses
  2256. * of peer's MSS is better for the performance. It's more correct
  2257. * but may be worse for the performance because of rcv_mss
  2258. * fluctuations. --SAW 1998/11/1
  2259. */
  2260. int mss = icsk->icsk_ack.rcv_mss;
  2261. int free_space = tcp_space(sk);
  2262. int allowed_space = tcp_full_space(sk);
  2263. int full_space = min_t(int, tp->window_clamp, allowed_space);
  2264. int window;
  2265. if (unlikely(mss > full_space)) {
  2266. mss = full_space;
  2267. if (mss <= 0)
  2268. return 0;
  2269. }
  2270. if (free_space < (full_space >> 1)) {
  2271. icsk->icsk_ack.quick = 0;
  2272. if (tcp_under_memory_pressure(sk))
  2273. tp->rcv_ssthresh = min(tp->rcv_ssthresh,
  2274. 4U * tp->advmss);
  2275. /* free_space might become our new window, make sure we don't
  2276. * increase it due to wscale.
  2277. */
  2278. free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
  2279. /* if free space is less than mss estimate, or is below 1/16th
  2280. * of the maximum allowed, try to move to zero-window, else
  2281. * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
  2282. * new incoming data is dropped due to memory limits.
  2283. * With large window, mss test triggers way too late in order
  2284. * to announce zero window in time before rmem limit kicks in.
  2285. */
  2286. if (free_space < (allowed_space >> 4) || free_space < mss)
  2287. return 0;
  2288. }
  2289. if (free_space > tp->rcv_ssthresh)
  2290. free_space = tp->rcv_ssthresh;
  2291. /* Don't do rounding if we are using window scaling, since the
  2292. * scaled window will not line up with the MSS boundary anyway.
  2293. */
  2294. if (tp->rx_opt.rcv_wscale) {
  2295. window = free_space;
  2296. /* Advertise enough space so that it won't get scaled away.
  2297. * Import case: prevent zero window announcement if
  2298. * 1<<rcv_wscale > mss.
  2299. */
  2300. window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
  2301. } else {
  2302. window = tp->rcv_wnd;
  2303. /* Get the largest window that is a nice multiple of mss.
  2304. * Window clamp already applied above.
  2305. * If our current window offering is within 1 mss of the
  2306. * free space we just keep it. This prevents the divide
  2307. * and multiply from happening most of the time.
  2308. * We also don't do any window rounding when the free space
  2309. * is too small.
  2310. */
  2311. if (window <= free_space - mss || window > free_space)
  2312. window = rounddown(free_space, mss);
  2313. else if (mss == full_space &&
  2314. free_space > window + (full_space >> 1))
  2315. window = free_space;
  2316. }
  2317. return window;
  2318. }
  2319. void tcp_skb_collapse_tstamp(struct sk_buff *skb,
  2320. const struct sk_buff *next_skb)
  2321. {
  2322. if (unlikely(tcp_has_tx_tstamp(next_skb))) {
  2323. const struct skb_shared_info *next_shinfo =
  2324. skb_shinfo(next_skb);
  2325. struct skb_shared_info *shinfo = skb_shinfo(skb);
  2326. shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
  2327. shinfo->tskey = next_shinfo->tskey;
  2328. TCP_SKB_CB(skb)->txstamp_ack |=
  2329. TCP_SKB_CB(next_skb)->txstamp_ack;
  2330. }
  2331. }
  2332. /* Collapses two adjacent SKB's during retransmission. */
  2333. static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
  2334. {
  2335. struct tcp_sock *tp = tcp_sk(sk);
  2336. struct sk_buff *next_skb = skb_rb_next(skb);
  2337. int next_skb_size;
  2338. next_skb_size = next_skb->len;
  2339. BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
  2340. if (next_skb_size) {
  2341. if (next_skb_size <= skb_availroom(skb))
  2342. skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
  2343. next_skb_size);
  2344. else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
  2345. return false;
  2346. }
  2347. tcp_highest_sack_replace(sk, next_skb, skb);
  2348. /* Update sequence range on original skb. */
  2349. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
  2350. /* Merge over control information. This moves PSH/FIN etc. over */
  2351. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
  2352. /* All done, get rid of second SKB and account for it so
  2353. * packet counting does not break.
  2354. */
  2355. TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
  2356. TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
  2357. /* changed transmit queue under us so clear hints */
  2358. tcp_clear_retrans_hints_partial(tp);
  2359. if (next_skb == tp->retransmit_skb_hint)
  2360. tp->retransmit_skb_hint = skb;
  2361. tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
  2362. tcp_skb_collapse_tstamp(skb, next_skb);
  2363. tcp_rtx_queue_unlink_and_free(next_skb, sk);
  2364. return true;
  2365. }
  2366. /* Check if coalescing SKBs is legal. */
  2367. static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
  2368. {
  2369. if (tcp_skb_pcount(skb) > 1)
  2370. return false;
  2371. if (skb_cloned(skb))
  2372. return false;
  2373. /* Some heuristics for collapsing over SACK'd could be invented */
  2374. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  2375. return false;
  2376. return true;
  2377. }
  2378. /* Collapse packets in the retransmit queue to make to create
  2379. * less packets on the wire. This is only done on retransmission.
