123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * SLUB: A slab allocator that limits cache line use instead of queuing
- * objects in per cpu and per node lists.
- *
- * The allocator synchronizes using per slab locks or atomic operatios
- * and only uses a centralized lock to manage a pool of partial slabs.
- *
- * (C) 2007 SGI, Christoph Lameter
- * (C) 2011 Linux Foundation, Christoph Lameter
- */
- #include <linux/mm.h>
- #include <linux/swap.h> /* struct reclaim_state */
- #include <linux/module.h>
- #include <linux/bit_spinlock.h>
- #include <linux/interrupt.h>
- #include <linux/bitops.h>
- #include <linux/slab.h>
- #include "slab.h"
- #include <linux/proc_fs.h>
- #include <linux/seq_file.h>
- #include <linux/kasan.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/mempolicy.h>
- #include <linux/ctype.h>
- #include <linux/debugobjects.h>
- #include <linux/kallsyms.h>
- #include <linux/memory.h>
- #include <linux/math64.h>
- #include <linux/fault-inject.h>
- #include <linux/stacktrace.h>
- #include <linux/prefetch.h>
- #include <linux/memcontrol.h>
- #include <linux/random.h>
- #include <trace/events/kmem.h>
- #include "internal.h"
- /*
- * Lock order:
- * 1. slab_mutex (Global Mutex)
- * 2. node->list_lock
- * 3. slab_lock(page) (Only on some arches and for debugging)
- *
- * slab_mutex
- *
- * The role of the slab_mutex is to protect the list of all the slabs
- * and to synchronize major metadata changes to slab cache structures.
- *
- * The slab_lock is only used for debugging and on arches that do not
- * have the ability to do a cmpxchg_double. It only protects:
- * A. page->freelist -> List of object free in a page
- * B. page->inuse -> Number of objects in use
- * C. page->objects -> Number of objects in page
- * D. page->frozen -> frozen state
- *
- * If a slab is frozen then it is exempt from list management. It is not
- * on any list. The processor that froze the slab is the one who can
- * perform list operations on the page. Other processors may put objects
- * onto the freelist but the processor that froze the slab is the only
- * one that can retrieve the objects from the page's freelist.
- *
- * The list_lock protects the partial and full list on each node and
- * the partial slab counter. If taken then no new slabs may be added or
- * removed from the lists nor make the number of partial slabs be modified.
- * (Note that the total number of slabs is an atomic value that may be
- * modified without taking the list lock).
- *
- * The list_lock is a centralized lock and thus we avoid taking it as
- * much as possible. As long as SLUB does not have to handle partial
- * slabs, operations can continue without any centralized lock. F.e.
- * allocating a long series of objects that fill up slabs does not require
- * the list lock.
- * Interrupts are disabled during allocation and deallocation in order to
- * make the slab allocator safe to use in the context of an irq. In addition
- * interrupts are disabled to ensure that the processor does not change
- * while handling per_cpu slabs, due to kernel preemption.
- *
- * SLUB assigns one slab for allocation to each processor.
- * Allocations only occur from these slabs called cpu slabs.
- *
- * Slabs with free elements are kept on a partial list and during regular
- * operations no list for full slabs is used. If an object in a full slab is
- * freed then the slab will show up again on the partial lists.
- * We track full slabs for debugging purposes though because otherwise we
- * cannot scan all objects.
- *
- * Slabs are freed when they become empty. Teardown and setup is
- * minimal so we rely on the page allocators per cpu caches for
- * fast frees and allocs.
- *
- * Overloading of page flags that are otherwise used for LRU management.
- *
- * PageActive The slab is frozen and exempt from list processing.
- * This means that the slab is dedicated to a purpose
- * such as satisfying allocations for a specific
- * processor. Objects may be freed in the slab while
- * it is frozen but slab_free will then skip the usual
- * list operations. It is up to the processor holding
- * the slab to integrate the slab into the slab lists
- * when the slab is no longer needed.
- *
- * One use of this flag is to mark slabs that are
- * used for allocations. Then such a slab becomes a cpu
- * slab. The cpu slab may be equipped with an additional
- * freelist that allows lockless access to
- * free objects in addition to the regular freelist
- * that requires the slab lock.
- *
- * PageError Slab requires special handling due to debug
- * options set. This moves slab handling out of
- * the fast path and disables lockless freelists.
