tcp_cubic.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. /*
  2. * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
  3. * Home page:
  4. * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
  5. * This is from the implementation of CUBIC TCP in
  6. * Sangtae Ha, Injong Rhee and Lisong Xu,
  7. * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
  8. * in ACM SIGOPS Operating System Review, July 2008.
  9. * Available from:
  10. * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
  11. *
  12. * CUBIC integrates a new slow start algorithm, called HyStart.
  13. * The details of HyStart are presented in
  14. * Sangtae Ha and Injong Rhee,
  15. * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
  16. * Available from:
  17. * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
  18. *
  19. * All testing results are available from:
  20. * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
  21. *
  22. * Unless CUBIC is enabled and congestion window is large
  23. * this behaves the same as the original Reno.
  24. */
  25. #include <linux/mm.h>
  26. #include <linux/module.h>
  27. #include <linux/math64.h>
  28. #include <net/tcp.h>
  29. #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
  30. * max_cwnd = snd_cwnd * beta
  31. */
  32. #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
  33. /* Two methods of hybrid slow start */
  34. #define HYSTART_ACK_TRAIN 0x1
  35. #define HYSTART_DELAY 0x2
  36. /* Number of delay samples for detecting the increase of delay */
  37. #define HYSTART_MIN_SAMPLES 8
  38. #define HYSTART_DELAY_MIN (4U<<3)
  39. #define HYSTART_DELAY_MAX (16U<<3)
  40. #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
  41. static int fast_convergence __read_mostly = 1;
  42. static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
  43. static int initial_ssthresh __read_mostly;
  44. static int bic_scale __read_mostly = 41;
  45. static int tcp_friendliness __read_mostly = 1;
  46. static int hystart __read_mostly = 1;
  47. static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
  48. static int hystart_low_window __read_mostly = 16;
  49. static int hystart_ack_delta __read_mostly = 2;
  50. static u32 cube_rtt_scale __read_mostly;
  51. static u32 beta_scale __read_mostly;
  52. static u64 cube_factor __read_mostly;
  53. /* Note parameters that are used for precomputing scale factors are read-only */
  54. module_param(fast_convergence, int, 0644);
  55. MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
  56. module_param(beta, int, 0644);
  57. MODULE_PARM_DESC(beta, "beta for multiplicative increase");
  58. module_param(initial_ssthresh, int, 0644);
  59. MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
  60. module_param(bic_scale, int, 0444);
  61. MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
  62. module_param(tcp_friendliness, int, 0644);
  63. MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
  64. module_param(hystart, int, 0644);
  65. MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
  66. module_param(hystart_detect, int, 0644);
  67. MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
  68. " 1: packet-train 2: delay 3: both packet-train and delay");
  69. module_param(hystart_low_window, int, 0644);
  70. MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
  71. module_param(hystart_ack_delta, int, 0644);
  72. MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
  73. /* BIC TCP Parameters */
  74. struct bictcp {
  75. u32 cnt; /* increase cwnd by 1 after ACKs */
  76. u32 last_max_cwnd; /* last maximum snd_cwnd */
  77. u32 last_cwnd; /* the last snd_cwnd */
  78. u32 last_time; /* time when updated last_cwnd */
  79. u32 bic_origin_point;/* origin point of bic function */
  80. u32 bic_K; /* time to origin point
  81. from the beginning of the current epoch */
  82. u32 delay_min; /* min delay (msec << 3) */
  83. u32 epoch_start; /* beginning of an epoch */
  84. u32 ack_cnt; /* number of acks */
  85. u32 tcp_cwnd; /* estimated tcp cwnd */
  86. u16 unused;
  87. u8 sample_cnt; /* number of samples to decide curr_rtt */
  88. u8 found; /* the exit point is found? */
  89. u32 round_start; /* beginning of each round */
  90. u32 end_seq; /* end_seq of the round */
  91. u32 last_ack; /* last time when the ACK spacing is close */
  92. u32 curr_rtt; /* the minimum rtt of current round */
  93. };
  94. static inline void bictcp_reset(struct bictcp *ca)
  95. {
  96. ca->cnt = 0;
  97. ca->last_max_cwnd = 0;
  98. ca->last_cwnd = 0;
  99. ca->last_time = 0;
  100. ca->bic_origin_point = 0;
  101. ca->bic_K = 0;
  102. ca->delay_min = 0;
  103. ca->epoch_start = 0;
  104. ca->ack_cnt = 0;
  105. ca->tcp_cwnd = 0;