  2380. */
  2381. static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
  2382. int space)
  2383. {
  2384. struct tcp_sock *tp = tcp_sk(sk);
  2385. struct sk_buff *skb = to, *tmp;
  2386. bool first = true;
  2387. if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
  2388. return;
  2389. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2390. return;
  2391. skb_rbtree_walk_from_safe(skb, tmp) {
  2392. if (!tcp_can_collapse(sk, skb))
  2393. break;
  2394. if (!tcp_skb_can_collapse_to(to))
  2395. break;
  2396. space -= skb->len;
  2397. if (first) {
  2398. first = false;
  2399. continue;
  2400. }
  2401. if (space < 0)
  2402. break;
  2403. if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
  2404. break;
  2405. if (!tcp_collapse_retrans(sk, to))
  2406. break;
  2407. }
  2408. }
  2409. /* This retransmits one SKB. Policy decisions and retransmit queue
  2410. * state updates are done by the caller. Returns non-zero if an
  2411. * error occurred which prevented the send.
  2412. */
  2413. int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2414. {
  2415. struct inet_connection_sock *icsk = inet_csk(sk);
  2416. struct tcp_sock *tp = tcp_sk(sk);
  2417. unsigned int cur_mss;
  2418. int diff, len, err;
  2419. /* Inconclusive MTU probe */
  2420. if (icsk->icsk_mtup.probe_size)
  2421. icsk->icsk_mtup.probe_size = 0;
  2422. /* Do not sent more than we queued. 1/4 is reserved for possible
  2423. * copying overhead: fragmentation, tunneling, mangling etc.
  2424. */
  2425. if (refcount_read(&sk->sk_wmem_alloc) >
  2426. min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
  2427. sk->sk_sndbuf))
  2428. return -EAGAIN;
  2429. if (skb_still_in_host_queue(sk, skb))
  2430. return -EBUSY;
  2431. if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
  2432. if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
  2433. WARN_ON_ONCE(1);
  2434. return -EINVAL;
  2435. }
  2436. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2437. return -ENOMEM;
  2438. }
  2439. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2440. return -EHOSTUNREACH; /* Routing failure or similar. */
  2441. cur_mss = tcp_current_mss(sk);
  2442. /* If receiver has shrunk his window, and skb is out of
  2443. * new window, do not retransmit it. The exception is the
  2444. * case, when window is shrunk to zero. In this case
  2445. * our retransmit serves as a zero window probe.
  2446. */
  2447. if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
  2448. TCP_SKB_CB(skb)->seq != tp->snd_una)
  2449. return -EAGAIN;
  2450. len = cur_mss * segs;
  2451. if (skb->len > len) {
  2452. if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
  2453. cur_mss, GFP_ATOMIC))
  2454. return -ENOMEM; /* We'll try again later. */
  2455. } else {
  2456. if (skb_unclone(skb, GFP_ATOMIC))
  2457. return -ENOMEM;
  2458. diff = tcp_skb_pcount(skb);
  2459. tcp_set_skb_tso_segs(skb, cur_mss);
  2460. diff -= tcp_skb_pcount(skb);
  2461. if (diff)
  2462. tcp_adjust_pcount(sk, skb, diff);
  2463. if (skb->len < cur_mss)
  2464. tcp_retrans_try_collapse(sk, skb, cur_mss);
  2465. }
  2466. /* RFC3168, section 6.1.1.1. ECN fallback */
  2467. if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
  2468. tcp_ecn_clear_syn(sk, skb);
  2469. /* Update global and local TCP statistics. */
  2470. segs = tcp_skb_pcount(skb);
  2471. TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
  2472. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
  2473. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  2474. tp->total_retrans += segs;
  2475. tp->bytes_retrans += skb->len;
  2476. /* make sure skb->data is aligned on arches that require it
  2477. * and check if ack-trimming & collapsing extended the headroom
  2478. * beyond what csum_start can cover.