- */
- static inline int kmem_cache_debug(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_DEBUG
- return unlikely(s->flags & SLAB_DEBUG_FLAGS);
- #else
- return 0;
- #endif
- }
- void *fixup_red_left(struct kmem_cache *s, void *p)
- {
- if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
- p += s->red_left_pad;
- return p;
- }
- static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- return !kmem_cache_debug(s);
- #else
- return false;
- #endif
- }
- /*
- * Issues still to be resolved:
- *
- * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
- *
- * - Variable sizing of the per node arrays
- */
- /* Enable to test recovery from slab corruption on boot */
- #undef SLUB_RESILIENCY_TEST
- /* Enable to log cmpxchg failures */
- #undef SLUB_DEBUG_CMPXCHG
- /*
- * Mininum number of partial slabs. These will be left on the partial
- * lists even if they are empty. kmem_cache_shrink may reclaim them.
- */
- #define MIN_PARTIAL 5
- /*
- * Maximum number of desirable partial slabs.
- * The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in use.
- */
- #define MAX_PARTIAL 10
- #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_STORE_USER)
- /*
- * These debug flags cannot use CMPXCHG because there might be consistency
- * issues when checking or reading debug information
- */
- #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
- SLAB_TRACE)
- /*
- * Debugging flags that require metadata to be stored in the slab. These get
- * disabled when slub_debug=O is used and a cache's min order increases with
- * metadata.
- */
- #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
- #define OO_SHIFT 16
- #define OO_MASK ((1 << OO_SHIFT) - 1)
- #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
- /* Internal SLUB flags */
- /* Poison object */
- #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
- /* Use cmpxchg_double */
- #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
- /*
- * Tracking user of a slab.
- */
- #define TRACK_ADDRS_COUNT 16
- struct track {
- unsigned long addr; /* Called from address */
- #ifdef CONFIG_STACKTRACE
- unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
- #endif
- int cpu; /* Was running on cpu */
- int pid; /* Pid context */
- unsigned long when; /* When did the operation occur */
- };
- enum track_item { TRACK_ALLOC, TRACK_FREE };
- #ifdef CONFIG_SYSFS
- static int sysfs_slab_add(struct kmem_cache *);
- static int sysfs_slab_alias(struct kmem_cache *, const char *);
- static void memcg_propagate_slab_attrs(struct kmem_cache *s);
- static void sysfs_slab_remove(struct kmem_cache *s);
- #else
- static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
- static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
- { return 0; }
- static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
- static inline void sysfs_slab_remove(struct kmem_cache *s) { }
- #endif
- static inline void stat(const struct kmem_cache *s, enum stat_item si)
- {
- #ifdef CONFIG_SLUB_STATS
- /*
- * The rmw is racy on a preemptible kernel but this is acceptable, so
- * avoid this_cpu_add()'s irq-disable overhead.
- */
- raw_cpu_inc(s->cpu_slab->stat[si]);
- #endif
- }
- /********************************************************************
- * Core slab cache functions
- *******************************************************************/
- /*
- * Returns freelist pointer (ptr). With hardening, this is obfuscated
- * with an XOR of the address where the pointer is held and a per-cache
- * random number.
- */
- static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
- unsigned long ptr_addr)
- {
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
- #else
- return ptr;
- #endif
- }
- /* Returns the freelist pointer recorded at location ptr_addr. */
- static inline void *freelist_dereference(const struct kmem_cache *s,
- void *ptr_addr)
- {
- return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
- (unsigned long)ptr_addr);
- }
- static inline void *get_freepointer(struct kmem_cache *s, void *object)
- {
- return freelist_dereference(s, object + s->offset);
- }
- static void prefetch_freepointer(const struct kmem_cache *s, void *object)
- {
- prefetch(object + s->offset);
- }
- static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
- {
- unsigned long freepointer_addr;
- void *p;
- if (!debug_pagealloc_enabled())
- return get_freepointer(s, object);
- freepointer_addr = (unsigned long)object + s->offset;
- probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