  106. ca->found = 0;
  107. }
  108. static inline u32 bictcp_clock(void)
  109. {
  110. #if HZ < 1000
  111. return ktime_to_ms(ktime_get_real());
  112. #else
  113. return jiffies_to_msecs(jiffies);
  114. #endif
  115. }
  116. static inline void bictcp_hystart_reset(struct sock *sk)
  117. {
  118. struct tcp_sock *tp = tcp_sk(sk);
  119. struct bictcp *ca = inet_csk_ca(sk);
  120. ca->round_start = ca->last_ack = bictcp_clock();
  121. ca->end_seq = tp->snd_nxt;
  122. ca->curr_rtt = 0;
  123. ca->sample_cnt = 0;
  124. }
  125. static void bictcp_init(struct sock *sk)
  126. {
  127. struct bictcp *ca = inet_csk_ca(sk);
  128. bictcp_reset(ca);
  129. if (hystart)
  130. bictcp_hystart_reset(sk);
  131. if (!hystart && initial_ssthresh)
  132. tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
  133. }
  134. static void bictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
  135. {
  136. if (event == CA_EVENT_TX_START) {
  137. struct bictcp *ca = inet_csk_ca(sk);
  138. u32 now = tcp_jiffies32;
  139. s32 delta;
  140. delta = now - tcp_sk(sk)->lsndtime;
  141. /* We were application limited (idle) for a while.
  142. * Shift epoch_start to keep cwnd growth to cubic curve.
  143. */
  144. if (ca->epoch_start && delta > 0) {
  145. ca->epoch_start += delta;
  146. if (after(ca->epoch_start, now))
  147. ca->epoch_start = now;
  148. }
  149. return;
  150. }
  151. }
  152. /* calculate the cubic root of x using a table lookup followed by one
  153. * Newton-Raphson iteration.
  154. * Avg err ~= 0.195%
  155. */
  156. static u32 cubic_root(u64 a)
  157. {
  158. u32 x, b, shift;
  159. /*
  160. * cbrt(x) MSB values for x MSB values in [0..63].
  161. * Precomputed then refined by hand - Willy Tarreau
  162. *
  163. * For x in [0..63],
  164. * v = cbrt(x << 18) - 1
  165. * cbrt(x) = (v[x] + 10) >> 6
  166. */
  167. static const u8 v[] = {
  168. /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
  169. /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
  170. /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
  171. /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
  172. /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
  173. /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
  174. /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
  175. /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
  176. };
  177. b = fls64(a);
  178. if (b < 7) {
  179. /* a in [0..63] */
  180. return ((u32)v[(u32)a] + 35) >> 6;
  181. }
  182. b = ((b * 84) >> 8) - 1;
  183. shift = (a >> (b * 3));
  184. x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
  185. /*
  186. * Newton-Raphson iteration
  187. * 2
  188. * x = ( 2 * x + a / x ) / 3
  189. * k+1 k k
  190. */
  191. x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
  192. x = ((x * 341) >> 10);
  193. return x;
  194. }
  195. /*
  196. * Compute congestion window to use.
  197. */
  198. static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
  199. {
  200. u32 delta, bic_target, max_cnt;
  201. u64 offs, t;
  202. ca->ack_cnt += acked; /* count the number of ACKed packets */
  203. if (ca->last_cwnd == cwnd &&
  204. (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
  205. return;
  206. /* The CUBIC function can update ca->cnt at most once per jiffy.
  207. * On all cwnd reduction events, ca->epoch_start is set to 0,
  208. * which will force a recalculation of ca->cnt.
  209. */
  210. if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
  211. goto tcp_friendliness;
  212. ca->last_cwnd = cwnd;
  213. ca->last_time = tcp_jiffies32;
  214. if (ca->epoch_start == 0) {
  215. ca->epoch_start = tcp_jiffies32; /* record beginning */
  216. ca->ack_cnt = acked; /* start counting */
  217. ca->tcp_cwnd = cwnd; /* syn with cubic */
  218. if (ca->last_max_cwnd <= cwnd) {
  219. ca->bic_K = 0;
  220. ca->bic_origin_point = cwnd;
  221. } else {
  222. /* Compute new K based on
  223. * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
  224. */
  225. ca->bic_K = cubic_root(cube_factor
  226. * (ca->last_max_cwnd - cwnd));
  227. ca->bic_origin_point = ca->last_max_cwnd;
  228. }
  229. }
  230. /* cubic function - calc*/
  231. /* calculate c * time^3 / rtt,
  232. * while considering overflow in calculation of time^3
  233. * (so time^3 is done by using 64 bit)
  234. * and without the support of division of 64bit numbers
  235. * (so all divisions are done by using 32 bit)
  236. * also NOTE the unit of those veriables
  237. * time = (t - K) / 2^bictcp_HZ
  238. * c = bic_scale >> 10
  239. * rtt = (srtt >> 3) / HZ
  240. * !!! The following code does not have overflow problems,
  241. * if the cwnd < 1 million packets !!!
