fib_trie.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/cache.h>
  52. #include <linux/uaccess.h>
  53. #include <linux/bitops.h>
  54. #include <linux/types.h>
  55. #include <linux/kernel.h>
  56. #include <linux/mm.h>
  57. #include <linux/string.h>
  58. #include <linux/socket.h>
  59. #include <linux/sockios.h>
  60. #include <linux/errno.h>
  61. #include <linux/in.h>
  62. #include <linux/inet.h>
  63. #include <linux/inetdevice.h>
  64. #include <linux/netdevice.h>
  65. #include <linux/if_arp.h>
  66. #include <linux/proc_fs.h>
  67. #include <linux/rcupdate.h>
  68. #include <linux/skbuff.h>
  69. #include <linux/netlink.h>
  70. #include <linux/init.h>
  71. #include <linux/list.h>
  72. #include <linux/slab.h>
  73. #include <linux/export.h>
  74. #include <linux/vmalloc.h>
  75. #include <linux/notifier.h>
  76. #include <net/net_namespace.h>
  77. #include <net/ip.h>
  78. #include <net/protocol.h>
  79. #include <net/route.h>
  80. #include <net/tcp.h>
  81. #include <net/sock.h>
  82. #include <net/ip_fib.h>
  83. #include <net/fib_notifier.h>
  84. #include <trace/events/fib.h>
  85. #include "fib_lookup.h"
  86. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  87. enum fib_event_type event_type, u32 dst,
  88. int dst_len, struct fib_alias *fa)
  89. {
  90. struct fib_entry_notifier_info info = {
  91. .dst = dst,
  92. .dst_len = dst_len,
  93. .fi = fa->fa_info,
  94. .tos = fa->fa_tos,
  95. .type = fa->fa_type,
  96. .tb_id = fa->tb_id,
  97. };
  98. return call_fib4_notifier(nb, net, event_type, &info.info);
  99. }
  100. static int call_fib_entry_notifiers(struct net *net,
  101. enum fib_event_type event_type, u32 dst,
  102. int dst_len, struct fib_alias *fa,
  103. struct netlink_ext_ack *extack)
  104. {
  105. struct fib_entry_notifier_info info = {
  106. .info.extack = extack,
  107. .dst = dst,
  108. .dst_len = dst_len,
  109. .fi = fa->fa_info,
  110. .tos = fa->fa_tos,
  111. .type = fa->fa_type,
  112. .tb_id = fa->tb_id,
  113. };
  114. return call_fib4_notifiers(net, event_type, &info.info);
  115. }
  116. #define MAX_STAT_DEPTH 32
  117. #define KEYLENGTH (8*sizeof(t_key))
  118. #define KEY_MAX ((t_key)~0)
  119. typedef unsigned int t_key;
  120. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  121. #define IS_TNODE(n) ((n)->bits)
  122. #define IS_LEAF(n) (!(n)->bits)
  123. struct key_vector {
  124. t_key key;
  125. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  126. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  127. unsigned char slen;
  128. union {
  129. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  130. struct hlist_head leaf;
  131. /* This array is valid if (pos | bits) > 0 (TNODE) */
  132. struct key_vector __rcu *tnode[0];
  133. };
  134. };
  135. struct tnode {
  136. struct rcu_head rcu;
  137. t_key empty_children; /* KEYLENGTH bits needed */
  138. t_key full_children; /* KEYLENGTH bits needed */
  139. struct key_vector __rcu *parent;
  140. struct key_vector kv[1];
  141. #define tn_bits kv[0].bits
  142. };
  143. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  144. #define LEAF_SIZE TNODE_SIZE(1)
  145. #ifdef CONFIG_IP_FIB_TRIE_STATS
  146. struct trie_use_stats {
  147. unsigned int gets;
  148. unsigned int backtrack;
  149. unsigned int semantic_match_passed;
  150. unsigned int semantic_match_miss;
  151. unsigned int null_node_hit;
  152. unsigned int resize_node_skipped;
  153. };
  154. #endif
  155. struct trie_stat {
  156. unsigned int totdepth;
  157. unsigned int maxdepth;
  158. unsigned int tnodes;
  159. unsigned int leaves;
  160. unsigned int nullpointers;
  161. unsigned int prefixes;
  162. unsigned int nodesizes[MAX_STAT_DEPTH];
  163. };
  164. struct trie {
  165. struct key_vector kv[1];
  166. #ifdef CONFIG_IP_FIB_TRIE_STATS
  167. struct trie_use_stats __percpu *stats;
  168. #endif
  169. };
  170. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  171. static size_t tnode_free_size;
  172. /*
  173. * synchronize_rcu after call_rcu for that many pages; it should be especially
  174. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  175. * obtained experimentally, aiming to avoid visible slowdown.
  176. */
  177. static const int sync_pages = 128;
  178. static struct kmem_cache *fn_alias_kmem __ro_after_init;
  179. static struct kmem_cache *trie_leaf_kmem __ro_after_init;
  180. static inline struct tnode *tn_info(struct key_vector *kv)
  181. {
  182. return container_of(kv, struct tnode, kv[0]);
  183. }
  184. /* caller must hold RTNL */
  185. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  186. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  187. /* caller must hold RCU read lock or RTNL */
  188. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  189. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  190. /* wrapper for rcu_assign_pointer */
  191. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  192. {
  193. if (n)
  194. rcu_assign_pointer(tn_info(n)->parent, tp);
  195. }
  196. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  197. /* This provides us with the number of children in this node, in the case of a
  198. * leaf this will return 0 meaning none of the children are accessible.
  199. */
  200. static inline unsigned long child_length(const struct key_vector *tn)
  201. {
  202. return (1ul << tn->bits) & ~(1ul);
  203. }
  204. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  205. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  206. {
  207. unsigned long index = key ^ kv->key;
  208. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  209. return 0;
  210. return index >> kv->pos;
  211. }
  212. /* To understand this stuff, an understanding of keys and all their bits is
  213. * necessary. Every node in the trie has a key associated with it, but not
  214. * all of the bits in that key are significant.
  215. *
  216. * Consider a node 'n' and its parent 'tp'.
  217. *
  218. * If n is a leaf, every bit in its key is significant. Its presence is
  219. * necessitated by path compression, since during a tree traversal (when
  220. * searching for a leaf - unless we are doing an insertion) we will completely
  221. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  222. * a potentially successful search, that we have indeed been walking the
  223. * correct key path.
  224. *
  225. * Note that we can never "miss" the correct key in the tree if present by
  226. * following the wrong path. Path compression ensures that segments of the key
  227. * that are the same for all keys with a given prefix are skipped, but the
  228. * skipped part *is* identical for each node in the subtrie below the skipped
  229. * bit! trie_insert() in this implementation takes care of that.
  230. *
  231. * if n is an internal node - a 'tnode' here, the various parts of its key
  232. * have many different meanings.
  233. *
  234. * Example:
  235. * _________________________________________________________________
  236. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  237. * -----------------------------------------------------------------
  238. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  239. *
  240. * _________________________________________________________________
  241. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  242. * -----------------------------------------------------------------
  243. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  244. *
  245. * tp->pos = 22
  246. * tp->bits = 3
  247. * n->pos = 13
  248. * n->bits = 4
  249. *
  250. * First, let's just ignore the bits that come before the parent tp, that is
  251. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  252. * point we do not use them for anything.
  253. *
  254. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  255. * index into the parent's child array. That is, they will be used to find
  256. * 'n' among tp's children.
  257. *
  258. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  259. * for the node n.
  260. *
  261. * All the bits we have seen so far are significant to the node n. The rest
  262. * of the bits are really not needed or indeed known in n->key.
  263. *
  264. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  265. * n's child array, and will of course be different for each child.
  266. *
  267. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  268. * at this point.
  269. */
  270. static const int halve_threshold = 25;
  271. static const int inflate_threshold = 50;
  272. static const int halve_threshold_root = 15;
  273. static const int inflate_threshold_root = 30;
  274. static void __alias_free_mem(struct rcu_head *head)
  275. {
  276. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  277. kmem_cache_free(fn_alias_kmem, fa);
  278. }
  279. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  280. {
  281. call_rcu(&fa->rcu, __alias_free_mem);
  282. }
  283. #define TNODE_KMALLOC_MAX \
  284. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  285. #define TNODE_VMALLOC_MAX \
  286. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  287. static void __node_free_rcu(struct rcu_head *head)
  288. {
  289. struct tnode *n = container_of(head, struct tnode, rcu);
  290. if (!n->tn_bits)
  291. kmem_cache_free(trie_leaf_kmem, n);
  292. else
  293. kvfree(n);
  294. }
  295. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  296. static struct tnode *tnode_alloc(int bits)
  297. {
  298. size_t size;
  299. /* verify bits is within bounds */
  300. if (bits > TNODE_VMALLOC_MAX)
  301. return NULL;
  302. /* determine size and verify it is non-zero and didn't overflow */
  303. size = TNODE_SIZE(1ul << bits);
  304. if (size <= PAGE_SIZE)
  305. return kzalloc(size, GFP_KERNEL);
  306. else
  307. return vzalloc(size);
  308. }
  309. static inline void empty_child_inc(struct key_vector *n)
  310. {
  311. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  312. }
  313. static inline void empty_child_dec(struct key_vector *n)
  314. {
  315. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  316. }
  317. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  318. {
  319. struct key_vector *l;
  320. struct tnode *kv;
  321. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  322. if (!kv)
  323. return NULL;
  324. /* initialize key vector */
  325. l = kv->kv;
  326. l->key = key;
  327. l->pos = 0;
  328. l->bits = 0;
  329. l->slen = fa->fa_slen;
  330. /* link leaf to fib alias */
  331. INIT_HLIST_HEAD(&l->leaf);
  332. hlist_add_head(&fa->fa_list, &l->leaf);
  333. return l;
  334. }
  335. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  336. {
  337. unsigned int shift = pos + bits;
  338. struct key_vector *tn;
  339. struct tnode *tnode;
  340. /* verify bits and pos their msb bits clear and values are valid */
  341. BUG_ON(!bits || (shift > KEYLENGTH));
  342. tnode = tnode_alloc(bits);
  343. if (!tnode)
  344. return NULL;
  345. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  346. sizeof(struct key_vector *) << bits);
  347. if (bits == KEYLENGTH)
  348. tnode->full_children = 1;
  349. else
  350. tnode->empty_children = 1ul << bits;
  351. tn = tnode->kv;
  352. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  353. tn->pos = pos;
  354. tn->bits = bits;
  355. tn->slen = pos;
  356. return tn;
  357. }
  358. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  359. * and no bits are skipped. See discussion in dyntree paper p. 6
  360. */
  361. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  362. {
  363. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  364. }
  365. /* Add a child at position i overwriting the old value.
