tcp_fastopen.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/crypto.h>
  3. #include <linux/err.h>
  4. #include <linux/init.h>
  5. #include <linux/kernel.h>
  6. #include <linux/list.h>
  7. #include <linux/tcp.h>
  8. #include <linux/rcupdate.h>
  9. #include <linux/rculist.h>
  10. #include <net/inetpeer.h>
  11. #include <net/tcp.h>
  12. void tcp_fastopen_init_key_once(struct net *net)
  13. {
  14. u8 key[TCP_FASTOPEN_KEY_LENGTH];
  15. struct tcp_fastopen_context *ctxt;
  16. rcu_read_lock();
  17. ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
  18. if (ctxt) {
  19. rcu_read_unlock();
  20. return;
  21. }
  22. rcu_read_unlock();
  23. /* tcp_fastopen_reset_cipher publishes the new context
  24. * atomically, so we allow this race happening here.
  25. *
  26. * All call sites of tcp_fastopen_cookie_gen also check
  27. * for a valid cookie, so this is an acceptable risk.
  28. */
  29. get_random_bytes(key, sizeof(key));
  30. tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key));
  31. }
  32. static void tcp_fastopen_ctx_free(struct rcu_head *head)
  33. {
  34. struct tcp_fastopen_context *ctx =
  35. container_of(head, struct tcp_fastopen_context, rcu);
  36. crypto_free_cipher(ctx->tfm);
  37. kfree(ctx);
  38. }
  39. void tcp_fastopen_destroy_cipher(struct sock *sk)
  40. {
  41. struct tcp_fastopen_context *ctx;
  42. ctx = rcu_dereference_protected(
  43. inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
  44. if (ctx)
  45. call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
  46. }
  47. void tcp_fastopen_ctx_destroy(struct net *net)
  48. {
  49. struct tcp_fastopen_context *ctxt;
  50. spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
  51. ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
  52. lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
  53. rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL);
  54. spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
  55. if (ctxt)
  56. call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
  57. }
  58. int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
  59. void *key, unsigned int len)
  60. {
  61. struct tcp_fastopen_context *ctx, *octx;
  62. struct fastopen_queue *q;
  63. int err;
  64. ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  65. if (!ctx)
  66. return -ENOMEM;
  67. ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
  68. if (IS_ERR(ctx->tfm)) {
  69. err = PTR_ERR(ctx->tfm);
  70. error: kfree(ctx);
  71. pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
  72. return err;
  73. }
  74. err = crypto_cipher_setkey(ctx->tfm, key, len);
  75. if (err) {
  76. pr_err("TCP: TFO cipher key error: %d\n", err);
  77. crypto_free_cipher(ctx->tfm);
  78. goto error;
  79. }
  80. memcpy(ctx->key, key, len);
  81. spin_lock(&net->ipv4.tcp_fastopen_ctx_lock);
  82. if (sk) {
  83. q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
  84. octx = rcu_dereference_protected(q->ctx,
  85. lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
  86. rcu_assign_pointer(q->ctx, ctx);
  87. } else {
  88. octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx,
  89. lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock));
  90. rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx);
  91. }
  92. spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock);
  93. if (octx)
  94. call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
  95. return err;
  96. }
  97. static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path,
  98. struct tcp_fastopen_cookie *foc)
  99. {
  100. struct tcp_fastopen_context *ctx;
  101. bool ok = false;
  102. rcu_read_lock();
  103. ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
  104. if (!ctx)
  105. ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
  106. if (ctx) {
  107. crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
  108. foc->len = TCP_FASTOPEN_COOKIE_SIZE;
  109. ok = true;
  110. }
  111. rcu_read_unlock();
  112. return ok;
  113. }
  114. /* Generate the fastopen cookie by doing aes128 encryption on both
  115. * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
  116. * addresses. For the longer IPv6 addresses use CBC-MAC.