- return freelist_ptr(s, p, freepointer_addr);
- }
- static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
- {
- unsigned long freeptr_addr = (unsigned long)object + s->offset;
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- BUG_ON(object == fp); /* naive detection of double free or corruption */
- #endif
- *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
- }
- /* Loop over all objects in a slab */
- #define for_each_object(__p, __s, __addr, __objects) \
- for (__p = fixup_red_left(__s, __addr); \
- __p < (__addr) + (__objects) * (__s)->size; \
- __p += (__s)->size)
- #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
- for (__p = fixup_red_left(__s, __addr), __idx = 1; \
- __idx <= __objects; \
- __p += (__s)->size, __idx++)
- /* Determine object index from a given position */
- static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
- {
- return (p - addr) / s->size;
- }
- static inline unsigned int order_objects(unsigned int order, unsigned int size)
- {
- return ((unsigned int)PAGE_SIZE << order) / size;
- }
- static inline struct kmem_cache_order_objects oo_make(unsigned int order,
- unsigned int size)
- {
- struct kmem_cache_order_objects x = {
- (order << OO_SHIFT) + order_objects(order, size)
- };
- return x;
- }
- static inline unsigned int oo_order(struct kmem_cache_order_objects x)
- {
- return x.x >> OO_SHIFT;
- }
- static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
- {
- return x.x & OO_MASK;
- }
- /*
- * Per slab locking using the pagelock
- */
- static __always_inline void slab_lock(struct page *page)
- {
- VM_BUG_ON_PAGE(PageTail(page), page);
- bit_spin_lock(PG_locked, &page->flags);
- }
- static __always_inline void slab_unlock(struct page *page)
- {
- VM_BUG_ON_PAGE(PageTail(page), page);
- __bit_spin_unlock(PG_locked, &page->flags);
- }
- /* Interrupts must be disabled (for the fallback code to work right) */
- static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
- {
- VM_BUG_ON(!irqs_disabled());
- #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist, &page->counters,
- freelist_old, counters_old,
- freelist_new, counters_new))
- return true;
- } else
- #endif
- {
- slab_lock(page);
- if (page->freelist == freelist_old &&
- page->counters == counters_old) {
- page->freelist = freelist_new;
- page->counters = counters_new;
- slab_unlock(page);
- return true;
- }
- slab_unlock(page);
- }
- cpu_relax();
- stat(s, CMPXCHG_DOUBLE_FAIL);
- #ifdef SLUB_DEBUG_CMPXCHG
- pr_info("%s %s: cmpxchg double redo ", n, s->name);
- #endif
- return false;
- }
- static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
- {
- #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist, &page->counters,
- freelist_old, counters_old,
- freelist_new, counters_new))
- return true;
- } else
- #endif
- {
- unsigned long flags;
- local_irq_save(flags);
- slab_lock(page);
- if (page->freelist == freelist_old &&
- page->counters == counters_old) {
- page->freelist = freelist_new;
- page->counters = counters_new;
- slab_unlock(page);
- local_irq_restore(flags);
- return true;
- }
- slab_unlock(page);
- local_irq_restore(flags);
- }
- cpu_relax();
- stat(s, CMPXCHG_DOUBLE_FAIL);
- #ifdef SLUB_DEBUG_CMPXCHG
- pr_info("%s %s: cmpxchg double redo ", n, s->name);
- #endif
- return false;
- }
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * Determine a map of object in use on a page.
- *
- * Node listlock must be held to guarantee that the page does
- * not vanish from under us.
- */
- static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
- {
- void *p;
- void *addr = page_address(page);
- for (p = page->freelist; p; p = get_freepointer(s, p))
- set_bit(slab_index(p, s, addr), map);
- }
- static inline unsigned int size_from_object(struct kmem_cache *s)
- {
- if (s->flags & SLAB_RED_ZONE)
- return s->size - s->red_left_pad;
- return s->size;
- }
- static inline void *restore_red_left(struct kmem_cache *s, void *p)
- {
- if (s->flags & SLAB_RED_ZONE)
- p -= s->red_left_pad;
- return p;
- }
- /*
- * Debug settings:
- */
- #if defined(CONFIG_SLUB_DEBUG_ON)
- static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
- #else
- static slab_flags_t slub_debug;
- #endif
- static char *slub_debug_slabs;
- static int disable_higher_order_debug;
- /*
- * slub is about to manipulate internal object metadata. This memory lies
- * outside the range of the allocated object, so accessing it would normally
- * be reported by kasan as a bounds error. metadata_access_enable() is used
- * to tell kasan that these accesses are OK.