  366. * Update the value of full_children and empty_children.
  367. */
  368. static void put_child(struct key_vector *tn, unsigned long i,
  369. struct key_vector *n)
  370. {
  371. struct key_vector *chi = get_child(tn, i);
  372. int isfull, wasfull;
  373. BUG_ON(i >= child_length(tn));
  374. /* update emptyChildren, overflow into fullChildren */
  375. if (!n && chi)
  376. empty_child_inc(tn);
  377. if (n && !chi)
  378. empty_child_dec(tn);
  379. /* update fullChildren */
  380. wasfull = tnode_full(tn, chi);
  381. isfull = tnode_full(tn, n);
  382. if (wasfull && !isfull)
  383. tn_info(tn)->full_children--;
  384. else if (!wasfull && isfull)
  385. tn_info(tn)->full_children++;
  386. if (n && (tn->slen < n->slen))
  387. tn->slen = n->slen;
  388. rcu_assign_pointer(tn->tnode[i], n);
  389. }
  390. static void update_children(struct key_vector *tn)
  391. {
  392. unsigned long i;
  393. /* update all of the child parent pointers */
  394. for (i = child_length(tn); i;) {
  395. struct key_vector *inode = get_child(tn, --i);
  396. if (!inode)
  397. continue;
  398. /* Either update the children of a tnode that
  399. * already belongs to us or update the child
  400. * to point to ourselves.
  401. */
  402. if (node_parent(inode) == tn)
  403. update_children(inode);
  404. else
  405. node_set_parent(inode, tn);
  406. }
  407. }
  408. static inline void put_child_root(struct key_vector *tp, t_key key,
  409. struct key_vector *n)
  410. {
  411. if (IS_TRIE(tp))
  412. rcu_assign_pointer(tp->tnode[0], n);
  413. else
  414. put_child(tp, get_index(key, tp), n);
  415. }
  416. static inline void tnode_free_init(struct key_vector *tn)
  417. {
  418. tn_info(tn)->rcu.next = NULL;
  419. }
  420. static inline void tnode_free_append(struct key_vector *tn,
  421. struct key_vector *n)
  422. {
  423. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  424. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  425. }
  426. static void tnode_free(struct key_vector *tn)
  427. {
  428. struct callback_head *head = &tn_info(tn)->rcu;
  429. while (head) {
  430. head = head->next;
  431. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  432. node_free(tn);
  433. tn = container_of(head, struct tnode, rcu)->kv;
  434. }
  435. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  436. tnode_free_size = 0;
  437. synchronize_rcu();
  438. }
  439. }
  440. static struct key_vector *replace(struct trie *t,
  441. struct key_vector *oldtnode,
  442. struct key_vector *tn)
  443. {
  444. struct key_vector *tp = node_parent(oldtnode);
  445. unsigned long i;
  446. /* setup the parent pointer out of and back into this node */
  447. NODE_INIT_PARENT(tn, tp);
  448. put_child_root(tp, tn->key, tn);
  449. /* update all of the child parent pointers */
  450. update_children(tn);
  451. /* all pointers should be clean so we are done */
  452. tnode_free(oldtnode);
  453. /* resize children now that oldtnode is freed */
  454. for (i = child_length(tn); i;) {
  455. struct key_vector *inode = get_child(tn, --i);
  456. /* resize child node */
  457. if (tnode_full(tn, inode))
  458. tn = resize(t, inode);
  459. }
  460. return tp;
  461. }
  462. static struct key_vector *inflate(struct trie *t,
  463. struct key_vector *oldtnode)
  464. {
  465. struct key_vector *tn;
  466. unsigned long i;
  467. t_key m;
  468. pr_debug("In inflate\n");
  469. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  470. if (!tn)
  471. goto notnode;
  472. /* prepare oldtnode to be freed */
  473. tnode_free_init(oldtnode);
  474. /* Assemble all of the pointers in our cluster, in this case that
  475. * represents all of the pointers out of our allocated nodes that
  476. * point to existing tnodes and the links between our allocated
  477. * nodes.
  478. */
  479. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  480. struct key_vector *inode = get_child(oldtnode, --i);
  481. struct key_vector *node0, *node1;
  482. unsigned long j, k;
  483. /* An empty child */
  484. if (!inode)
  485. continue;
  486. /* A leaf or an internal node with skipped bits */
  487. if (!tnode_full(oldtnode, inode)) {
  488. put_child(tn, get_index(inode->key, tn), inode);
  489. continue;
  490. }
  491. /* drop the node in the old tnode free list */
  492. tnode_free_append(oldtnode, inode);
  493. /* An internal node with two children */
  494. if (inode->bits == 1) {
  495. put_child(tn, 2 * i + 1, get_child(inode, 1));
  496. put_child(tn, 2 * i, get_child(inode, 0));
  497. continue;
  498. }
  499. /* We will replace this node 'inode' with two new
  500. * ones, 'node0' and 'node1', each with half of the
  501. * original children. The two new nodes will have
  502. * a position one bit further down the key and this
  503. * means that the "significant" part of their keys
  504. * (see the discussion near the top of this file)
  505. * will differ by one bit, which will be "0" in
  506. * node0's key and "1" in node1's key. Since we are
  507. * moving the key position by one step, the bit that
  508. * we are moving away from - the bit at position
  509. * (tn->pos) - is the one that will differ between
  510. * node0 and node1. So... we synthesize that bit in the
  511. * two new keys.
  512. */
  513. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  514. if (!node1)
  515. goto nomem;
  516. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  517. tnode_free_append(tn, node1);
  518. if (!node0)
  519. goto nomem;
  520. tnode_free_append(tn, node0);
  521. /* populate child pointers in new nodes */
  522. for (k = child_length(inode), j = k / 2; j;) {
  523. put_child(node1, --j, get_child(inode, --k));
  524. put_child(node0, j, get_child(inode, j));
  525. put_child(node1, --j, get_child(inode, --k));
  526. put_child(node0, j, get_child(inode, j));
  527. }
  528. /* link new nodes to parent */
  529. NODE_INIT_PARENT(node1, tn);
  530. NODE_INIT_PARENT(node0, tn);
  531. /* link parent to nodes */
  532. put_child(tn, 2 * i + 1, node1);
  533. put_child(tn, 2 * i, node0);
  534. }
  535. /* setup the parent pointers into and out of this node */
  536. return replace(t, oldtnode, tn);
  537. nomem:
  538. /* all pointers should be clean so we are done */
  539. tnode_free(tn);
  540. notnode:
  541. return NULL;
  542. }
  543. static struct key_vector *halve(struct trie *t,
  544. struct key_vector *oldtnode)
  545. {
  546. struct key_vector *tn;
  547. unsigned long i;
  548. pr_debug("In halve\n");
  549. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  550. if (!tn)
  551. goto notnode;
  552. /* prepare oldtnode to be freed */
  553. tnode_free_init(oldtnode);
  554. /* Assemble all of the pointers in our cluster, in this case that
  555. * represents all of the pointers out of our allocated nodes that
  556. * point to existing tnodes and the links between our allocated
  557. * nodes.
  558. */
  559. for (i = child_length(oldtnode); i;) {
  560. struct key_vector *node1 = get_child(oldtnode, --i);
  561. struct key_vector *node0 = get_child(oldtnode, --i);
  562. struct key_vector *inode;
  563. /* At least one of the children is empty */
  564. if (!node1 || !node0) {
  565. put_child(tn, i / 2, node1 ? : node0);
  566. continue;
  567. }
  568. /* Two nonempty children */
  569. inode = tnode_new(node0->key, oldtnode->pos, 1);
  570. if (!inode)
  571. goto nomem;
  572. tnode_free_append(tn, inode);
  573. /* initialize pointers out of node */
  574. put_child(inode, 1, node1);
  575. put_child(inode, 0, node0);
  576. NODE_INIT_PARENT(inode, tn);
  577. /* link parent to node */
  578. put_child(tn, i / 2, inode);
  579. }
  580. /* setup the parent pointers into and out of this node */
  581. return replace(t, oldtnode, tn);
  582. nomem:
  583. /* all pointers should be clean so we are done */
  584. tnode_free(tn);
  585. notnode:
  586. return NULL;
  587. }
  588. static struct key_vector *collapse(struct trie *t,
  589. struct key_vector *oldtnode)
  590. {
  591. struct key_vector *n, *tp;
  592. unsigned long i;
  593. /* scan the tnode looking for that one child that might still exist */
  594. for (n = NULL, i = child_length(oldtnode); !n && i;)
  595. n = get_child(oldtnode, --i);
  596. /* compress one level */
  597. tp = node_parent(oldtnode);
  598. put_child_root(tp, oldtnode->key, n);
  599. node_set_parent(n, tp);
  600. /* drop dead node */
  601. node_free(oldtnode);
  602. return tp;
  603. }
  604. static unsigned char update_suffix(struct key_vector *tn)
  605. {
  606. unsigned char slen = tn->pos;
  607. unsigned long stride, i;
  608. unsigned char slen_max;
  609. /* only vector 0 can have a suffix length greater than or equal to
  610. * tn->pos + tn->bits, the second highest node will have a suffix
  611. * length at most of tn->pos + tn->bits - 1
  612. */
  613. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  614. /* search though the list of children looking for nodes that might
  615. * have a suffix greater than the one we currently have. This is
  616. * why we start with a stride of 2 since a stride of 1 would
  617. * represent the nodes with suffix length equal to tn->pos
  618. */
  619. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  620. struct key_vector *n = get_child(tn, i);
  621. if (!n || (n->slen <= slen))
  622. continue;
  623. /* update stride and slen based on new value */
  624. stride <<= (n->slen - slen);
  625. slen = n->slen;
  626. i &= ~(stride - 1);
  627. /* stop searching if we have hit the maximum possible value */
  628. if (slen >= slen_max)
  629. break;
  630. }
  631. tn->slen = slen;
  632. return slen;
  633. }
  634. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  635. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  636. * Telecommunications, page 6:
  637. * "A node is doubled if the ratio of non-empty children to all
  638. * children in the *doubled* node is at least 'high'."