  2479. */
  2480. if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
  2481. skb_headroom(skb) >= 0xFFFF)) {
  2482. struct sk_buff *nskb;
  2483. tcp_skb_tsorted_save(skb) {
  2484. nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
  2485. err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
  2486. -ENOBUFS;
  2487. } tcp_skb_tsorted_restore(skb);
  2488. if (!err) {
  2489. tcp_update_skb_after_send(tp, skb);
  2490. tcp_rate_skb_sent(sk, skb);
  2491. }
  2492. } else {
  2493. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2494. }
  2495. if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
  2496. tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
  2497. TCP_SKB_CB(skb)->seq, segs, err);
  2498. if (likely(!err)) {
  2499. TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
  2500. trace_tcp_retransmit_skb(sk, skb);
  2501. } else if (err != -EBUSY) {
  2502. NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
  2503. }
  2504. return err;
  2505. }
  2506. int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
  2507. {
  2508. struct tcp_sock *tp = tcp_sk(sk);
  2509. int err = __tcp_retransmit_skb(sk, skb, segs);
  2510. if (err == 0) {
  2511. #if FASTRETRANS_DEBUG > 0
  2512. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2513. net_dbg_ratelimited("retrans_out leaked\n");
  2514. }
  2515. #endif
  2516. TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
  2517. tp->retrans_out += tcp_skb_pcount(skb);
  2518. /* Save stamp of the first retransmit. */
  2519. if (!tp->retrans_stamp)
  2520. tp->retrans_stamp = tcp_skb_timestamp(skb);
  2521. }
  2522. if (tp->undo_retrans < 0)
  2523. tp->undo_retrans = 0;
  2524. tp->undo_retrans += tcp_skb_pcount(skb);
  2525. return err;
  2526. }
  2527. /* This gets called after a retransmit timeout, and the initially
  2528. * retransmitted data is acknowledged. It tries to continue
  2529. * resending the rest of the retransmit queue, until either
  2530. * we've sent it all or the congestion window limit is reached.
  2531. */
  2532. void tcp_xmit_retransmit_queue(struct sock *sk)
  2533. {
  2534. const struct inet_connection_sock *icsk = inet_csk(sk);
  2535. struct sk_buff *skb, *rtx_head, *hole = NULL;
  2536. struct tcp_sock *tp = tcp_sk(sk);
  2537. u32 max_segs;
  2538. int mib_idx;
  2539. if (!tp->packets_out)
  2540. return;
  2541. rtx_head = tcp_rtx_queue_head(sk);
  2542. skb = tp->retransmit_skb_hint ?: rtx_head;
  2543. max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
  2544. skb_rbtree_walk_from(skb) {
  2545. __u8 sacked;
  2546. int segs;
  2547. if (tcp_pacing_check(sk))
  2548. break;
  2549. /* we could do better than to assign each time */
  2550. if (!hole)
  2551. tp->retransmit_skb_hint = skb;
  2552. segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
  2553. if (segs <= 0)
  2554. return;
  2555. sacked = TCP_SKB_CB(skb)->sacked;
  2556. /* In case tcp_shift_skb_data() have aggregated large skbs,
  2557. * we need to make sure not sending too bigs TSO packets
  2558. */
  2559. segs = min_t(int, segs, max_segs);
  2560. if (tp->retrans_out >= tp->lost_out) {
  2561. break;
  2562. } else if (!(sacked & TCPCB_LOST)) {
  2563. if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
  2564. hole = skb;
  2565. continue;
  2566. } else {
  2567. if (icsk->icsk_ca_state != TCP_CA_Loss)
  2568. mib_idx = LINUX_MIB_TCPFASTRETRANS;
  2569. else
  2570. mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
  2571. }
  2572. if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
  2573. continue;
  2574. if (tcp_small_queue_check(sk, skb, 1))
  2575. return;
  2576. if (tcp_retransmit_skb(sk, skb, segs))
  2577. return;
  2578. NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
  2579. if (tcp_in_cwnd_reduction(sk))
  2580. tp->prr_out += tcp_skb_pcount(skb);
  2581. if (skb == rtx_head &&
  2582. icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
  2583. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2584. inet_csk(sk)->icsk_rto,
  2585. TCP_RTO_MAX);
  2586. }
  2587. }
  2588. /* We allow to exceed memory limits for FIN packets to expedite
  2589. * connection tear down and (memory) recovery.
  2590. * Otherwise tcp_send_fin() could be tempted to either delay FIN
  2591. * or even be forced to close flow without any FIN.
  2592. * In general, we want to allow one skb per socket to avoid hangs
  2593. * with edge trigger epoll()
  2594. */
  2595. void sk_forced_mem_schedule(struct sock *sk, int size)
  2596. {
  2597. int amt;
  2598. if (size <= sk->sk_forward_alloc)
  2599. return;
  2600. amt = sk_mem_pages(size);
  2601. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  2602. sk_memory_allocated_add(sk, amt);
  2603. if (mem_cgroup_sockets_enabled && sk->sk_memcg)
  2604. mem_cgroup_charge_skmem(sk->sk_memcg, amt);
  2605. }
  2606. /* Send a FIN. The caller locks the socket for us.
  2607. * We should try to send a FIN packet really hard, but eventually give up.
  2608. */
  2609. void tcp_send_fin(struct sock *sk)
  2610. {
  2611. struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
  2612. struct tcp_sock *tp = tcp_sk(sk);
  2613. /* Optimization, tack on the FIN if we have one skb in write queue and
  2614. * this skb was not yet sent, or we are under memory pressure.
  2615. * Note: in the latter case, FIN packet will be sent after a timeout,
  2616. * as TCP stack thinks it has already been transmitted.
  2617. */
  2618. if (!tskb && tcp_under_memory_pressure(sk))
  2619. tskb = skb_rb_last(&sk->tcp_rtx_queue);
  2620. if (tskb) {
  2621. coalesce:
  2622. TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
  2623. TCP_SKB_CB(tskb)->end_seq++;
  2624. tp->write_seq++;
  2625. if (tcp_write_queue_empty(sk)) {
  2626. /* This means tskb was already sent.