- */
- static inline void metadata_access_enable(void)
- {
- kasan_disable_current();
- }
- static inline void metadata_access_disable(void)
- {
- kasan_enable_current();
- }
- /*
- * Object debugging
- */
- /* Verify that a pointer has an address that is valid within a slab page */
- static inline int check_valid_pointer(struct kmem_cache *s,
- struct page *page, void *object)
- {
- void *base;
- if (!object)
- return 1;
- base = page_address(page);
- object = restore_red_left(s, object);
- if (object < base || object >= base + page->objects * s->size ||
- (object - base) % s->size) {
- return 0;
- }
- return 1;
- }
- static void print_section(char *level, char *text, u8 *addr,
- unsigned int length)
- {
- metadata_access_enable();
- print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
- length, 1);
- metadata_access_disable();
- }
- static struct track *get_track(struct kmem_cache *s, void *object,
- enum track_item alloc)
- {
- struct track *p;
- if (s->offset)
- p = object + s->offset + sizeof(void *);
- else
- p = object + s->inuse;
- return p + alloc;
- }
- static void set_track(struct kmem_cache *s, void *object,
- enum track_item alloc, unsigned long addr)
- {
- struct track *p = get_track(s, object, alloc);
- if (addr) {
- #ifdef CONFIG_STACKTRACE
- struct stack_trace trace;
- int i;
- trace.nr_entries = 0;
- trace.max_entries = TRACK_ADDRS_COUNT;
- trace.entries = p->addrs;
- trace.skip = 3;
- metadata_access_enable();
- save_stack_trace(&trace);
- metadata_access_disable();
- /* See rant in lockdep.c */
- if (trace.nr_entries != 0 &&
- trace.entries[trace.nr_entries - 1] == ULONG_MAX)
- trace.nr_entries--;
- for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
- p->addrs[i] = 0;
- #endif
- p->addr = addr;
- p->cpu = smp_processor_id();
- p->pid = current->pid;
- p->when = jiffies;
- } else
- memset(p, 0, sizeof(struct track));
- }
- static void init_tracking(struct kmem_cache *s, void *object)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- set_track(s, object, TRACK_FREE, 0UL);
- set_track(s, object, TRACK_ALLOC, 0UL);
- }
- static void print_track(const char *s, struct track *t, unsigned long pr_time)
- {
- if (!t->addr)
- return;
- pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
- s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
- #ifdef CONFIG_STACKTRACE
- {
- int i;
- for (i = 0; i < TRACK_ADDRS_COUNT; i++)
- if (t->addrs[i])
- pr_err("\t%pS\n", (void *)t->addrs[i]);
- else
- break;
- }
- #endif
- }
- static void print_tracking(struct kmem_cache *s, void *object)
- {
- unsigned long pr_time = jiffies;
- if (!(s->flags & SLAB_STORE_USER))
- return;
- print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
- print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
- }
- static void print_page_info(struct page *page)
- {
- pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
- page, page->objects, page->inuse, page->freelist, page->flags);
- }
- static void slab_bug(struct kmem_cache *s, char *fmt, ...)
- {
- struct va_format vaf;
- va_list args;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- pr_err("=============================================================================\n");
- pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
- pr_err("-----------------------------------------------------------------------------\n\n");
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
- va_end(args);
- }
- static void slab_fix(struct kmem_cache *s, char *fmt, ...)
- {
- struct va_format vaf;
- va_list args;
- va_start(args, fmt);
- vaf.fmt = fmt;
- vaf.va = &args;
- pr_err("FIX %s: %pV\n", s->name, &vaf);
- va_end(args);
- }
- static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
- {
- unsigned int off; /* Offset of last byte */
- u8 *addr = page_address(page);
- print_tracking(s, p);
- print_page_info(page);
- pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
- p, p - addr, get_freepointer(s, p));
- if (s->flags & SLAB_RED_ZONE)
- print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
- s->red_left_pad);
- else if (p > addr + 16)
- print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
- print_section(KERN_ERR, "Object ", p,
- min_t(unsigned int, s->object_size, PAGE_SIZE));
- if (s->flags & SLAB_RED_ZONE)
- print_section(KERN_ERR, "Redzone ", p + s->object_size,
- s->inuse - s->object_size);
- if (s->offset)
- off = s->offset + sizeof(void *);
- else
- off = s->inuse;
- if (s->flags & SLAB_STORE_USER)
- off += 2 * sizeof(struct track);
- off += kasan_metadata_size(s);
- if (off != size_from_object(s))
- /* Beginning of the filler is the free pointer */
- print_section(KERN_ERR, "Padding ", p + off,
- size_from_object(s) - off);
- dump_stack();
- }
- void object_err(struct kmem_cache *s, struct page *page,
- u8 *object, char *reason)
- {
- slab_bug(s, "%s", reason);
- print_trailer(s, page, object);
- }
- static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
- const char *fmt, ...)