  639. *
  640. * 'high' in this instance is the variable 'inflate_threshold'. It
  641. * is expressed as a percentage, so we multiply it with
  642. * child_length() and instead of multiplying by 2 (since the
  643. * child array will be doubled by inflate()) and multiplying
  644. * the left-hand side by 100 (to handle the percentage thing) we
  645. * multiply the left-hand side by 50.
  646. *
  647. * The left-hand side may look a bit weird: child_length(tn)
  648. * - tn->empty_children is of course the number of non-null children
  649. * in the current node. tn->full_children is the number of "full"
  650. * children, that is non-null tnodes with a skip value of 0.
  651. * All of those will be doubled in the resulting inflated tnode, so
  652. * we just count them one extra time here.
  653. *
  654. * A clearer way to write this would be:
  655. *
  656. * to_be_doubled = tn->full_children;
  657. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  658. * tn->full_children;
  659. *
  660. * new_child_length = child_length(tn) * 2;
  661. *
  662. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  663. * new_child_length;
  664. * if (new_fill_factor >= inflate_threshold)
  665. *
  666. * ...and so on, tho it would mess up the while () loop.
  667. *
  668. * anyway,
  669. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  670. * inflate_threshold
  671. *
  672. * avoid a division:
  673. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  674. * inflate_threshold * new_child_length
  675. *
  676. * expand not_to_be_doubled and to_be_doubled, and shorten:
  677. * 100 * (child_length(tn) - tn->empty_children +
  678. * tn->full_children) >= inflate_threshold * new_child_length
  679. *
  680. * expand new_child_length:
  681. * 100 * (child_length(tn) - tn->empty_children +
  682. * tn->full_children) >=
  683. * inflate_threshold * child_length(tn) * 2
  684. *
  685. * shorten again:
  686. * 50 * (tn->full_children + child_length(tn) -
  687. * tn->empty_children) >= inflate_threshold *
  688. * child_length(tn)
  689. *
  690. */
  691. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  692. {
  693. unsigned long used = child_length(tn);
  694. unsigned long threshold = used;
  695. /* Keep root node larger */
  696. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  697. used -= tn_info(tn)->empty_children;
  698. used += tn_info(tn)->full_children;
  699. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  700. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  701. }
  702. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  703. {
  704. unsigned long used = child_length(tn);
  705. unsigned long threshold = used;
  706. /* Keep root node larger */
  707. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  708. used -= tn_info(tn)->empty_children;
  709. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  710. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  711. }
  712. static inline bool should_collapse(struct key_vector *tn)
  713. {
  714. unsigned long used = child_length(tn);
  715. used -= tn_info(tn)->empty_children;
  716. /* account for bits == KEYLENGTH case */
  717. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  718. used -= KEY_MAX;
  719. /* One child or none, time to drop us from the trie */
  720. return used < 2;
  721. }
  722. #define MAX_WORK 10
  723. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  724. {
  725. #ifdef CONFIG_IP_FIB_TRIE_STATS
  726. struct trie_use_stats __percpu *stats = t->stats;
  727. #endif
  728. struct key_vector *tp = node_parent(tn);
  729. unsigned long cindex = get_index(tn->key, tp);
  730. int max_work = MAX_WORK;
  731. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  732. tn, inflate_threshold, halve_threshold);
  733. /* track the tnode via the pointer from the parent instead of
  734. * doing it ourselves. This way we can let RCU fully do its
  735. * thing without us interfering
  736. */
  737. BUG_ON(tn != get_child(tp, cindex));
  738. /* Double as long as the resulting node has a number of
  739. * nonempty nodes that are above the threshold.
  740. */
  741. while (should_inflate(tp, tn) && max_work) {
  742. tp = inflate(t, tn);
  743. if (!tp) {
  744. #ifdef CONFIG_IP_FIB_TRIE_STATS
  745. this_cpu_inc(stats->resize_node_skipped);
  746. #endif
  747. break;
  748. }
  749. max_work--;
  750. tn = get_child(tp, cindex);
  751. }
  752. /* update parent in case inflate failed */
  753. tp = node_parent(tn);
  754. /* Return if at least one inflate is run */
  755. if (max_work != MAX_WORK)
  756. return tp;
  757. /* Halve as long as the number of empty children in this
  758. * node is above threshold.
  759. */
  760. while (should_halve(tp, tn) && max_work) {
  761. tp = halve(t, tn);
  762. if (!tp) {
  763. #ifdef CONFIG_IP_FIB_TRIE_STATS
  764. this_cpu_inc(stats->resize_node_skipped);
  765. #endif
  766. break;
  767. }
  768. max_work--;
  769. tn = get_child(tp, cindex);
  770. }
  771. /* Only one child remains */
  772. if (should_collapse(tn))
  773. return collapse(t, tn);
  774. /* update parent in case halve failed */
  775. return node_parent(tn);
  776. }
  777. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  778. {
  779. unsigned char node_slen = tn->slen;
  780. while ((node_slen > tn->pos) && (node_slen > slen)) {
  781. slen = update_suffix(tn);
  782. if (node_slen == slen)
  783. break;
  784. tn = node_parent(tn);
  785. node_slen = tn->slen;
  786. }
  787. }
  788. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  789. {
  790. while (tn->slen < slen) {
  791. tn->slen = slen;
  792. tn = node_parent(tn);
  793. }
  794. }
  795. /* rcu_read_lock needs to be hold by caller from readside */
  796. static struct key_vector *fib_find_node(struct trie *t,
  797. struct key_vector **tp, u32 key)
  798. {
  799. struct key_vector *pn, *n = t->kv;
  800. unsigned long index = 0;
  801. do {
  802. pn = n;
  803. n = get_child_rcu(n, index);
  804. if (!n)
  805. break;
  806. index = get_cindex(key, n);
  807. /* This bit of code is a bit tricky but it combines multiple
  808. * checks into a single check. The prefix consists of the
  809. * prefix plus zeros for the bits in the cindex. The index
  810. * is the difference between the key and this value. From
  811. * this we can actually derive several pieces of data.
  812. * if (index >= (1ul << bits))
  813. * we have a mismatch in skip bits and failed
  814. * else
  815. * we know the value is cindex
  816. *
  817. * This check is safe even if bits == KEYLENGTH due to the
  818. * fact that we can only allocate a node with 32 bits if a
  819. * long is greater than 32 bits.
  820. */
  821. if (index >= (1ul << n->bits)) {
  822. n = NULL;
  823. break;
  824. }
  825. /* keep searching until we find a perfect match leaf or NULL */
  826. } while (IS_TNODE(n));
  827. *tp = pn;
  828. return n;
  829. }
  830. /* Return the first fib alias matching TOS with
  831. * priority less than or equal to PRIO.