  2627. * Pretend we included the FIN on previous transmit.
  2628. * We need to set tp->snd_nxt to the value it would have
  2629. * if FIN had been sent. This is because retransmit path
  2630. * does not change tp->snd_nxt.
  2631. */
  2632. tp->snd_nxt++;
  2633. return;
  2634. }
  2635. } else {
  2636. skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
  2637. if (unlikely(!skb)) {
  2638. if (tskb)
  2639. goto coalesce;
  2640. return;
  2641. }
  2642. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  2643. skb_reserve(skb, MAX_TCP_HEADER);
  2644. sk_forced_mem_schedule(sk, skb->truesize);
  2645. /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
  2646. tcp_init_nondata_skb(skb, tp->write_seq,
  2647. TCPHDR_ACK | TCPHDR_FIN);
  2648. tcp_queue_skb(sk, skb);
  2649. }
  2650. __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
  2651. }
  2652. /* We get here when a process closes a file descriptor (either due to
  2653. * an explicit close() or as a byproduct of exit()'ing) and there
  2654. * was unread data in the receive queue. This behavior is recommended
  2655. * by RFC 2525, section 2.17. -DaveM
  2656. */
  2657. void tcp_send_active_reset(struct sock *sk, gfp_t priority)
  2658. {
  2659. struct sk_buff *skb;
  2660. TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
  2661. /* NOTE: No TCP options attached and we never retransmit this. */
  2662. skb = alloc_skb(MAX_TCP_HEADER, priority);
  2663. if (!skb) {
  2664. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2665. return;
  2666. }
  2667. /* Reserve space for headers and prepare control bits. */
  2668. skb_reserve(skb, MAX_TCP_HEADER);
  2669. tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
  2670. TCPHDR_ACK | TCPHDR_RST);
  2671. tcp_mstamp_refresh(tcp_sk(sk));
  2672. /* Send it off. */
  2673. if (tcp_transmit_skb(sk, skb, 0, priority))
  2674. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
  2675. /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
  2676. * skb here is different to the troublesome skb, so use NULL
  2677. */
  2678. trace_tcp_send_reset(sk, NULL);
  2679. }
  2680. /* Send a crossed SYN-ACK during socket establishment.
  2681. * WARNING: This routine must only be called when we have already sent
  2682. * a SYN packet that crossed the incoming SYN that caused this routine
  2683. * to get called. If this assumption fails then the initial rcv_wnd
  2684. * and rcv_wscale values will not be correct.
  2685. */
  2686. int tcp_send_synack(struct sock *sk)
  2687. {
  2688. struct sk_buff *skb;
  2689. skb = tcp_rtx_queue_head(sk);
  2690. if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
  2691. pr_err("%s: wrong queue state\n", __func__);
  2692. return -EFAULT;
  2693. }
  2694. if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
  2695. if (skb_cloned(skb)) {
  2696. struct sk_buff *nskb;
  2697. tcp_skb_tsorted_save(skb) {
  2698. nskb = skb_copy(skb, GFP_ATOMIC);
  2699. } tcp_skb_tsorted_restore(skb);
  2700. if (!nskb)
  2701. return -ENOMEM;
  2702. INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
  2703. tcp_highest_sack_replace(sk, skb, nskb);
  2704. tcp_rtx_queue_unlink_and_free(skb, sk);
  2705. __skb_header_release(nskb);
  2706. tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
  2707. sk->sk_wmem_queued += nskb->truesize;
  2708. sk_mem_charge(sk, nskb->truesize);
  2709. skb = nskb;
  2710. }
  2711. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
  2712. tcp_ecn_send_synack(sk, skb);
  2713. }
  2714. return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  2715. }
  2716. /**
  2717. * tcp_make_synack - Prepare a SYN-ACK.
  2718. * sk: listener socket
  2719. * dst: dst entry attached to the SYNACK
  2720. * req: request_sock pointer
  2721. *
  2722. * Allocate one skb and build a SYNACK packet.
  2723. * @dst is consumed : Caller should not use it again.
  2724. */
  2725. struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
  2726. struct request_sock *req,
  2727. struct tcp_fastopen_cookie *foc,
  2728. enum tcp_synack_type synack_type)
  2729. {
  2730. struct inet_request_sock *ireq = inet_rsk(req);
  2731. const struct tcp_sock *tp = tcp_sk(sk);
  2732. struct tcp_md5sig_key *md5 = NULL;
  2733. struct tcp_out_options opts;
  2734. struct sk_buff *skb;
  2735. int tcp_header_size;
  2736. struct tcphdr *th;
  2737. int mss;
  2738. skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
  2739. if (unlikely(!skb)) {
  2740. dst_release(dst);
  2741. return NULL;
  2742. }
  2743. /* Reserve space for headers. */
  2744. skb_reserve(skb, MAX_TCP_HEADER);
  2745. switch (synack_type) {
  2746. case TCP_SYNACK_NORMAL:
  2747. skb_set_owner_w(skb, req_to_sk(req));
  2748. break;
  2749. case TCP_SYNACK_COOKIE:
  2750. /* Under synflood, we do not attach skb to a socket,
  2751. * to avoid false sharing.