- {
- va_list args;
- char buf[100];
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
- va_end(args);
- slab_bug(s, "%s", buf);
- print_page_info(page);
- dump_stack();
- }
- static void init_object(struct kmem_cache *s, void *object, u8 val)
- {
- u8 *p = object;
- if (s->flags & SLAB_RED_ZONE)
- memset(p - s->red_left_pad, val, s->red_left_pad);
- if (s->flags & __OBJECT_POISON) {
- memset(p, POISON_FREE, s->object_size - 1);
- p[s->object_size - 1] = POISON_END;
- }
- if (s->flags & SLAB_RED_ZONE)
- memset(p + s->object_size, val, s->inuse - s->object_size);
- }
- static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
- void *from, void *to)
- {
- slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
- memset(from, data, to - from);
- }
- static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
- u8 *object, char *what,
- u8 *start, unsigned int value, unsigned int bytes)
- {
- u8 *fault;
- u8 *end;
- metadata_access_enable();
- fault = memchr_inv(start, value, bytes);
- metadata_access_disable();
- if (!fault)
- return 1;
- end = start + bytes;
- while (end > fault && end[-1] == value)
- end--;
- slab_bug(s, "%s overwritten", what);
- pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
- fault, end - 1, fault[0], value);
- print_trailer(s, page, object);
- restore_bytes(s, what, value, fault, end);
- return 0;
- }
- /*
- * Object layout:
- *
- * object address
- * Bytes of the object to be managed.
- * If the freepointer may overlay the object then the free
- * pointer is the first word of the object.
- *
- * Poisoning uses 0x6b (POISON_FREE) and the last byte is
- * 0xa5 (POISON_END)
- *
- * object + s->object_size
- * Padding to reach word boundary. This is also used for Redzoning.
- * Padding is extended by another word if Redzoning is enabled and
- * object_size == inuse.
- *
- * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
- * 0xcc (RED_ACTIVE) for objects in use.
- *
- * object + s->inuse
- * Meta data starts here.
- *
- * A. Free pointer (if we cannot overwrite object on free)
- * B. Tracking data for SLAB_STORE_USER
- * C. Padding to reach required alignment boundary or at mininum
- * one word if debugging is on to be able to detect writes
- * before the word boundary.
- *
- * Padding is done using 0x5a (POISON_INUSE)
- *
- * object + s->size
- * Nothing is used beyond s->size.
- *
- * If slabcaches are merged then the object_size and inuse boundaries are mostly
- * ignored. And therefore no slab options that rely on these boundaries
- * may be used with merged slabcaches.
- */
- static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
- {
- unsigned long off = s->inuse; /* The end of info */
- if (s->offset)
- /* Freepointer is placed after the object. */
- off += sizeof(void *);
- if (s->flags & SLAB_STORE_USER)
- /* We also have user information there */
- off += 2 * sizeof(struct track);
- off += kasan_metadata_size(s);
- if (size_from_object(s) == off)
- return 1;
- return check_bytes_and_report(s, page, p, "Object padding",
- p + off, POISON_INUSE, size_from_object(s) - off);
- }
- /* Check the pad bytes at the end of a slab page */
- static int slab_pad_check(struct kmem_cache *s, struct page *page)
- {
- u8 *start;
- u8 *fault;
- u8 *end;
- u8 *pad;
- int length;
- int remainder;
- if (!(s->flags & SLAB_POISON))
- return 1;
- start = page_address(page);
- length = PAGE_SIZE << compound_order(page);
- end = start + length;
- remainder = length % s->size;
- if (!remainder)
- return 1;
- pad = end - remainder;
- metadata_access_enable();
- fault = memchr_inv(pad, POISON_INUSE, remainder);
- metadata_access_disable();
- if (!fault)
- return 1;
- while (end > fault && end[-1] == POISON_INUSE)
- end--;
- slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
- print_section(KERN_ERR, "Padding ", pad, remainder);
- restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
- return 0;
- }
- static int check_object(struct kmem_cache *s, struct page *page,
- void *object, u8 val)
- {
- u8 *p = object;
- u8 *endobject = object + s->object_size;
- if (s->flags & SLAB_RED_ZONE) {
- if (!check_bytes_and_report(s, page, object, "Redzone",
- object - s->red_left_pad, val, s->red_left_pad))
- return 0;
- if (!check_bytes_and_report(s, page, object, "Redzone",
- endobject, val, s->inuse - s->object_size))
- return 0;
- } else {
- if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
- check_bytes_and_report(s, page, p, "Alignment padding",
- endobject, POISON_INUSE,
- s->inuse - s->object_size);
- }
- }
- if (s->flags & SLAB_POISON) {
- if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
- (!check_bytes_and_report(s, page, p, "Poison", p,
- POISON_FREE, s->object_size - 1) ||
- !check_bytes_and_report(s, page, p, "Poison",
- p + s->object_size - 1, POISON_END, 1)))
- return 0;
- /*
- * check_pad_bytes cleans up on its own.