  832. */
  833. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  834. u8 tos, u32 prio, u32 tb_id)
  835. {
  836. struct fib_alias *fa;
  837. if (!fah)
  838. return NULL;
  839. hlist_for_each_entry(fa, fah, fa_list) {
  840. if (fa->fa_slen < slen)
  841. continue;
  842. if (fa->fa_slen != slen)
  843. break;
  844. if (fa->tb_id > tb_id)
  845. continue;
  846. if (fa->tb_id != tb_id)
  847. break;
  848. if (fa->fa_tos > tos)
  849. continue;
  850. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  851. return fa;
  852. }
  853. return NULL;
  854. }
  855. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  856. {
  857. while (!IS_TRIE(tn))
  858. tn = resize(t, tn);
  859. }
  860. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  861. struct fib_alias *new, t_key key)
  862. {
  863. struct key_vector *n, *l;
  864. l = leaf_new(key, new);
  865. if (!l)
  866. goto noleaf;
  867. /* retrieve child from parent node */
  868. n = get_child(tp, get_index(key, tp));
  869. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  870. *
  871. * Add a new tnode here
  872. * first tnode need some special handling
  873. * leaves us in position for handling as case 3
  874. */
  875. if (n) {
  876. struct key_vector *tn;
  877. tn = tnode_new(key, __fls(key ^ n->key), 1);
  878. if (!tn)
  879. goto notnode;
  880. /* initialize routes out of node */
  881. NODE_INIT_PARENT(tn, tp);
  882. put_child(tn, get_index(key, tn) ^ 1, n);
  883. /* start adding routes into the node */
  884. put_child_root(tp, key, tn);
  885. node_set_parent(n, tn);
  886. /* parent now has a NULL spot where the leaf can go */
  887. tp = tn;
  888. }
  889. /* Case 3: n is NULL, and will just insert a new leaf */
  890. node_push_suffix(tp, new->fa_slen);
  891. NODE_INIT_PARENT(l, tp);
  892. put_child_root(tp, key, l);
  893. trie_rebalance(t, tp);
  894. return 0;
  895. notnode:
  896. node_free(l);
  897. noleaf:
  898. return -ENOMEM;
  899. }
  900. /* fib notifier for ADD is sent before calling fib_insert_alias with
  901. * the expectation that the only possible failure ENOMEM
  902. */
  903. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  904. struct key_vector *l, struct fib_alias *new,
  905. struct fib_alias *fa, t_key key)
  906. {
  907. if (!l)
  908. return fib_insert_node(t, tp, new, key);
  909. if (fa) {
  910. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  911. } else {
  912. struct fib_alias *last;
  913. hlist_for_each_entry(last, &l->leaf, fa_list) {
  914. if (new->fa_slen < last->fa_slen)
  915. break;
  916. if ((new->fa_slen == last->fa_slen) &&
  917. (new->tb_id > last->tb_id))
  918. break;
  919. fa = last;
  920. }
  921. if (fa)
  922. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  923. else
  924. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  925. }
  926. /* if we added to the tail node then we need to update slen */
  927. if (l->slen < new->fa_slen) {
  928. l->slen = new->fa_slen;
  929. node_push_suffix(tp, new->fa_slen);
  930. }
  931. return 0;
  932. }
  933. static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
  934. {
  935. if (plen > KEYLENGTH) {
  936. NL_SET_ERR_MSG(extack, "Invalid prefix length");
  937. return false;
  938. }
  939. if ((plen < KEYLENGTH) && (key << plen)) {
  940. NL_SET_ERR_MSG(extack,
  941. "Invalid prefix for given prefix length");
  942. return false;
  943. }
  944. return true;
  945. }
  946. /* Caller must hold RTNL. */
  947. int fib_table_insert(struct net *net, struct fib_table *tb,
  948. struct fib_config *cfg, struct netlink_ext_ack *extack)
  949. {
  950. enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
  951. struct trie *t = (struct trie *)tb->tb_data;
  952. struct fib_alias *fa, *new_fa;
  953. struct key_vector *l, *tp;
  954. u16 nlflags = NLM_F_EXCL;
  955. struct fib_info *fi;
  956. u8 plen = cfg->fc_dst_len;
  957. u8 slen = KEYLENGTH - plen;
  958. u8 tos = cfg->fc_tos;
  959. u32 key;
  960. int err;
  961. key = ntohl(cfg->fc_dst);
  962. if (!fib_valid_key_len(key, plen, extack))
  963. return -EINVAL;
  964. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  965. fi = fib_create_info(cfg, extack);
  966. if (IS_ERR(fi)) {
  967. err = PTR_ERR(fi);
  968. goto err;
  969. }
  970. l = fib_find_node(t, &tp, key);
  971. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  972. tb->tb_id) : NULL;
  973. /* Now fa, if non-NULL, points to the first fib alias
  974. * with the same keys [prefix,tos,priority], if such key already
  975. * exists or to the node before which we will insert new one.
  976. *
  977. * If fa is NULL, we will need to allocate a new one and
  978. * insert to the tail of the section matching the suffix length
  979. * of the new alias.
  980. */
  981. if (fa && fa->fa_tos == tos &&
  982. fa->fa_info->fib_priority == fi->fib_priority) {
  983. struct fib_alias *fa_first, *fa_match;
  984. err = -EEXIST;
  985. if (cfg->fc_nlflags & NLM_F_EXCL)
  986. goto out;
  987. nlflags &= ~NLM_F_EXCL;
  988. /* We have 2 goals:
  989. * 1. Find exact match for type, scope, fib_info to avoid
  990. * duplicate routes
  991. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  992. */
  993. fa_match = NULL;
  994. fa_first = fa;
  995. hlist_for_each_entry_from(fa, fa_list) {
  996. if ((fa->fa_slen != slen) ||
  997. (fa->tb_id != tb->tb_id) ||
  998. (fa->fa_tos != tos))
  999. break;
  1000. if (fa->fa_info->fib_priority != fi->fib_priority)
  1001. break;
  1002. if (fa->fa_type == cfg->fc_type &&
  1003. fa->fa_info == fi) {
  1004. fa_match = fa;
  1005. break;
  1006. }
  1007. }
  1008. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1009. struct fib_info *fi_drop;
  1010. u8 state;
  1011. nlflags |= NLM_F_REPLACE;
  1012. fa = fa_first;
  1013. if (fa_match) {
  1014. if (fa == fa_match)
  1015. err = 0;
  1016. goto out;
  1017. }
  1018. err = -ENOBUFS;
  1019. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1020. if (!new_fa)
  1021. goto out;
  1022. fi_drop = fa->fa_info;
  1023. new_fa->fa_tos = fa->fa_tos;
  1024. new_fa->fa_info = fi;
  1025. new_fa->fa_type = cfg->fc_type;
  1026. state = fa->fa_state;
  1027. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1028. new_fa->fa_slen = fa->fa_slen;
  1029. new_fa->tb_id = tb->tb_id;
  1030. new_fa->fa_default = -1;
  1031. err = call_fib_entry_notifiers(net,
  1032. FIB_EVENT_ENTRY_REPLACE,
  1033. key, plen, new_fa,
  1034. extack);
  1035. if (err)
  1036. goto out_free_new_fa;
  1037. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1038. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1039. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1040. alias_free_mem_rcu(fa);
  1041. fib_release_info(fi_drop);
  1042. if (state & FA_S_ACCESSED)
  1043. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1044. goto succeeded;
  1045. }
  1046. /* Error if we find a perfect match which
  1047. * uses the same scope, type, and nexthop
  1048. * information.
  1049. */
  1050. if (fa_match)
  1051. goto out;
  1052. if (cfg->fc_nlflags & NLM_F_APPEND) {
  1053. event = FIB_EVENT_ENTRY_APPEND;
  1054. nlflags |= NLM_F_APPEND;
  1055. } else {
  1056. fa = fa_first;
  1057. }
  1058. }
  1059. err = -ENOENT;
  1060. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1061. goto out;
  1062. nlflags |= NLM_F_CREATE;
  1063. err = -ENOBUFS;
  1064. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1065. if (!new_fa)
  1066. goto out;
  1067. new_fa->fa_info = fi;
  1068. new_fa->fa_tos = tos;
  1069. new_fa->fa_type = cfg->fc_type;
  1070. new_fa->fa_state = 0;
  1071. new_fa->fa_slen = slen;
  1072. new_fa->tb_id = tb->tb_id;
  1073. new_fa->fa_default = -1;
  1074. err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
  1075. if (err)
  1076. goto out_free_new_fa;
  1077. /* Insert new entry to the list. */
  1078. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1079. if (err)
  1080. goto out_fib_notif;
  1081. if (!plen)
  1082. tb->tb_num_default++;
  1083. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1084. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1085. &cfg->fc_nlinfo, nlflags);
  1086. succeeded:
  1087. return 0;
  1088. out_fib_notif:
  1089. /* notifier was sent that entry would be added to trie, but
  1090. * the add failed and need to recover. Only failure for
  1091. * fib_insert_alias is ENOMEM.
  1092. */
  1093. NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
  1094. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
  1095. plen, new_fa, NULL);
  1096. out_free_new_fa:
  1097. kmem_cache_free(fn_alias_kmem, new_fa);
  1098. out:
  1099. fib_release_info(fi);
  1100. err:
  1101. return err;
  1102. }
  1103. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1104. {
  1105. t_key prefix = n->key;
  1106. return (key ^ prefix) & (prefix | -prefix);
  1107. }
  1108. /* should be called with rcu_read_lock */
  1109. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1110. struct fib_result *res, int fib_flags)
  1111. {
  1112. struct trie *t = (struct trie *) tb->tb_data;
  1113. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1114. struct trie_use_stats __percpu *stats = t->stats;
  1115. #endif
  1116. const t_key key = ntohl(flp->daddr);
  1117. struct key_vector *n, *pn;
  1118. struct fib_alias *fa;
  1119. unsigned long index;
  1120. t_key cindex;
  1121. pn = t->kv;
  1122. cindex = 0;
  1123. n = get_child_rcu(pn, cindex);
  1124. if (!n) {
  1125. trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
  1126. return -EAGAIN;
  1127. }
  1128. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1129. this_cpu_inc(stats->gets);
  1130. #endif
  1131. /* Step 1: Travel to the longest prefix match in the trie */
  1132. for (;;) {
  1133. index = get_cindex(key, n);
  1134. /* This bit of code is a bit tricky but it combines multiple
  1135. * checks into a single check. The prefix consists of the
  1136. * prefix plus zeros for the "bits" in the prefix. The index
  1137. * is the difference between the key and this value. From
  1138. * this we can actually derive several pieces of data.
  1139. * if (index >= (1ul << bits))
  1140. * we have a mismatch in skip bits and failed
  1141. * else
  1142. * we know the value is cindex
  1143. *
  1144. * This check is safe even if bits == KEYLENGTH due to the
  1145. * fact that we can only allocate a node with 32 bits if a
  1146. * long is greater than 32 bits.
  1147. */
  1148. if (index >= (1ul << n->bits))
  1149. break;
  1150. /* we have found a leaf. Prefixes have already been compared */
  1151. if (IS_LEAF(n))
  1152. goto found;
  1153. /* only record pn and cindex if we are going to be chopping
  1154. * bits later. Otherwise we are just wasting cycles.