  2752. */
  2753. break;
  2754. case TCP_SYNACK_FASTOPEN:
  2755. /* sk is a const pointer, because we want to express multiple
  2756. * cpu might call us concurrently.
  2757. * sk->sk_wmem_alloc in an atomic, we can promote to rw.
  2758. */
  2759. skb_set_owner_w(skb, (struct sock *)sk);
  2760. break;
  2761. }
  2762. skb_dst_set(skb, dst);
  2763. mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2764. memset(&opts, 0, sizeof(opts));
  2765. #ifdef CONFIG_SYN_COOKIES
  2766. if (unlikely(req->cookie_ts))
  2767. skb->skb_mstamp = cookie_init_timestamp(req);
  2768. else
  2769. #endif
  2770. skb->skb_mstamp = tcp_clock_us();
  2771. #ifdef CONFIG_TCP_MD5SIG
  2772. rcu_read_lock();
  2773. md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
  2774. #endif
  2775. skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
  2776. tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
  2777. foc) + sizeof(*th);
  2778. skb_push(skb, tcp_header_size);
  2779. skb_reset_transport_header(skb);
  2780. th = (struct tcphdr *)skb->data;
  2781. memset(th, 0, sizeof(struct tcphdr));
  2782. th->syn = 1;
  2783. th->ack = 1;
  2784. tcp_ecn_make_synack(req, th);
  2785. th->source = htons(ireq->ir_num);
  2786. th->dest = ireq->ir_rmt_port;
  2787. skb->mark = ireq->ir_mark;
  2788. skb->ip_summed = CHECKSUM_PARTIAL;
  2789. th->seq = htonl(tcp_rsk(req)->snt_isn);
  2790. /* XXX data is queued and acked as is. No buffer/window check */
  2791. th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
  2792. /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
  2793. th->window = htons(min(req->rsk_rcv_wnd, 65535U));
  2794. tcp_options_write((__be32 *)(th + 1), NULL, &opts);
  2795. th->doff = (tcp_header_size >> 2);
  2796. __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
  2797. #ifdef CONFIG_TCP_MD5SIG
  2798. /* Okay, we have all we need - do the md5 hash if needed */
  2799. if (md5)
  2800. tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
  2801. md5, req_to_sk(req), skb);
  2802. rcu_read_unlock();
  2803. #endif
  2804. /* Do not fool tcpdump (if any), clean our debris */
  2805. skb->tstamp = 0;
  2806. return skb;
  2807. }
  2808. EXPORT_SYMBOL(tcp_make_synack);
  2809. static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
  2810. {
  2811. struct inet_connection_sock *icsk = inet_csk(sk);
  2812. const struct tcp_congestion_ops *ca;
  2813. u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
  2814. if (ca_key == TCP_CA_UNSPEC)
  2815. return;
  2816. rcu_read_lock();
  2817. ca = tcp_ca_find_key(ca_key);
  2818. if (likely(ca && try_module_get(ca->owner))) {
  2819. module_put(icsk->icsk_ca_ops->owner);
  2820. icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
  2821. icsk->icsk_ca_ops = ca;
  2822. }
  2823. rcu_read_unlock();
  2824. }
  2825. /* Do all connect socket setups that can be done AF independent. */
  2826. static void tcp_connect_init(struct sock *sk)
  2827. {
  2828. const struct dst_entry *dst = __sk_dst_get(sk);
  2829. struct tcp_sock *tp = tcp_sk(sk);
  2830. __u8 rcv_wscale;
  2831. u32 rcv_wnd;
  2832. /* We'll fix this up when we get a response from the other end.