- */
- check_pad_bytes(s, page, p);
- }
- if (!s->offset && val == SLUB_RED_ACTIVE)
- /*
- * Object and freepointer overlap. Cannot check
- * freepointer while object is allocated.
- */
- return 1;
- /* Check free pointer validity */
- if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
- object_err(s, page, p, "Freepointer corrupt");
- /*
- * No choice but to zap it and thus lose the remainder
- * of the free objects in this slab. May cause
- * another error because the object count is now wrong.
- */
- set_freepointer(s, p, NULL);
- return 0;
- }
- return 1;
- }
- static int check_slab(struct kmem_cache *s, struct page *page)
- {
- int maxobj;
- VM_BUG_ON(!irqs_disabled());
- if (!PageSlab(page)) {
- slab_err(s, page, "Not a valid slab page");
- return 0;
- }
- maxobj = order_objects(compound_order(page), s->size);
- if (page->objects > maxobj) {
- slab_err(s, page, "objects %u > max %u",
- page->objects, maxobj);
- return 0;
- }
- if (page->inuse > page->objects) {
- slab_err(s, page, "inuse %u > max %u",
- page->inuse, page->objects);
- return 0;
- }
- /* Slab_pad_check fixes things up after itself */
- slab_pad_check(s, page);
- return 1;
- }
- /*
- * Determine if a certain object on a page is on the freelist. Must hold the
- * slab lock to guarantee that the chains are in a consistent state.
- */
- static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
- {
- int nr = 0;
- void *fp;
- void *object = NULL;
- int max_objects;
- fp = page->freelist;
- while (fp && nr <= page->objects) {
- if (fp == search)
- return 1;
- if (!check_valid_pointer(s, page, fp)) {
- if (object) {
- object_err(s, page, object,
- "Freechain corrupt");
- set_freepointer(s, object, NULL);
- } else {
- slab_err(s, page, "Freepointer corrupt");
- page->freelist = NULL;
- page->inuse = page->objects;
- slab_fix(s, "Freelist cleared");
- return 0;
- }
- break;
- }
- object = fp;
- fp = get_freepointer(s, object);
- nr++;
- }
- max_objects = order_objects(compound_order(page), s->size);
- if (max_objects > MAX_OBJS_PER_PAGE)
- max_objects = MAX_OBJS_PER_PAGE;
- if (page->objects != max_objects) {
- slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
- page->objects, max_objects);
- page->objects = max_objects;
- slab_fix(s, "Number of objects adjusted.");
- }
- if (page->inuse != page->objects - nr) {
- slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
- page->inuse, page->objects - nr);
- page->inuse = page->objects - nr;
- slab_fix(s, "Object count adjusted.");
- }
- return search == NULL;
- }
- static void trace(struct kmem_cache *s, struct page *page, void *object,
- int alloc)
- {
- if (s->flags & SLAB_TRACE) {
- pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
- s->name,
- alloc ? "alloc" : "free",
- object, page->inuse,
- page->freelist);
- if (!alloc)
- print_section(KERN_INFO, "Object ", (void *)object,
- s->object_size);
- dump_stack();
- }
- }
- /*
- * Tracking of fully allocated slabs for debugging purposes.
- */
- static void add_full(struct kmem_cache *s,
- struct kmem_cache_node *n, struct page *page)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- lockdep_assert_held(&n->list_lock);
- list_add(&page->lru, &n->full);
- }
- static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return;
- lockdep_assert_held(&n->list_lock);
- list_del(&page->lru);
- }
- /* Tracking of the number of slabs for debugging purposes */
- static inline unsigned long slabs_node(struct kmem_cache *s, int node)
- {
- struct kmem_cache_node *n = get_node(s, node);
- return atomic_long_read(&n->nr_slabs);
- }
- static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
- {
- return atomic_long_read(&n->nr_slabs);
- }
- static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
- {
- struct kmem_cache_node *n = get_node(s, node);
- /*
- * May be called early in order to allocate a slab for the
- * kmem_cache_node structure. Solve the chicken-egg
- * dilemma by deferring the increment of the count during
- * bootstrap (see early_kmem_cache_node_alloc).