  1155. */
  1156. if (n->slen > n->pos) {
  1157. pn = n;
  1158. cindex = index;
  1159. }
  1160. n = get_child_rcu(n, index);
  1161. if (unlikely(!n))
  1162. goto backtrace;
  1163. }
  1164. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1165. for (;;) {
  1166. /* record the pointer where our next node pointer is stored */
  1167. struct key_vector __rcu **cptr = n->tnode;
  1168. /* This test verifies that none of the bits that differ
  1169. * between the key and the prefix exist in the region of
  1170. * the lsb and higher in the prefix.
  1171. */
  1172. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1173. goto backtrace;
  1174. /* exit out and process leaf */
  1175. if (unlikely(IS_LEAF(n)))
  1176. break;
  1177. /* Don't bother recording parent info. Since we are in
  1178. * prefix match mode we will have to come back to wherever
  1179. * we started this traversal anyway
  1180. */
  1181. while ((n = rcu_dereference(*cptr)) == NULL) {
  1182. backtrace:
  1183. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1184. if (!n)
  1185. this_cpu_inc(stats->null_node_hit);
  1186. #endif
  1187. /* If we are at cindex 0 there are no more bits for
  1188. * us to strip at this level so we must ascend back
  1189. * up one level to see if there are any more bits to
  1190. * be stripped there.
  1191. */
  1192. while (!cindex) {
  1193. t_key pkey = pn->key;
  1194. /* If we don't have a parent then there is
  1195. * nothing for us to do as we do not have any
  1196. * further nodes to parse.
  1197. */
  1198. if (IS_TRIE(pn)) {
  1199. trace_fib_table_lookup(tb->tb_id, flp,
  1200. NULL, -EAGAIN);
  1201. return -EAGAIN;
  1202. }
  1203. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1204. this_cpu_inc(stats->backtrack);
  1205. #endif
  1206. /* Get Child's index */
  1207. pn = node_parent_rcu(pn);
  1208. cindex = get_index(pkey, pn);
  1209. }
  1210. /* strip the least significant bit from the cindex */
  1211. cindex &= cindex - 1;
  1212. /* grab pointer for next child node */
  1213. cptr = &pn->tnode[cindex];
  1214. }
  1215. }
  1216. found:
  1217. /* this line carries forward the xor from earlier in the function */
  1218. index = key ^ n->key;
  1219. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1220. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1221. struct fib_info *fi = fa->fa_info;
  1222. int nhsel, err;
  1223. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1224. if (index >= (1ul << fa->fa_slen))
  1225. continue;
  1226. }
  1227. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1228. continue;
  1229. if (fi->fib_dead)
  1230. continue;
  1231. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1232. continue;
  1233. fib_alias_accessed(fa);
  1234. err = fib_props[fa->fa_type].error;
  1235. if (unlikely(err < 0)) {
  1236. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1237. this_cpu_inc(stats->semantic_match_passed);
  1238. #endif
  1239. trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
  1240. return err;
  1241. }
  1242. if (fi->fib_flags & RTNH_F_DEAD)
  1243. continue;
  1244. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1245. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1246. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1247. if (nh->nh_flags & RTNH_F_DEAD)
  1248. continue;
  1249. if (in_dev &&
  1250. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1251. nh->nh_flags & RTNH_F_LINKDOWN &&
  1252. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1253. continue;
  1254. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1255. if (flp->flowi4_oif &&
  1256. flp->flowi4_oif != nh->nh_oif)
  1257. continue;
  1258. }
  1259. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1260. refcount_inc(&fi->fib_clntref);
  1261. res->prefix = htonl(n->key);
  1262. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1263. res->nh_sel = nhsel;
  1264. res->type = fa->fa_type;
  1265. res->scope = fi->fib_scope;
  1266. res->fi = fi;
  1267. res->table = tb;
  1268. res->fa_head = &n->leaf;
  1269. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1270. this_cpu_inc(stats->semantic_match_passed);
  1271. #endif
  1272. trace_fib_table_lookup(tb->tb_id, flp, nh, err);
  1273. return err;
  1274. }
  1275. }
  1276. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1277. this_cpu_inc(stats->semantic_match_miss);
  1278. #endif
  1279. goto backtrace;
  1280. }
  1281. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1282. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1283. struct key_vector *l, struct fib_alias *old)
  1284. {
  1285. /* record the location of the previous list_info entry */
  1286. struct hlist_node **pprev = old->fa_list.pprev;
  1287. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1288. /* remove the fib_alias from the list */
  1289. hlist_del_rcu(&old->fa_list);
  1290. /* if we emptied the list this leaf will be freed and we can sort
  1291. * out parent suffix lengths as a part of trie_rebalance
  1292. */
  1293. if (hlist_empty(&l->leaf)) {
  1294. if (tp->slen == l->slen)
  1295. node_pull_suffix(tp, tp->pos);
  1296. put_child_root(tp, l->key, NULL);
  1297. node_free(l);
  1298. trie_rebalance(t, tp);
  1299. return;
  1300. }
  1301. /* only access fa if it is pointing at the last valid hlist_node */
  1302. if (*pprev)
  1303. return;
  1304. /* update the trie with the latest suffix length */
  1305. l->slen = fa->fa_slen;
  1306. node_pull_suffix(tp, fa->fa_slen);
  1307. }
  1308. /* Caller must hold RTNL. */
  1309. int fib_table_delete(struct net *net, struct fib_table *tb,
  1310. struct fib_config *cfg, struct netlink_ext_ack *extack)
  1311. {
  1312. struct trie *t = (struct trie *) tb->tb_data;
  1313. struct fib_alias *fa, *fa_to_delete;
  1314. struct key_vector *l, *tp;
  1315. u8 plen = cfg->fc_dst_len;
  1316. u8 slen = KEYLENGTH - plen;
  1317. u8 tos = cfg->fc_tos;
  1318. u32 key;
  1319. key = ntohl(cfg->fc_dst);
  1320. if (!fib_valid_key_len(key, plen, extack))
  1321. return -EINVAL;
  1322. l = fib_find_node(t, &tp, key);
  1323. if (!l)
  1324. return -ESRCH;
  1325. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1326. if (!fa)
  1327. return -ESRCH;
  1328. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1329. fa_to_delete = NULL;
  1330. hlist_for_each_entry_from(fa, fa_list) {
  1331. struct fib_info *fi = fa->fa_info;
  1332. if ((fa->fa_slen != slen) ||
  1333. (fa->tb_id != tb->tb_id) ||
  1334. (fa->fa_tos != tos))
  1335. break;
  1336. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1337. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1338. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1339. (!cfg->fc_prefsrc ||
  1340. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1341. (!cfg->fc_protocol ||
  1342. fi->fib_protocol == cfg->fc_protocol) &&
  1343. fib_nh_match(cfg, fi, extack) == 0 &&
  1344. fib_metrics_match(cfg, fi)) {
  1345. fa_to_delete = fa;
  1346. break;
  1347. }
  1348. }
  1349. if (!fa_to_delete)
  1350. return -ESRCH;
  1351. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1352. fa_to_delete, extack);
  1353. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1354. &cfg->fc_nlinfo, 0);
  1355. if (!plen)
  1356. tb->tb_num_default--;
  1357. fib_remove_alias(t, tp, l, fa_to_delete);
  1358. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1359. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1360. fib_release_info(fa_to_delete->fa_info);
  1361. alias_free_mem_rcu(fa_to_delete);
  1362. return 0;
  1363. }
  1364. /* Scan for the next leaf starting at the provided key value */
  1365. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1366. {
  1367. struct key_vector *pn, *n = *tn;
  1368. unsigned long cindex;
  1369. /* this loop is meant to try and find the key in the trie */
  1370. do {
  1371. /* record parent and next child index */
  1372. pn = n;
  1373. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1374. if (cindex >> pn->bits)
  1375. break;
  1376. /* descend into the next child */
  1377. n = get_child_rcu(pn, cindex++);
  1378. if (!n)
  1379. break;
  1380. /* guarantee forward progress on the keys */
  1381. if (IS_LEAF(n) && (n->key >= key))
  1382. goto found;
  1383. } while (IS_TNODE(n));
  1384. /* this loop will search for the next leaf with a greater key */
  1385. while (!IS_TRIE(pn)) {
  1386. /* if we exhausted the parent node we will need to climb */
  1387. if (cindex >= (1ul << pn->bits)) {
  1388. t_key pkey = pn->key;
  1389. pn = node_parent_rcu(pn);
  1390. cindex = get_index(pkey, pn) + 1;
  1391. continue;
  1392. }
  1393. /* grab the next available node */
  1394. n = get_child_rcu(pn, cindex++);
  1395. if (!n)
  1396. continue;
  1397. /* no need to compare keys since we bumped the index */
  1398. if (IS_LEAF(n))
  1399. goto found;
  1400. /* Rescan start scanning in new node */
  1401. pn = n;
  1402. cindex = 0;
  1403. }
  1404. *tn = pn;
  1405. return NULL; /* Root of trie */
  1406. found:
  1407. /* if we are at the limit for keys just return NULL for the tnode */
  1408. *tn = pn;
  1409. return n;
  1410. }
  1411. static void fib_trie_free(struct fib_table *tb)
  1412. {
  1413. struct trie *t = (struct trie *)tb->tb_data;
  1414. struct key_vector *pn = t->kv;
  1415. unsigned long cindex = 1;
  1416. struct hlist_node *tmp;