  117. *
  118. * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
  119. */
  120. static bool tcp_fastopen_cookie_gen(struct sock *sk,
  121. struct request_sock *req,
  122. struct sk_buff *syn,
  123. struct tcp_fastopen_cookie *foc)
  124. {
  125. if (req->rsk_ops->family == AF_INET) {
  126. const struct iphdr *iph = ip_hdr(syn);
  127. __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
  128. return __tcp_fastopen_cookie_gen(sk, path, foc);
  129. }
  130. #if IS_ENABLED(CONFIG_IPV6)
  131. if (req->rsk_ops->family == AF_INET6) {
  132. const struct ipv6hdr *ip6h = ipv6_hdr(syn);
  133. struct tcp_fastopen_cookie tmp;
  134. if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) {
  135. struct in6_addr *buf = &tmp.addr;
  136. int i;
  137. for (i = 0; i < 4; i++)
  138. buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
  139. return __tcp_fastopen_cookie_gen(sk, buf, foc);
  140. }
  141. }
  142. #endif
  143. return false;
  144. }
  145. /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
  146. * queue this additional data / FIN.
  147. */
  148. void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
  149. {
  150. struct tcp_sock *tp = tcp_sk(sk);
  151. if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
  152. return;
  153. skb = skb_clone(skb, GFP_ATOMIC);
  154. if (!skb)
  155. return;
  156. skb_dst_drop(skb);
  157. /* segs_in has been initialized to 1 in tcp_create_openreq_child().
  158. * Hence, reset segs_in to 0 before calling tcp_segs_in()
  159. * to avoid double counting. Also, tcp_segs_in() expects
  160. * skb->len to include the tcp_hdrlen. Hence, it should
  161. * be called before __skb_pull().
  162. */
  163. tp->segs_in = 0;
  164. tcp_segs_in(tp, skb);
  165. __skb_pull(skb, tcp_hdrlen(skb));
  166. sk_forced_mem_schedule(sk, skb->truesize);
  167. skb_set_owner_r(skb, sk);
  168. TCP_SKB_CB(skb)->seq++;
  169. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
  170. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  171. __skb_queue_tail(&sk->sk_receive_queue, skb);
  172. tp->syn_data_acked = 1;
  173. /* u64_stats_update_begin(&tp->syncp) not needed here,
  174. * as we certainly are not changing upper 32bit value (0)
  175. */
  176. tp->bytes_received = skb->len;
  177. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  178. tcp_fin(sk);
  179. }
  180. static struct sock *tcp_fastopen_create_child(struct sock *sk,
  181. struct sk_buff *skb,
  182. struct request_sock *req)
  183. {
  184. struct tcp_sock *tp;
  185. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  186. struct sock *child;
  187. bool own_req;
  188. req->num_retrans = 0;
  189. req->num_timeout = 0;
  190. req->sk = NULL;
  191. child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
  192. NULL, &own_req);
  193. if (!child)
  194. return NULL;
  195. spin_lock(&queue->fastopenq.lock);
  196. queue->fastopenq.qlen++;
  197. spin_unlock(&queue->fastopenq.lock);
  198. /* Initialize the child socket. Have to fix some values to take
  199. * into account the child is a Fast Open socket and is created
  200. * only out of the bits carried in the SYN packet.
  201. */
  202. tp = tcp_sk(child);
  203. tp->fastopen_rsk = req;
  204. tcp_rsk(req)->tfo_listener = true;
  205. /* RFC1323: The window in SYN & SYN/ACK segments is never
  206. * scaled. So correct it appropriately.
  207. */
  208. tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
  209. tp->max_window = tp->snd_wnd;
  210. /* Activate the retrans timer so that SYNACK can be retransmitted.
  211. * The request socket is not added to the ehash
  212. * because it's been added to the accept queue directly.
  213. */
  214. inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
  215. TCP_TIMEOUT_INIT, TCP_RTO_MAX);
  216. refcount_set(&req->rsk_refcnt, 2);
  217. /* Now finish processing the fastopen child socket. */
  218. tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  219. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  220. tcp_fastopen_add_skb(child, skb);
  221. tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
  222. tp->rcv_wup = tp->rcv_nxt;
  223. /* tcp_conn_request() is sending the SYNACK,
  224. * and queues the child into listener accept queue.
  225. */
  226. return child;
  227. }
  228. static bool tcp_fastopen_queue_check(struct sock *sk)
  229. {
  230. struct fastopen_queue *fastopenq;
  231. /* Make sure the listener has enabled fastopen, and we don't
  232. * exceed the max # of pending TFO requests allowed before trying
  233. * to validating the cookie in order to avoid burning CPU cycles
  234. * unnecessarily.