  242. */
  243. t = (s32)(tcp_jiffies32 - ca->epoch_start);
  244. t += msecs_to_jiffies(ca->delay_min >> 3);
  245. /* change the unit from HZ to bictcp_HZ */
  246. t <<= BICTCP_HZ;
  247. do_div(t, HZ);
  248. if (t < ca->bic_K) /* t - K */
  249. offs = ca->bic_K - t;
  250. else
  251. offs = t - ca->bic_K;
  252. /* c/rtt * (t-K)^3 */
  253. delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
  254. if (t < ca->bic_K) /* below origin*/
  255. bic_target = ca->bic_origin_point - delta;
  256. else /* above origin*/
  257. bic_target = ca->bic_origin_point + delta;
  258. /* cubic function - calc bictcp_cnt*/
  259. if (bic_target > cwnd) {
  260. ca->cnt = cwnd / (bic_target - cwnd);
  261. } else {
  262. ca->cnt = 100 * cwnd; /* very small increment*/
  263. }
  264. /*
  265. * The initial growth of cubic function may be too conservative
  266. * when the available bandwidth is still unknown.
  267. */
  268. if (ca->last_max_cwnd == 0 && ca->cnt > 20)
  269. ca->cnt = 20; /* increase cwnd 5% per RTT */
  270. tcp_friendliness:
  271. /* TCP Friendly */
  272. if (tcp_friendliness) {
  273. u32 scale = beta_scale;
  274. delta = (cwnd * scale) >> 3;
  275. while (ca->ack_cnt > delta) { /* update tcp cwnd */
  276. ca->ack_cnt -= delta;
  277. ca->tcp_cwnd++;
  278. }
  279. if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
  280. delta = ca->tcp_cwnd - cwnd;
  281. max_cnt = cwnd / delta;
  282. if (ca->cnt > max_cnt)
  283. ca->cnt = max_cnt;
  284. }
  285. }
  286. /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
  287. * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
  288. */
  289. ca->cnt = max(ca->cnt, 2U);
  290. }
  291. static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  292. {
  293. struct tcp_sock *tp = tcp_sk(sk);
  294. struct bictcp *ca = inet_csk_ca(sk);
  295. if (!tcp_is_cwnd_limited(sk))
  296. return;
  297. if (tcp_in_slow_start(tp)) {
  298. if (hystart && after(ack, ca->end_seq))
  299. bictcp_hystart_reset(sk);
  300. acked = tcp_slow_start(tp, acked);
  301. if (!acked)
  302. return;
  303. }
  304. bictcp_update(ca, tp->snd_cwnd, acked);
  305. tcp_cong_avoid_ai(tp, ca->cnt, acked);
  306. }
  307. static u32 bictcp_recalc_ssthresh(struct sock *sk)
  308. {
  309. const struct tcp_sock *tp = tcp_sk(sk);
  310. struct bictcp *ca = inet_csk_ca(sk);
  311. ca->epoch_start = 0; /* end of epoch */
  312. /* Wmax and fast convergence */
  313. if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
  314. ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
  315. / (2 * BICTCP_BETA_SCALE);
  316. else
  317. ca->last_max_cwnd = tp->snd_cwnd;
  318. return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
  319. }
  320. static void bictcp_state(struct sock *sk, u8 new_state)
  321. {
  322. if (new_state == TCP_CA_Loss) {
  323. bictcp_reset(inet_csk_ca(sk));
  324. bictcp_hystart_reset(sk);
  325. }
  326. }
  327. static void hystart_update(struct sock *sk, u32 delay)
  328. {
  329. struct tcp_sock *tp = tcp_sk(sk);
  330. struct bictcp *ca = inet_csk_ca(sk);
  331. if (ca->found & hystart_detect)
  332. return;
  333. if (hystart_detect & HYSTART_ACK_TRAIN) {
  334. u32 now = bictcp_clock();
  335. /* first detection parameter - ack-train detection */
  336. if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
  337. ca->last_ack = now;
  338. if ((s32)(now - ca->round_start) > ca->delay_min >> 4) {
  339. ca->found |= HYSTART_ACK_TRAIN;
  340. NET_INC_STATS(sock_net(sk),
  341. LINUX_MIB_TCPHYSTARTTRAINDETECT);
  342. NET_ADD_STATS(sock_net(sk),
  343. LINUX_MIB_TCPHYSTARTTRAINCWND,