  2833. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
  2834. */
  2835. tp->tcp_header_len = sizeof(struct tcphdr);
  2836. if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
  2837. tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
  2838. #ifdef CONFIG_TCP_MD5SIG
  2839. if (tp->af_specific->md5_lookup(sk, sk))
  2840. tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
  2841. #endif
  2842. /* If user gave his TCP_MAXSEG, record it to clamp */
  2843. if (tp->rx_opt.user_mss)
  2844. tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
  2845. tp->max_window = 0;
  2846. tcp_mtup_init(sk);
  2847. tcp_sync_mss(sk, dst_mtu(dst));
  2848. tcp_ca_dst_init(sk, dst);
  2849. if (!tp->window_clamp)
  2850. tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
  2851. tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
  2852. tcp_initialize_rcv_mss(sk);
  2853. /* limit the window selection if the user enforce a smaller rx buffer */
  2854. if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
  2855. (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
  2856. tp->window_clamp = tcp_full_space(sk);
  2857. rcv_wnd = tcp_rwnd_init_bpf(sk);
  2858. if (rcv_wnd == 0)
  2859. rcv_wnd = dst_metric(dst, RTAX_INITRWND);
  2860. tcp_select_initial_window(sk, tcp_full_space(sk),
  2861. tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
  2862. &tp->rcv_wnd,
  2863. &tp->window_clamp,
  2864. sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
  2865. &rcv_wscale,
  2866. rcv_wnd);
  2867. tp->rx_opt.rcv_wscale = rcv_wscale;
  2868. tp->rcv_ssthresh = tp->rcv_wnd;
  2869. sk->sk_err = 0;
  2870. sock_reset_flag(sk, SOCK_DONE);
  2871. tp->snd_wnd = 0;
  2872. tcp_init_wl(tp, 0);
  2873. tcp_write_queue_purge(sk);
  2874. tp->snd_una = tp->write_seq;
  2875. tp->snd_sml = tp->write_seq;
  2876. tp->snd_up = tp->write_seq;
  2877. tp->snd_nxt = tp->write_seq;
  2878. if (likely(!tp->repair))
  2879. tp->rcv_nxt = 0;
  2880. else
  2881. tp->rcv_tstamp = tcp_jiffies32;
  2882. tp->rcv_wup = tp->rcv_nxt;
  2883. tp->copied_seq = tp->rcv_nxt;
  2884. inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
  2885. inet_csk(sk)->icsk_retransmits = 0;
  2886. tcp_clear_retrans(tp);
  2887. }
  2888. static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
  2889. {
  2890. struct tcp_sock *tp = tcp_sk(sk);
  2891. struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
  2892. tcb->end_seq += skb->len;
  2893. __skb_header_release(skb);
  2894. sk->sk_wmem_queued += skb->truesize;
  2895. sk_mem_charge(sk, skb->truesize);
  2896. tp->write_seq = tcb->end_seq;
  2897. tp->packets_out += tcp_skb_pcount(skb);
  2898. }
  2899. /* Build and send a SYN with data and (cached) Fast Open cookie. However,
  2900. * queue a data-only packet after the regular SYN, such that regular SYNs
  2901. * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
  2902. * only the SYN sequence, the data are retransmitted in the first ACK.
  2903. * If cookie is not cached or other error occurs, falls back to send a
  2904. * regular SYN with Fast Open cookie request option.
  2905. */
  2906. static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
  2907. {
  2908. struct tcp_sock *tp = tcp_sk(sk);
  2909. struct tcp_fastopen_request *fo = tp->fastopen_req;
  2910. int space, err = 0;
  2911. struct sk_buff *syn_data;
  2912. tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
  2913. if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
  2914. goto fallback;
  2915. /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
  2916. * user-MSS. Reserve maximum option space for middleboxes that add
  2917. * private TCP options. The cost is reduced data space in SYN :(
  2918. */
  2919. tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
  2920. space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
  2921. MAX_TCP_OPTION_SPACE;
  2922. space = min_t(size_t, space, fo->size);
  2923. /* limit to order-0 allocations */
  2924. space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
  2925. syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
  2926. if (!syn_data)
  2927. goto fallback;
  2928. syn_data->ip_summed = CHECKSUM_PARTIAL;
  2929. memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
  2930. if (space) {
  2931. int copied = copy_from_iter(skb_put(syn_data, space), space,
  2932. &fo->data->msg_iter);
  2933. if (unlikely(!copied)) {
  2934. tcp_skb_tsorted_anchor_cleanup(syn_data);
  2935. kfree_skb(syn_data);
  2936. goto fallback;
  2937. }
  2938. if (copied != space) {
  2939. skb_trim(syn_data, copied);
  2940. space = copied;
  2941. }
  2942. }
  2943. /* No more data pending in inet_wait_for_connect() */
  2944. if (space == fo->size)
  2945. fo->data = NULL;
  2946. fo->copied = space;
  2947. tcp_connect_queue_skb(sk, syn_data);
  2948. if (syn_data->len)
  2949. tcp_chrono_start(sk, TCP_CHRONO_BUSY);
  2950. err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
  2951. syn->skb_mstamp = syn_data->skb_mstamp;
  2952. /* Now full SYN+DATA was cloned and sent (or not),
  2953. * remove the SYN from the original skb (syn_data)
  2954. * we keep in write queue in case of a retransmit, as we
  2955. * also have the SYN packet (with no data) in the same queue.