  235. *
  236. * XXX (TFO) - The implication of checking the max_qlen before
  237. * processing a cookie request is that clients can't differentiate
  238. * between qlen overflow causing Fast Open to be disabled
  239. * temporarily vs a server not supporting Fast Open at all.
  240. */
  241. fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
  242. if (fastopenq->max_qlen == 0)
  243. return false;
  244. if (fastopenq->qlen >= fastopenq->max_qlen) {
  245. struct request_sock *req1;
  246. spin_lock(&fastopenq->lock);
  247. req1 = fastopenq->rskq_rst_head;
  248. if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
  249. __NET_INC_STATS(sock_net(sk),
  250. LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
  251. spin_unlock(&fastopenq->lock);
  252. return false;
  253. }
  254. fastopenq->rskq_rst_head = req1->dl_next;
  255. fastopenq->qlen--;
  256. spin_unlock(&fastopenq->lock);
  257. reqsk_put(req1);
  258. }
  259. return true;
  260. }
  261. static bool tcp_fastopen_no_cookie(const struct sock *sk,
  262. const struct dst_entry *dst,
  263. int flag)
  264. {
  265. return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) ||
  266. tcp_sk(sk)->fastopen_no_cookie ||
  267. (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
  268. }
  269. /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
  270. * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
  271. * cookie request (foc->len == 0).
  272. */
  273. struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
  274. struct request_sock *req,
  275. struct tcp_fastopen_cookie *foc,
  276. const struct dst_entry *dst)
  277. {
  278. bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
  279. int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen;
  280. struct tcp_fastopen_cookie valid_foc = { .len = -1 };
  281. struct sock *child;
  282. if (foc->len == 0) /* Client requests a cookie */
  283. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
  284. if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
  285. (syn_data || foc->len >= 0) &&
  286. tcp_fastopen_queue_check(sk))) {
  287. foc->len = -1;
  288. return NULL;
  289. }
  290. if (syn_data &&
  291. tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
  292. goto fastopen;
  293. if (foc->len >= 0 && /* Client presents or requests a cookie */
  294. tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) &&
  295. foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
  296. foc->len == valid_foc.len &&
  297. !memcmp(foc->val, valid_foc.val, foc->len)) {
  298. /* Cookie is valid. Create a (full) child socket to accept
  299. * the data in SYN before returning a SYN-ACK to ack the
  300. * data. If we fail to create the socket, fall back and
  301. * ack the ISN only but includes the same cookie.
  302. *
  303. * Note: Data-less SYN with valid cookie is allowed to send
  304. * data in SYN_RECV state.
  305. */
  306. fastopen:
  307. child = tcp_fastopen_create_child(sk, skb, req);
  308. if (child) {
  309. foc->len = -1;
  310. NET_INC_STATS(sock_net(sk),
  311. LINUX_MIB_TCPFASTOPENPASSIVE);
  312. return child;
  313. }
  314. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
  315. } else if (foc->len > 0) /* Client presents an invalid cookie */
  316. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
  317. valid_foc.exp = foc->exp;
  318. *foc = valid_foc;
  319. return NULL;
  320. }
  321. bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
  322. struct tcp_fastopen_cookie *cookie)
  323. {
  324. const struct dst_entry *dst;
  325. tcp_fastopen_cache_get(sk, mss, cookie);
  326. /* Firewall blackhole issue check */
  327. if (tcp_fastopen_active_should_disable(sk)) {
  328. cookie->len = -1;
  329. return false;
  330. }
  331. dst = __sk_dst_get(sk);
  332. if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
  333. cookie->len = -1;
  334. return true;
  335. }
  336. return cookie->len > 0;
  337. }
  338. /* This function checks if we want to defer sending SYN until the first
  339. * write(). We defer under the following conditions:
  340. * 1. fastopen_connect sockopt is set
  341. * 2. we have a valid cookie
  342. * Return value: return true if we want to defer until application writes data
  343. * return false if we want to send out SYN immediately
  344. */
  345. bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
  346. {
  347. struct tcp_fastopen_cookie cookie = { .len = 0 };
  348. struct tcp_sock *tp = tcp_sk(sk);
  349. u16 mss;
  350. if (tp->fastopen_connect && !tp->fastopen_req) {
  351. if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
  352. inet_sk(sk)->defer_connect = 1;
  353. return true;
  354. }
  355. /* Alloc fastopen_req in order for FO option to be included
  356. * in SYN
  357. */
  358. tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
  359. sk->sk_allocation);
  360. if (tp->fastopen_req)
  361. tp->fastopen_req->cookie = cookie;
  362. else
  363. *err = -ENOBUFS;
  364. }
  365. return false;
  366. }
  367. EXPORT_SYMBOL(tcp_fastopen_defer_connect);
  368. /*
  369. * The following code block is to deal with middle box issues with TFO:
  370. * Middlebox firewall issues can potentially cause server's data being
  371. * blackholed after a successful 3WHS using TFO.