  344. tp->snd_cwnd);
  345. tp->snd_ssthresh = tp->snd_cwnd;
  346. }
  347. }
  348. }
  349. if (hystart_detect & HYSTART_DELAY) {
  350. /* obtain the minimum delay of more than sampling packets */
  351. if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
  352. if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
  353. ca->curr_rtt = delay;
  354. ca->sample_cnt++;
  355. } else {
  356. if (ca->curr_rtt > ca->delay_min +
  357. HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
  358. ca->found |= HYSTART_DELAY;
  359. NET_INC_STATS(sock_net(sk),
  360. LINUX_MIB_TCPHYSTARTDELAYDETECT);
  361. NET_ADD_STATS(sock_net(sk),
  362. LINUX_MIB_TCPHYSTARTDELAYCWND,
  363. tp->snd_cwnd);
  364. tp->snd_ssthresh = tp->snd_cwnd;
  365. }
  366. }
  367. }
  368. }
  369. /* Track delayed acknowledgment ratio using sliding window
  370. * ratio = (15*ratio + sample) / 16
  371. */
  372. static void bictcp_acked(struct sock *sk, const struct ack_sample *sample)
  373. {
  374. const struct tcp_sock *tp = tcp_sk(sk);
  375. struct bictcp *ca = inet_csk_ca(sk);
  376. u32 delay;
  377. /* Some calls are for duplicates without timetamps */
  378. if (sample->rtt_us < 0)
  379. return;
  380. /* Discard delay samples right after fast recovery */
  381. if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
  382. return;
  383. delay = (sample->rtt_us << 3) / USEC_PER_MSEC;
  384. if (delay == 0)
  385. delay = 1;
  386. /* first time call or link delay decreases */
  387. if (ca->delay_min == 0 || ca->delay_min > delay)
  388. ca->delay_min = delay;
  389. /* hystart triggers when cwnd is larger than some threshold */
  390. if (hystart && tcp_in_slow_start(tp) &&
  391. tp->snd_cwnd >= hystart_low_window)
  392. hystart_update(sk, delay);
  393. }
  394. static struct tcp_congestion_ops cubictcp __read_mostly = {
  395. .init = bictcp_init,
  396. .ssthresh = bictcp_recalc_ssthresh,
  397. .cong_avoid = bictcp_cong_avoid,
  398. .set_state = bictcp_state,
  399. .undo_cwnd = tcp_reno_undo_cwnd,
  400. .cwnd_event = bictcp_cwnd_event,
  401. .pkts_acked = bictcp_acked,
  402. .owner = THIS_MODULE,
  403. .name = "cubic",
  404. };
  405. static int __init cubictcp_register(void)
  406. {
  407. BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
  408. /* Precompute a bunch of the scaling factors that are used per-packet
  409. * based on SRTT of 100ms
  410. */
  411. beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
  412. / (BICTCP_BETA_SCALE - beta);
  413. cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
  414. /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
  415. * so K = cubic_root( (wmax-cwnd)*rtt/c )
  416. * the unit of K is bictcp_HZ=2^10, not HZ
  417. *
  418. * c = bic_scale >> 10
  419. * rtt = 100ms
  420. *
  421. * the following code has been designed and tested for
  422. * cwnd < 1 million packets
  423. * RTT < 100 seconds
  424. * HZ < 1,000,00 (corresponding to 10 nano-second)
  425. */
  426. /* 1/c * 2^2*bictcp_HZ * srtt */
  427. cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
  428. /* divide by bic_scale and by constant Srtt (100ms) */
  429. do_div(cube_factor, bic_scale * 10);
  430. return tcp_register_congestion_control(&cubictcp);
  431. }
  432. static void __exit cubictcp_unregister(void)
  433. {
  434. tcp_unregister_congestion_control(&cubictcp);
  435. }
  436. module_init(cubictcp_register);
  437. module_exit(cubictcp_unregister);
  438. MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
  439. MODULE_LICENSE("GPL");
  440. MODULE_DESCRIPTION("CUBIC TCP");
  441. MODULE_VERSION("2.3");