  2956. */
  2957. TCP_SKB_CB(syn_data)->seq++;
  2958. TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
  2959. if (!err) {
  2960. tp->syn_data = (fo->copied > 0);
  2961. tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
  2962. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
  2963. goto done;
  2964. }
  2965. /* data was not sent, put it in write_queue */
  2966. __skb_queue_tail(&sk->sk_write_queue, syn_data);
  2967. tp->packets_out -= tcp_skb_pcount(syn_data);
  2968. fallback:
  2969. /* Send a regular SYN with Fast Open cookie request option */
  2970. if (fo->cookie.len > 0)
  2971. fo->cookie.len = 0;
  2972. err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
  2973. if (err)
  2974. tp->syn_fastopen = 0;
  2975. done:
  2976. fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
  2977. return err;
  2978. }
  2979. /* Build a SYN and send it off. */
  2980. int tcp_connect(struct sock *sk)
  2981. {
  2982. struct tcp_sock *tp = tcp_sk(sk);
  2983. struct sk_buff *buff;
  2984. int err;
  2985. tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
  2986. if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
  2987. return -EHOSTUNREACH; /* Routing failure or similar. */
  2988. tcp_connect_init(sk);
  2989. if (unlikely(tp->repair)) {
  2990. tcp_finish_connect(sk, NULL);
  2991. return 0;
  2992. }
  2993. buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
  2994. if (unlikely(!buff))
  2995. return -ENOBUFS;
  2996. tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
  2997. tcp_mstamp_refresh(tp);
  2998. tp->retrans_stamp = tcp_time_stamp(tp);
  2999. tcp_connect_queue_skb(sk, buff);
  3000. tcp_ecn_send_syn(sk, buff);
  3001. tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
  3002. /* Send off SYN; include data in Fast Open. */
  3003. err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
  3004. tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
  3005. if (err == -ECONNREFUSED)
  3006. return err;
  3007. /* We change tp->snd_nxt after the tcp_transmit_skb() call
  3008. * in order to make this packet get counted in tcpOutSegs.
  3009. */
  3010. tp->snd_nxt = tp->write_seq;
  3011. tp->pushed_seq = tp->write_seq;
  3012. buff = tcp_send_head(sk);
  3013. if (unlikely(buff)) {
  3014. tp->snd_nxt = TCP_SKB_CB(buff)->seq;
  3015. tp->pushed_seq = TCP_SKB_CB(buff)->seq;
  3016. }
  3017. TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
  3018. /* Timer for repeating the SYN until an answer. */
  3019. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  3020. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  3021. return 0;
  3022. }
  3023. EXPORT_SYMBOL(tcp_connect);
  3024. /* Send out a delayed ack, the caller does the policy checking
  3025. * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
  3026. * for details.
  3027. */
  3028. void tcp_send_delayed_ack(struct sock *sk)
  3029. {
  3030. struct inet_connection_sock *icsk = inet_csk(sk);
  3031. int ato = icsk->icsk_ack.ato;
  3032. unsigned long timeout;
  3033. if (ato > TCP_DELACK_MIN) {
  3034. const struct tcp_sock *tp = tcp_sk(sk);
  3035. int max_ato = HZ / 2;
  3036. if (icsk->icsk_ack.pingpong ||
  3037. (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
  3038. max_ato = TCP_DELACK_MAX;
  3039. /* Slow path, intersegment interval is "high". */
  3040. /* If some rtt estimate is known, use it to bound delayed ack.
  3041. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
  3042. * directly.
  3043. */
  3044. if (tp->srtt_us) {
  3045. int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
  3046. TCP_DELACK_MIN);
  3047. if (rtt < max_ato)
  3048. max_ato = rtt;
  3049. }
  3050. ato = min(ato, max_ato);
  3051. }
  3052. /* Stay within the limit we were given */
  3053. timeout = jiffies + ato;
  3054. /* Use new timeout only if there wasn't a older one earlier. */
  3055. if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
  3056. /* If delack timer was blocked or is about to expire,
  3057. * send ACK now.
  3058. */
  3059. if (icsk->icsk_ack.blocked ||
  3060. time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
  3061. tcp_send_ack(sk);
  3062. return;
  3063. }
  3064. if (!time_before(timeout, icsk->icsk_ack.timeout))
  3065. timeout = icsk->icsk_ack.timeout;
  3066. }
  3067. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  3068. icsk->icsk_ack.timeout = timeout;
  3069. sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
  3070. }
  3071. /* This routine sends an ack and also updates the window. */
  3072. void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
  3073. {
  3074. struct sk_buff *buff;
  3075. /* If we have been reset, we may not send again. */
  3076. if (sk->sk_state == TCP_CLOSE)
  3077. return;
  3078. /* We are not putting this on the write queue, so
  3079. * tcp_transmit_skb() will set the ownership to this
  3080. * sock.
  3081. */
  3082. buff = alloc_skb(MAX_TCP_HEADER,
  3083. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3084. if (unlikely(!buff)) {
  3085. inet_csk_schedule_ack(sk);
  3086. inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
  3087. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  3088. TCP_DELACK_MAX, TCP_RTO_MAX);
  3089. return;
  3090. }
  3091. /* Reserve space for headers and prepare control bits. */
  3092. skb_reserve(buff, MAX_TCP_HEADER);
  3093. tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
  3094. /* We do not want pure acks influencing TCP Small Queues or fq/pacing
  3095. * too much.
  3096. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
  3097. */
  3098. skb_set_tcp_pure_ack(buff);
  3099. /* Send it off, this clears delayed acks for us. */
  3100. __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
  3101. }
  3102. EXPORT_SYMBOL_GPL(__tcp_send_ack);
  3103. void tcp_send_ack(struct sock *sk)
  3104. {
  3105. __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
  3106. }
  3107. /* This routine sends a packet with an out of date sequence
  3108. * number. It assumes the other end will try to ack it.