- */
- if (likely(n)) {
- atomic_long_inc(&n->nr_slabs);
- atomic_long_add(objects, &n->total_objects);
- }
- }
- static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
- {
- struct kmem_cache_node *n = get_node(s, node);
- atomic_long_dec(&n->nr_slabs);
- atomic_long_sub(objects, &n->total_objects);
- }
- /* Object debug checks for alloc/free paths */
- static void setup_object_debug(struct kmem_cache *s, struct page *page,
- void *object)
- {
- if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
- return;
- init_object(s, object, SLUB_RED_INACTIVE);
- init_tracking(s, object);
- }
- static inline int alloc_consistency_checks(struct kmem_cache *s,
- struct page *page,
- void *object, unsigned long addr)
- {
- if (!check_slab(s, page))
- return 0;
- if (!check_valid_pointer(s, page, object)) {
- object_err(s, page, object, "Freelist Pointer check fails");
- return 0;
- }
- if (!check_object(s, page, object, SLUB_RED_INACTIVE))
- return 0;
- return 1;
- }
- static noinline int alloc_debug_processing(struct kmem_cache *s,
- struct page *page,
- void *object, unsigned long addr)
- {
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!alloc_consistency_checks(s, page, object, addr))
- goto bad;
- }
- /* Success perform special debug activities for allocs */
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_ALLOC, addr);
- trace(s, page, object, 1);
- init_object(s, object, SLUB_RED_ACTIVE);
- return 1;
- bad:
- if (PageSlab(page)) {
- /*
- * If this is a slab page then lets do the best we can
- * to avoid issues in the future. Marking all objects
- * as used avoids touching the remaining objects.
- */
- slab_fix(s, "Marking all objects used");
- page->inuse = page->objects;
- page->freelist = NULL;
- }
- return 0;
- }
- static inline int free_consistency_checks(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr)
- {
- if (!check_valid_pointer(s, page, object)) {
- slab_err(s, page, "Invalid object pointer 0x%p", object);
- return 0;
- }
- if (on_freelist(s, page, object)) {
- object_err(s, page, object, "Object already free");
- return 0;
- }
- if (!check_object(s, page, object, SLUB_RED_ACTIVE))
- return 0;
- if (unlikely(s != page->slab_cache)) {
- if (!PageSlab(page)) {
- slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
- object);
- } else if (!page->slab_cache) {
- pr_err("SLUB <none>: no slab for object 0x%p.\n",
- object);
- dump_stack();
- } else
- object_err(s, page, object,
- "page slab pointer corrupt.");
- return 0;
- }
- return 1;
- }
- /* Supports checking bulk free of a constructed freelist */
- static noinline int free_debug_processing(
- struct kmem_cache *s, struct page *page,
- void *head, void *tail, int bulk_cnt,
- unsigned long addr)
- {
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- void *object = head;
- int cnt = 0;
- unsigned long uninitialized_var(flags);
- int ret = 0;
- spin_lock_irqsave(&n->list_lock, flags);
- slab_lock(page);
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!check_slab(s, page))
- goto out;
- }
- next_object:
- cnt++;
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- if (!free_consistency_checks(s, page, object, addr))
- goto out;
- }
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_FREE, addr);
- trace(s, page, object, 0);
- /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
- init_object(s, object, SLUB_RED_INACTIVE);
- /* Reached end of constructed freelist yet? */
- if (object != tail) {
- object = get_freepointer(s, object);
- goto next_object;
- }
- ret = 1;
- out:
- if (cnt != bulk_cnt)
- slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
- bulk_cnt, cnt);
- slab_unlock(page);
- spin_unlock_irqrestore(&n->list_lock, flags);
- if (!ret)
- slab_fix(s, "Object at 0x%p not freed", object);
- return ret;
- }
- static int __init setup_slub_debug(char *str)
- {
- slub_debug = DEBUG_DEFAULT_FLAGS;
- if (*str++ != '=' || !*str)
- /*
- * No options specified. Switch on full debugging.
- */
- goto out;
- if (*str == ',')
- /*
- * No options but restriction on slabs. This means full
- * debugging for slabs matching a pattern.