  1417. struct fib_alias *fa;
  1418. /* walk trie in reverse order and free everything */
  1419. for (;;) {
  1420. struct key_vector *n;
  1421. if (!(cindex--)) {
  1422. t_key pkey = pn->key;
  1423. if (IS_TRIE(pn))
  1424. break;
  1425. n = pn;
  1426. pn = node_parent(pn);
  1427. /* drop emptied tnode */
  1428. put_child_root(pn, n->key, NULL);
  1429. node_free(n);
  1430. cindex = get_index(pkey, pn);
  1431. continue;
  1432. }
  1433. /* grab the next available node */
  1434. n = get_child(pn, cindex);
  1435. if (!n)
  1436. continue;
  1437. if (IS_TNODE(n)) {
  1438. /* record pn and cindex for leaf walking */
  1439. pn = n;
  1440. cindex = 1ul << n->bits;
  1441. continue;
  1442. }
  1443. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1444. hlist_del_rcu(&fa->fa_list);
  1445. alias_free_mem_rcu(fa);
  1446. }
  1447. put_child_root(pn, n->key, NULL);
  1448. node_free(n);
  1449. }
  1450. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1451. free_percpu(t->stats);
  1452. #endif
  1453. kfree(tb);
  1454. }
  1455. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1456. {
  1457. struct trie *ot = (struct trie *)oldtb->tb_data;
  1458. struct key_vector *l, *tp = ot->kv;
  1459. struct fib_table *local_tb;
  1460. struct fib_alias *fa;
  1461. struct trie *lt;
  1462. t_key key = 0;
  1463. if (oldtb->tb_data == oldtb->__data)
  1464. return oldtb;
  1465. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1466. if (!local_tb)
  1467. return NULL;
  1468. lt = (struct trie *)local_tb->tb_data;
  1469. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1470. struct key_vector *local_l = NULL, *local_tp;
  1471. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1472. struct fib_alias *new_fa;
  1473. if (local_tb->tb_id != fa->tb_id)
  1474. continue;
  1475. /* clone fa for new local table */
  1476. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1477. if (!new_fa)
  1478. goto out;
  1479. memcpy(new_fa, fa, sizeof(*fa));
  1480. /* insert clone into table */
  1481. if (!local_l)
  1482. local_l = fib_find_node(lt, &local_tp, l->key);
  1483. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1484. NULL, l->key)) {
  1485. kmem_cache_free(fn_alias_kmem, new_fa);
  1486. goto out;
  1487. }
  1488. }
  1489. /* stop loop if key wrapped back to 0 */
  1490. key = l->key + 1;
  1491. if (key < l->key)
  1492. break;
  1493. }
  1494. return local_tb;
  1495. out:
  1496. fib_trie_free(local_tb);
  1497. return NULL;
  1498. }
  1499. /* Caller must hold RTNL */
  1500. void fib_table_flush_external(struct fib_table *tb)
  1501. {
  1502. struct trie *t = (struct trie *)tb->tb_data;
  1503. struct key_vector *pn = t->kv;
  1504. unsigned long cindex = 1;
  1505. struct hlist_node *tmp;
  1506. struct fib_alias *fa;
  1507. /* walk trie in reverse order */
  1508. for (;;) {
  1509. unsigned char slen = 0;
  1510. struct key_vector *n;
  1511. if (!(cindex--)) {
  1512. t_key pkey = pn->key;
  1513. /* cannot resize the trie vector */
  1514. if (IS_TRIE(pn))
  1515. break;
  1516. /* update the suffix to address pulled leaves */
  1517. if (pn->slen > pn->pos)
  1518. update_suffix(pn);
  1519. /* resize completed node */
  1520. pn = resize(t, pn);
  1521. cindex = get_index(pkey, pn);
  1522. continue;
  1523. }
  1524. /* grab the next available node */
  1525. n = get_child(pn, cindex);
  1526. if (!n)
  1527. continue;
  1528. if (IS_TNODE(n)) {
  1529. /* record pn and cindex for leaf walking */
  1530. pn = n;
  1531. cindex = 1ul << n->bits;
  1532. continue;
  1533. }
  1534. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1535. /* if alias was cloned to local then we just
  1536. * need to remove the local copy from main
  1537. */
  1538. if (tb->tb_id != fa->tb_id) {
  1539. hlist_del_rcu(&fa->fa_list);
  1540. alias_free_mem_rcu(fa);
  1541. continue;
  1542. }
  1543. /* record local slen */
  1544. slen = fa->fa_slen;
  1545. }
  1546. /* update leaf slen */
  1547. n->slen = slen;
  1548. if (hlist_empty(&n->leaf)) {
  1549. put_child_root(pn, n->key, NULL);
  1550. node_free(n);
  1551. }
  1552. }
  1553. }
  1554. /* Caller must hold RTNL. */
  1555. int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
  1556. {
  1557. struct trie *t = (struct trie *)tb->tb_data;
  1558. struct key_vector *pn = t->kv;
  1559. unsigned long cindex = 1;
  1560. struct hlist_node *tmp;
  1561. struct fib_alias *fa;
  1562. int found = 0;
  1563. /* walk trie in reverse order */
  1564. for (;;) {
  1565. unsigned char slen = 0;
  1566. struct key_vector *n;
  1567. if (!(cindex--)) {
  1568. t_key pkey = pn->key;
  1569. /* cannot resize the trie vector */
  1570. if (IS_TRIE(pn))
  1571. break;
  1572. /* update the suffix to address pulled leaves */
  1573. if (pn->slen > pn->pos)
  1574. update_suffix(pn);
  1575. /* resize completed node */
  1576. pn = resize(t, pn);
  1577. cindex = get_index(pkey, pn);
  1578. continue;
  1579. }
  1580. /* grab the next available node */
  1581. n = get_child(pn, cindex);
  1582. if (!n)
  1583. continue;
  1584. if (IS_TNODE(n)) {
  1585. /* record pn and cindex for leaf walking */
  1586. pn = n;
  1587. cindex = 1ul << n->bits;
  1588. continue;
  1589. }
  1590. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1591. struct fib_info *fi = fa->fa_info;
  1592. if (!fi || tb->tb_id != fa->tb_id ||
  1593. (!(fi->fib_flags & RTNH_F_DEAD) &&
  1594. !fib_props[fa->fa_type].error)) {
  1595. slen = fa->fa_slen;
  1596. continue;
  1597. }
  1598. /* Do not flush error routes if network namespace is
  1599. * not being dismantled
  1600. */
  1601. if (!flush_all && fib_props[fa->fa_type].error) {
  1602. slen = fa->fa_slen;
  1603. continue;
  1604. }
  1605. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1606. n->key,
  1607. KEYLENGTH - fa->fa_slen, fa,
  1608. NULL);
  1609. hlist_del_rcu(&fa->fa_list);
  1610. fib_release_info(fa->fa_info);
  1611. alias_free_mem_rcu(fa);
  1612. found++;
  1613. }
  1614. /* update leaf slen */
  1615. n->slen = slen;
  1616. if (hlist_empty(&n->leaf)) {
  1617. put_child_root(pn, n->key, NULL);
  1618. node_free(n);
  1619. }
  1620. }
  1621. pr_debug("trie_flush found=%d\n", found);
  1622. return found;
  1623. }
  1624. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1625. struct fib_table *tb, struct notifier_block *nb)
  1626. {
  1627. struct fib_alias *fa;
  1628. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1629. struct fib_info *fi = fa->fa_info;
  1630. if (!fi)
  1631. continue;
  1632. /* local and main table can share the same trie,
  1633. * so don't notify twice for the same entry.
  1634. */
  1635. if (tb->tb_id != fa->tb_id)
  1636. continue;
  1637. call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
  1638. KEYLENGTH - fa->fa_slen, fa);
  1639. }
  1640. }
  1641. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1642. struct notifier_block *nb)
  1643. {
  1644. struct trie *t = (struct trie *)tb->tb_data;
  1645. struct key_vector *l, *tp = t->kv;
  1646. t_key key = 0;
  1647. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1648. fib_leaf_notify(net, l, tb, nb);
  1649. key = l->key + 1;
  1650. /* stop in case of wrap around */
  1651. if (key < l->key)
  1652. break;
  1653. }
  1654. }
  1655. void fib_notify(struct net *net, struct notifier_block *nb)
  1656. {
  1657. unsigned int h;
  1658. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1659. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1660. struct fib_table *tb;
  1661. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1662. fib_table_notify(net, tb, nb);
  1663. }
  1664. }
  1665. static void __trie_free_rcu(struct rcu_head *head)
  1666. {
  1667. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1668. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1669. struct trie *t = (struct trie *)tb->tb_data;
  1670. if (tb->tb_data == tb->__data)
  1671. free_percpu(t->stats);
  1672. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1673. kfree(tb);
  1674. }
  1675. void fib_free_table(struct fib_table *tb)
  1676. {
  1677. call_rcu(&tb->rcu, __trie_free_rcu);
  1678. }
  1679. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1680. struct sk_buff *skb, struct netlink_callback *cb)
  1681. {
  1682. __be32 xkey = htonl(l->key);
  1683. struct fib_alias *fa;
  1684. int i, s_i;
  1685. s_i = cb->args[4];
  1686. i = 0;
  1687. /* rcu_read_lock is hold by caller */
  1688. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1689. int err;
  1690. if (i < s_i) {
  1691. i++;
  1692. continue;
  1693. }
  1694. if (tb->tb_id != fa->tb_id) {
  1695. i++;
  1696. continue;
  1697. }
  1698. err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1699. cb->nlh->nlmsg_seq, RTM_NEWROUTE,
  1700. tb->tb_id, fa->fa_type,
  1701. xkey, KEYLENGTH - fa->fa_slen,
  1702. fa->fa_tos, fa->fa_info, NLM_F_MULTI);
  1703. if (err < 0) {
  1704. cb->args[4] = i;
  1705. return err;
  1706. }
  1707. i++;
  1708. }
  1709. cb->args[4] = i;
  1710. return skb->len;
  1711. }
  1712. /* rcu_read_lock needs to be hold by caller from readside */
  1713. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1714. struct netlink_callback *cb)
  1715. {
  1716. struct trie *t = (struct trie *)tb->tb_data;
  1717. struct key_vector *l, *tp = t->kv;
  1718. /* Dump starting at last key.