  372. * The proposed solution is to disable active TFO globally under the
  373. * following circumstances:
  374. * 1. client side TFO socket receives out of order FIN
  375. * 2. client side TFO socket receives out of order RST
  376. * 3. client side TFO socket has timed out three times consecutively during
  377. * or after handshake
  378. * We disable active side TFO globally for 1hr at first. Then if it
  379. * happens again, we disable it for 2h, then 4h, 8h, ...
  380. * And we reset the timeout back to 1hr when we see a successful active
  381. * TFO connection with data exchanges.
  382. */
  383. /* Disable active TFO and record current jiffies and
  384. * tfo_active_disable_times
  385. */
  386. void tcp_fastopen_active_disable(struct sock *sk)
  387. {
  388. struct net *net = sock_net(sk);
  389. atomic_inc(&net->ipv4.tfo_active_disable_times);
  390. net->ipv4.tfo_active_disable_stamp = jiffies;
  391. NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
  392. }
  393. /* Calculate timeout for tfo active disable
  394. * Return true if we are still in the active TFO disable period
  395. * Return false if timeout already expired and we should use active TFO
  396. */
  397. bool tcp_fastopen_active_should_disable(struct sock *sk)
  398. {
  399. unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout;
  400. int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
  401. unsigned long timeout;
  402. int multiplier;
  403. if (!tfo_da_times)
  404. return false;
  405. /* Limit timout to max: 2^6 * initial timeout */
  406. multiplier = 1 << min(tfo_da_times - 1, 6);
  407. timeout = multiplier * tfo_bh_timeout * HZ;
  408. if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout))
  409. return true;
  410. /* Mark check bit so we can check for successful active TFO
  411. * condition and reset tfo_active_disable_times
  412. */
  413. tcp_sk(sk)->syn_fastopen_ch = 1;
  414. return false;
  415. }
  416. /* Disable active TFO if FIN is the only packet in the ofo queue
  417. * and no data is received.
  418. * Also check if we can reset tfo_active_disable_times if data is
  419. * received successfully on a marked active TFO sockets opened on
  420. * a non-loopback interface
  421. */
  422. void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
  423. {
  424. struct tcp_sock *tp = tcp_sk(sk);
  425. struct dst_entry *dst;
  426. struct sk_buff *skb;
  427. if (!tp->syn_fastopen)
  428. return;
  429. if (!tp->data_segs_in) {
  430. skb = skb_rb_first(&tp->out_of_order_queue);
  431. if (skb && !skb_rb_next(skb)) {
  432. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
  433. tcp_fastopen_active_disable(sk);
  434. return;
  435. }
  436. }
  437. } else if (tp->syn_fastopen_ch &&
  438. atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
  439. dst = sk_dst_get(sk);
  440. if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
  441. atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
  442. dst_release(dst);
  443. }
  444. }
  445. void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
  446. {
  447. u32 timeouts = inet_csk(sk)->icsk_retransmits;
  448. struct tcp_sock *tp = tcp_sk(sk);
  449. /* Broken middle-boxes may black-hole Fast Open connection during or
  450. * even after the handshake. Be extremely conservative and pause
  451. * Fast Open globally after hitting the third consecutive timeout or
  452. * exceeding the configured timeout limit.
  453. */
  454. if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
  455. (timeouts == 2 || (timeouts < 2 && expired))) {
  456. tcp_fastopen_active_disable(sk);
  457. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  458. }
  459. }