  3109. *
  3110. * Question: what should we make while urgent mode?
  3111. * 4.4BSD forces sending single byte of data. We cannot send
  3112. * out of window data, because we have SND.NXT==SND.MAX...
  3113. *
  3114. * Current solution: to send TWO zero-length segments in urgent mode:
  3115. * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
  3116. * out-of-date with SND.UNA-1 to probe window.
  3117. */
  3118. static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
  3119. {
  3120. struct tcp_sock *tp = tcp_sk(sk);
  3121. struct sk_buff *skb;
  3122. /* We don't queue it, tcp_transmit_skb() sets ownership. */
  3123. skb = alloc_skb(MAX_TCP_HEADER,
  3124. sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
  3125. if (!skb)
  3126. return -1;
  3127. /* Reserve space for headers and set control bits. */
  3128. skb_reserve(skb, MAX_TCP_HEADER);
  3129. /* Use a previous sequence. This should cause the other
  3130. * end to send an ack. Don't queue or clone SKB, just
  3131. * send it.
  3132. */
  3133. tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
  3134. NET_INC_STATS(sock_net(sk), mib);
  3135. return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
  3136. }
  3137. /* Called from setsockopt( ... TCP_REPAIR ) */
  3138. void tcp_send_window_probe(struct sock *sk)
  3139. {
  3140. if (sk->sk_state == TCP_ESTABLISHED) {
  3141. tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
  3142. tcp_mstamp_refresh(tcp_sk(sk));
  3143. tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
  3144. }
  3145. }
  3146. /* Initiate keepalive or window probe from timer. */
  3147. int tcp_write_wakeup(struct sock *sk, int mib)
  3148. {
  3149. struct tcp_sock *tp = tcp_sk(sk);
  3150. struct sk_buff *skb;
  3151. if (sk->sk_state == TCP_CLOSE)
  3152. return -1;
  3153. skb = tcp_send_head(sk);
  3154. if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
  3155. int err;
  3156. unsigned int mss = tcp_current_mss(sk);
  3157. unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
  3158. if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
  3159. tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
  3160. /* We are probing the opening of a window
  3161. * but the window size is != 0
  3162. * must have been a result SWS avoidance ( sender )
  3163. */
  3164. if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
  3165. skb->len > mss) {
  3166. seg_size = min(seg_size, mss);
  3167. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3168. if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
  3169. skb, seg_size, mss, GFP_ATOMIC))
  3170. return -1;
  3171. } else if (!tcp_skb_pcount(skb))
  3172. tcp_set_skb_tso_segs(skb, mss);
  3173. TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
  3174. err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
  3175. if (!err)
  3176. tcp_event_new_data_sent(sk, skb);
  3177. return err;
  3178. } else {
  3179. if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
  3180. tcp_xmit_probe_skb(sk, 1, mib);
  3181. return tcp_xmit_probe_skb(sk, 0, mib);
  3182. }
  3183. }
  3184. /* A window probe timeout has occurred. If window is not closed send
  3185. * a partial packet else a zero probe.
  3186. */
  3187. void tcp_send_probe0(struct sock *sk)
  3188. {
  3189. struct inet_connection_sock *icsk = inet_csk(sk);
  3190. struct tcp_sock *tp = tcp_sk(sk);
  3191. struct net *net = sock_net(sk);
  3192. unsigned long probe_max;
  3193. int err;
  3194. err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
  3195. if (tp->packets_out || tcp_write_queue_empty(sk)) {
  3196. /* Cancel probe timer, if it is not required. */
  3197. icsk->icsk_probes_out = 0;
  3198. icsk->icsk_backoff = 0;
  3199. return;
  3200. }
  3201. if (err <= 0) {
  3202. if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
  3203. icsk->icsk_backoff++;
  3204. icsk->icsk_probes_out++;
  3205. probe_max = TCP_RTO_MAX;
  3206. } else {
  3207. /* If packet was not sent due to local congestion,
  3208. * do not backoff and do not remember icsk_probes_out.
  3209. * Let local senders to fight for local resources.
  3210. *
  3211. * Use accumulated backoff yet.
  3212. */
  3213. if (!icsk->icsk_probes_out)
  3214. icsk->icsk_probes_out = 1;
  3215. probe_max = TCP_RESOURCE_PROBE_INTERVAL;
  3216. }
  3217. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3218. tcp_probe0_when(sk, probe_max),
  3219. TCP_RTO_MAX);
  3220. }
  3221. int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
  3222. {
  3223. const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
  3224. struct flowi fl;
  3225. int res;
  3226. tcp_rsk(req)->txhash = net_tx_rndhash();
  3227. res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
  3228. if (!res) {
  3229. __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
  3230. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
  3231. if (unlikely(tcp_passive_fastopen(sk)))
  3232. tcp_sk(sk)->total_retrans++;
  3233. trace_tcp_retransmit_synack(sk, req);
  3234. }
  3235. return res;
  3236. }
  3237. EXPORT_SYMBOL(tcp_rtx_synack);