  1719. * Note: 0.0.0.0/0 (ie default) is first key.
  1720. */
  1721. int count = cb->args[2];
  1722. t_key key = cb->args[3];
  1723. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1724. int err;
  1725. err = fn_trie_dump_leaf(l, tb, skb, cb);
  1726. if (err < 0) {
  1727. cb->args[3] = key;
  1728. cb->args[2] = count;
  1729. return err;
  1730. }
  1731. ++count;
  1732. key = l->key + 1;
  1733. memset(&cb->args[4], 0,
  1734. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1735. /* stop loop if key wrapped back to 0 */
  1736. if (key < l->key)
  1737. break;
  1738. }
  1739. cb->args[3] = key;
  1740. cb->args[2] = count;
  1741. return skb->len;
  1742. }
  1743. void __init fib_trie_init(void)
  1744. {
  1745. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1746. sizeof(struct fib_alias),
  1747. 0, SLAB_PANIC, NULL);
  1748. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1749. LEAF_SIZE,
  1750. 0, SLAB_PANIC, NULL);
  1751. }
  1752. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1753. {
  1754. struct fib_table *tb;
  1755. struct trie *t;
  1756. size_t sz = sizeof(*tb);
  1757. if (!alias)
  1758. sz += sizeof(struct trie);
  1759. tb = kzalloc(sz, GFP_KERNEL);
  1760. if (!tb)
  1761. return NULL;
  1762. tb->tb_id = id;
  1763. tb->tb_num_default = 0;
  1764. tb->tb_data = (alias ? alias->__data : tb->__data);
  1765. if (alias)
  1766. return tb;
  1767. t = (struct trie *) tb->tb_data;
  1768. t->kv[0].pos = KEYLENGTH;
  1769. t->kv[0].slen = KEYLENGTH;
  1770. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1771. t->stats = alloc_percpu(struct trie_use_stats);
  1772. if (!t->stats) {
  1773. kfree(tb);
  1774. tb = NULL;
  1775. }
  1776. #endif
  1777. return tb;
  1778. }
  1779. #ifdef CONFIG_PROC_FS
  1780. /* Depth first Trie walk iterator */
  1781. struct fib_trie_iter {
  1782. struct seq_net_private p;
  1783. struct fib_table *tb;
  1784. struct key_vector *tnode;
  1785. unsigned int index;
  1786. unsigned int depth;
  1787. };
  1788. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1789. {
  1790. unsigned long cindex = iter->index;
  1791. struct key_vector *pn = iter->tnode;
  1792. t_key pkey;
  1793. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1794. iter->tnode, iter->index, iter->depth);
  1795. while (!IS_TRIE(pn)) {
  1796. while (cindex < child_length(pn)) {
  1797. struct key_vector *n = get_child_rcu(pn, cindex++);
  1798. if (!n)
  1799. continue;
  1800. if (IS_LEAF(n)) {
  1801. iter->tnode = pn;
  1802. iter->index = cindex;
  1803. } else {
  1804. /* push down one level */
  1805. iter->tnode = n;
  1806. iter->index = 0;
  1807. ++iter->depth;
  1808. }
  1809. return n;
  1810. }
  1811. /* Current node exhausted, pop back up */
  1812. pkey = pn->key;
  1813. pn = node_parent_rcu(pn);
  1814. cindex = get_index(pkey, pn) + 1;
  1815. --iter->depth;
  1816. }
  1817. /* record root node so further searches know we are done */
  1818. iter->tnode = pn;
  1819. iter->index = 0;
  1820. return NULL;
  1821. }
  1822. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1823. struct trie *t)
  1824. {
  1825. struct key_vector *n, *pn;
  1826. if (!t)
  1827. return NULL;
  1828. pn = t->kv;
  1829. n = rcu_dereference(pn->tnode[0]);
  1830. if (!n)
  1831. return NULL;
  1832. if (IS_TNODE(n)) {
  1833. iter->tnode = n;
  1834. iter->index = 0;
  1835. iter->depth = 1;
  1836. } else {
  1837. iter->tnode = pn;
  1838. iter->index = 0;
  1839. iter->depth = 0;
  1840. }
  1841. return n;
  1842. }
  1843. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1844. {
  1845. struct key_vector *n;
  1846. struct fib_trie_iter iter;
  1847. memset(s, 0, sizeof(*s));
  1848. rcu_read_lock();
  1849. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1850. if (IS_LEAF(n)) {
  1851. struct fib_alias *fa;
  1852. s->leaves++;
  1853. s->totdepth += iter.depth;
  1854. if (iter.depth > s->maxdepth)
  1855. s->maxdepth = iter.depth;
  1856. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1857. ++s->prefixes;
  1858. } else {
  1859. s->tnodes++;
  1860. if (n->bits < MAX_STAT_DEPTH)
  1861. s->nodesizes[n->bits]++;
  1862. s->nullpointers += tn_info(n)->empty_children;
  1863. }
  1864. }
  1865. rcu_read_unlock();
  1866. }
  1867. /*
  1868. * This outputs /proc/net/fib_triestats
  1869. */
  1870. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1871. {
  1872. unsigned int i, max, pointers, bytes, avdepth;
  1873. if (stat->leaves)
  1874. avdepth = stat->totdepth*100 / stat->leaves;
  1875. else
  1876. avdepth = 0;
  1877. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1878. avdepth / 100, avdepth % 100);
  1879. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1880. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1881. bytes = LEAF_SIZE * stat->leaves;
  1882. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1883. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1884. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1885. bytes += TNODE_SIZE(0) * stat->tnodes;
  1886. max = MAX_STAT_DEPTH;
  1887. while (max > 0 && stat->nodesizes[max-1] == 0)
  1888. max--;
  1889. pointers = 0;
  1890. for (i = 1; i < max; i++)
  1891. if (stat->nodesizes[i] != 0) {
  1892. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1893. pointers += (1<<i) * stat->nodesizes[i];
  1894. }
  1895. seq_putc(seq, '\n');
  1896. seq_printf(seq, "\tPointers: %u\n", pointers);
  1897. bytes += sizeof(struct key_vector *) * pointers;
  1898. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1899. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1900. }
  1901. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1902. static void trie_show_usage(struct seq_file *seq,
  1903. const struct trie_use_stats __percpu *stats)
  1904. {
  1905. struct trie_use_stats s = { 0 };
  1906. int cpu;
  1907. /* loop through all of the CPUs and gather up the stats */
  1908. for_each_possible_cpu(cpu) {
  1909. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1910. s.gets += pcpu->gets;
  1911. s.backtrack += pcpu->backtrack;
  1912. s.semantic_match_passed += pcpu->semantic_match_passed;
  1913. s.semantic_match_miss += pcpu->semantic_match_miss;
  1914. s.null_node_hit += pcpu->null_node_hit;
  1915. s.resize_node_skipped += pcpu->resize_node_skipped;
  1916. }
  1917. seq_printf(seq, "\nCounters:\n---------\n");
  1918. seq_printf(seq, "gets = %u\n", s.gets);
  1919. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1920. seq_printf(seq, "semantic match passed = %u\n",
  1921. s.semantic_match_passed);
  1922. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1923. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1924. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1925. }
  1926. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1927. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1928. {
  1929. if (tb->tb_id == RT_TABLE_LOCAL)
  1930. seq_puts(seq, "Local:\n");
  1931. else if (tb->tb_id == RT_TABLE_MAIN)
  1932. seq_puts(seq, "Main:\n");
  1933. else
  1934. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1935. }
  1936. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1937. {
  1938. struct net *net = (struct net *)seq->private;
  1939. unsigned int h;
  1940. seq_printf(seq,
  1941. "Basic info: size of leaf:"
  1942. " %zd bytes, size of tnode: %zd bytes.\n",
  1943. LEAF_SIZE, TNODE_SIZE(0));
  1944. rcu_read_lock();
  1945. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1946. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1947. struct fib_table *tb;
  1948. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1949. struct trie *t = (struct trie *) tb->tb_data;
  1950. struct trie_stat stat;
  1951. if (!t)
  1952. continue;
  1953. fib_table_print(seq, tb);
  1954. trie_collect_stats(t, &stat);
  1955. trie_show_stats(seq, &stat);
  1956. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1957. trie_show_usage(seq, t->stats);
  1958. #endif
  1959. }
  1960. cond_resched_rcu();
  1961. }
  1962. rcu_read_unlock();
  1963. return 0;
  1964. }
  1965. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1966. {
  1967. struct fib_trie_iter *iter = seq->private;
  1968. struct net *net = seq_file_net(seq);
  1969. loff_t idx = 0;
  1970. unsigned int h;
  1971. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1972. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1973. struct fib_table *tb;
  1974. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1975. struct key_vector *n;
  1976. for (n = fib_trie_get_first(iter,
  1977. (struct trie *) tb->tb_data);
  1978. n; n = fib_trie_get_next(iter))
  1979. if (pos == idx++) {
  1980. iter->tb = tb;
  1981. return n;
  1982. }
  1983. }
  1984. }
  1985. return NULL;
  1986. }
  1987. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1988. __acquires(RCU)
  1989. {
  1990. rcu_read_lock();
  1991. return fib_trie_get_idx(seq, *pos);
  1992. }
  1993. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1994. {
  1995. struct fib_trie_iter *iter = seq->private;
  1996. struct net *net = seq_file_net(seq);
  1997. struct fib_table *tb = iter->tb;
  1998. struct hlist_node *tb_node;
  1999. unsigned int h;
  2000. struct key_vector *n;
  2001. ++*pos;
  2002. /* next node in same table */
  2003. n = fib_trie_get_next(iter);
  2004. if (n)
  2005. return n;
  2006. /* walk rest of this hash chain */
  2007. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  2008. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  2009. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  2010. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2011. if (n)
  2012. goto found;
  2013. }
  2014. /* new hash chain */
  2015. while (++h < FIB_TABLE_HASHSZ) {
  2016. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  2017. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2018. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2019. if (n)
  2020. goto found;
  2021. }
  2022. }
  2023. return NULL;
  2024. found:
  2025. iter->tb = tb;
  2026. return n;
  2027. }
  2028. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2029. __releases(RCU)
  2030. {
  2031. rcu_read_unlock();
  2032. }
  2033. static void seq_indent(struct seq_file *seq, int n)
  2034. {
  2035. while (n-- > 0)
  2036. seq_puts(seq, " ");
  2037. }
  2038. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2039. {
  2040. switch (s) {
  2041. case RT_SCOPE_UNIVERSE: return "universe";
  2042. case RT_SCOPE_SITE: return "site";
  2043. case RT_SCOPE_LINK: return "link";
  2044. case RT_SCOPE_HOST: return "host";
  2045. case RT_SCOPE_NOWHERE: return "nowhere";
  2046. default:
  2047. snprintf(buf, len, "scope=%d", s);
  2048. return buf;
  2049. }
  2050. }
  2051. static const char *const rtn_type_names[__RTN_MAX] = {
  2052. [RTN_UNSPEC] = "UNSPEC",
  2053. [RTN_UNICAST] = "UNICAST",
  2054. [RTN_LOCAL] = "LOCAL",
  2055. [RTN_BROADCAST] = "BROADCAST",
  2056. [RTN_ANYCAST] = "ANYCAST",
  2057. [RTN_MULTICAST] = "MULTICAST",
  2058. [RTN_BLACKHOLE] = "BLACKHOLE",
  2059. [RTN_UNREACHABLE] = "UNREACHABLE",
  2060. [RTN_PROHIBIT] = "PROHIBIT",
  2061. [RTN_THROW] = "THROW",
  2062. [RTN_NAT] = "NAT",
  2063. [RTN_XRESOLVE] = "XRESOLVE",
  2064. };
  2065. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2066. {
  2067. if (t < __RTN_MAX && rtn_type_names[t])
  2068. return rtn_type_names[t];
  2069. snprintf(buf, len, "type %u", t);
  2070. return buf;
  2071. }
  2072. /* Pretty print the trie */
  2073. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2074. {
  2075. const struct fib_trie_iter *iter = seq->private;
  2076. struct key_vector *n = v;
  2077. if (IS_TRIE(node_parent_rcu(n)))
  2078. fib_table_print(seq, iter->tb);
  2079. if (IS_TNODE(n)) {
  2080. __be32 prf = htonl(n->key);
  2081. seq_indent(seq, iter->depth-1);
  2082. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2083. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2084. tn_info(n)->full_children,
  2085. tn_info(n)->empty_children);
  2086. } else {
  2087. __be32 val = htonl(n->key);
  2088. struct fib_alias *fa;
  2089. seq_indent(seq, iter->depth);
  2090. seq_printf(seq, " |-- %pI4\n", &val);
  2091. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2092. char buf1[32], buf2[32];
  2093. seq_indent(seq, iter->depth + 1);
  2094. seq_printf(seq, " /%zu %s %s",
  2095. KEYLENGTH - fa->fa_slen,
  2096. rtn_scope(buf1, sizeof(buf1),
  2097. fa->fa_info->fib_scope),
  2098. rtn_type(buf2, sizeof(buf2),
  2099. fa->fa_type));
  2100. if (fa->fa_tos)
  2101. seq_printf(seq, " tos=%d", fa->fa_tos);
  2102. seq_putc(seq, '\n');
  2103. }
  2104. }
  2105. return 0;
  2106. }
  2107. static const struct seq_operations fib_trie_seq_ops = {
  2108. .start = fib_trie_seq_start,
  2109. .next = fib_trie_seq_next,
  2110. .stop = fib_trie_seq_stop,
  2111. .show = fib_trie_seq_show,
  2112. };
  2113. struct fib_route_iter {
  2114. struct seq_net_private p;
  2115. struct fib_table *main_tb;
  2116. struct key_vector *tnode;
  2117. loff_t pos;
  2118. t_key key;
  2119. };
  2120. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2121. loff_t pos)
  2122. {
  2123. struct key_vector *l, **tp = &iter->tnode;
  2124. t_key key;
  2125. /* use cached location of previously found key */
  2126. if (iter->pos > 0 && pos >= iter->pos) {
  2127. key = iter->key;
  2128. } else {
  2129. iter->pos = 1;
  2130. key = 0;
  2131. }
  2132. pos -= iter->pos;
  2133. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2134. key = l->key + 1;
  2135. iter->pos++;
  2136. l = NULL;
  2137. /* handle unlikely case of a key wrap */
  2138. if (!key)
  2139. break;
  2140. }
  2141. if (l)
  2142. iter->key = l->key; /* remember it */
  2143. else
  2144. iter->pos = 0; /* forget it */
  2145. return l;
  2146. }
  2147. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2148. __acquires(RCU)
  2149. {
  2150. struct fib_route_iter *iter = seq->private;
  2151. struct fib_table *tb;
  2152. struct trie *t;
  2153. rcu_read_lock();
  2154. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2155. if (!tb)
  2156. return NULL;
  2157. iter->main_tb = tb;
  2158. t = (struct trie *)tb->tb_data;
  2159. iter->tnode = t->kv;
  2160. if (*pos != 0)
  2161. return fib_route_get_idx(iter, *pos);
  2162. iter->pos = 0;
  2163. iter->key = KEY_MAX;
  2164. return SEQ_START_TOKEN;
  2165. }
  2166. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2167. {
  2168. struct fib_route_iter *iter = seq->private;
  2169. struct key_vector *l = NULL;
  2170. t_key key = iter->key + 1;
  2171. ++*pos;
  2172. /* only allow key of 0 for start of sequence */
  2173. if ((v == SEQ_START_TOKEN) || key)
  2174. l = leaf_walk_rcu(&iter->tnode, key);
  2175. if (l) {
  2176. iter->key = l->key;
  2177. iter->pos++;
  2178. } else {
  2179. iter->pos = 0;
  2180. }
  2181. return l;
  2182. }
  2183. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2184. __releases(RCU)
  2185. {
  2186. rcu_read_unlock();
  2187. }
  2188. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2189. {
  2190. unsigned int flags = 0;
  2191. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2192. flags = RTF_REJECT;
  2193. if (fi && fi->fib_nh->nh_gw)
  2194. flags |= RTF_GATEWAY;
  2195. if (mask == htonl(0xFFFFFFFF))
  2196. flags |= RTF_HOST;
  2197. flags |= RTF_UP;
  2198. return flags;
  2199. }
  2200. /*
  2201. * This outputs /proc/net/route.
  2202. * The format of the file is not supposed to be changed
  2203. * and needs to be same as fib_hash output to avoid breaking
  2204. * legacy utilities
  2205. */
  2206. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2207. {
  2208. struct fib_route_iter *iter = seq->private;
  2209. struct fib_table *tb = iter->main_tb;
  2210. struct fib_alias *fa;
  2211. struct key_vector *l = v;
  2212. __be32 prefix;
  2213. if (v == SEQ_START_TOKEN) {
  2214. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2215. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2216. "\tWindow\tIRTT");
  2217. return 0;
  2218. }
  2219. prefix = htonl(l->key);
  2220. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2221. const struct fib_info *fi = fa->fa_info;
  2222. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2223. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2224. if ((fa->fa_type == RTN_BROADCAST) ||
  2225. (fa->fa_type == RTN_MULTICAST))
  2226. continue;
  2227. if (fa->tb_id != tb->tb_id)
  2228. continue;
  2229. seq_setwidth(seq, 127);
  2230. if (fi)
  2231. seq_printf(seq,
  2232. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2233. "%d\t%08X\t%d\t%u\t%u",
  2234. fi->fib_dev ? fi->fib_dev->name : "*",
  2235. prefix,
  2236. fi->fib_nh->nh_gw, flags, 0, 0,
  2237. fi->fib_priority,
  2238. mask,
  2239. (fi->fib_advmss ?
  2240. fi->fib_advmss + 40 : 0),
  2241. fi->fib_window,
  2242. fi->fib_rtt >> 3);
  2243. else
  2244. seq_printf(seq,
  2245. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2246. "%d\t%08X\t%d\t%u\t%u",
  2247. prefix, 0, flags, 0, 0, 0,
  2248. mask, 0, 0, 0);
  2249. seq_pad(seq, '\n');
  2250. }
  2251. return 0;
  2252. }
  2253. static const struct seq_operations fib_route_seq_ops = {
  2254. .start = fib_route_seq_start,
  2255. .next = fib_route_seq_next,
  2256. .stop = fib_route_seq_stop,
  2257. .show = fib_route_seq_show,
  2258. };
  2259. int __net_init fib_proc_init(struct net *net)
  2260. {
  2261. if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
  2262. sizeof(struct fib_trie_iter)))
  2263. goto out1;
  2264. if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
  2265. fib_triestat_seq_show, NULL))
  2266. goto out2;
  2267. if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
  2268. sizeof(struct fib_route_iter)))
  2269. goto out3;
  2270. return 0;
  2271. out3:
  2272. remove_proc_entry("fib_triestat", net->proc_net);
  2273. out2:
  2274. remove_proc_entry("fib_trie", net->proc_net);
  2275. out1:
  2276. return -ENOMEM;
  2277. }
  2278. void __net_exit fib_proc_exit(struct net *net)
  2279. {
  2280. remove_proc_entry("fib_trie", net->proc_net);
  2281. remove_proc_entry("fib_triestat", net->proc_net);
  2282. remove_proc_entry("route", net->proc_net);
  2283. }
  2284. #endif /* CONFIG_PROC_FS */