- */
- goto check_slabs;
- slub_debug = 0;
- if (*str == '-')
- /*
- * Switch off all debugging measures.
- */
- goto out;
- /*
- * Determine which debug features should be switched on
- */
- for (; *str && *str != ','; str++) {
- switch (tolower(*str)) {
- case 'f':
- slub_debug |= SLAB_CONSISTENCY_CHECKS;
- break;
- case 'z':
- slub_debug |= SLAB_RED_ZONE;
- break;
- case 'p':
- slub_debug |= SLAB_POISON;
- break;
- case 'u':
- slub_debug |= SLAB_STORE_USER;
- break;
- case 't':
- slub_debug |= SLAB_TRACE;
- break;
- case 'a':
- slub_debug |= SLAB_FAILSLAB;
- break;
- case 'o':
- /*
- * Avoid enabling debugging on caches if its minimum
- * order would increase as a result.
- */
- disable_higher_order_debug = 1;
- break;
- default:
- pr_err("slub_debug option '%c' unknown. skipped\n",
- *str);
- }
- }
- check_slabs:
- if (*str == ',')
- slub_debug_slabs = str + 1;
- out:
- return 1;
- }
- __setup("slub_debug", setup_slub_debug);
- slab_flags_t kmem_cache_flags(unsigned int object_size,
- slab_flags_t flags, const char *name,
- void (*ctor)(void *))
- {
- /*
- * Enable debugging if selected on the kernel commandline.
- */
- if (slub_debug && (!slub_debug_slabs || (name &&
- !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
- flags |= slub_debug;
- return flags;
- }
- #else /* !CONFIG_SLUB_DEBUG */
- static inline void setup_object_debug(struct kmem_cache *s,
- struct page *page, void *object) {}
- static inline int alloc_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr) { return 0; }
- static inline int free_debug_processing(
- struct kmem_cache *s, struct page *page,
- void *head, void *tail, int bulk_cnt,
- unsigned long addr) { return 0; }
- static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
- { return 1; }
- static inline int check_object(struct kmem_cache *s, struct page *page,
- void *object, u8 val) { return 1; }
- static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct page *page) {}
- static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct page *page) {}
- slab_flags_t kmem_cache_flags(unsigned int object_size,
- slab_flags_t flags, const char *name,
- void (*ctor)(void *))
- {
- return flags;
- }
- #define slub_debug 0
- #define disable_higher_order_debug 0
- static inline unsigned long slabs_node(struct kmem_cache *s, int node)
- { return 0; }
- static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
- { return 0; }
- static inline void inc_slabs_node(struct kmem_cache *s, int node,
- int objects) {}
- static inline void dec_slabs_node(struct kmem_cache *s, int node,
- int objects) {}
- #endif /* CONFIG_SLUB_DEBUG */
- /*
- * Hooks for other subsystems that check memory allocations. In a typical
- * production configuration these hooks all should produce no code at all.
- */
- static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
- {
- kmemleak_alloc(ptr, size, 1, flags);
- kasan_kmalloc_large(ptr, size, flags);
- }
- static __always_inline void kfree_hook(void *x)
- {
- kmemleak_free(x);
- kasan_kfree_large(x, _RET_IP_);
- }
- static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
- {
- kmemleak_free_recursive(x, s->flags);
- /*
- * Trouble is that we may no longer disable interrupts in the fast path
- * So in order to make the debug calls that expect irqs to be
- * disabled we need to disable interrupts temporarily.
- */
- #ifdef CONFIG_LOCKDEP
- {
- unsigned long flags;
- local_irq_save(flags);
- debug_check_no_locks_freed(x, s->object_size);
- local_irq_restore(flags);
- }
- #endif
- if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(x, s->object_size);
- /* KASAN might put x into memory quarantine, delaying its reuse */
- return kasan_slab_free(s, x, _RET_IP_);
- }
- static inline bool slab_free_freelist_hook(struct kmem_cache *s,
- void **head, void **tail)
- {
- /*
- * Compiler cannot detect this function can be removed if slab_free_hook()
- * evaluates to nothing. Thus, catch all relevant config debug options here.
- */
- #if defined(CONFIG_LOCKDEP) || \
- defined(CONFIG_DEBUG_KMEMLEAK) || \
- defined(CONFIG_DEBUG_OBJECTS_FREE) || \
- defined(CONFIG_KASAN)
- void *object;
- void *next = *head;
- void *old_tail = *tail ? *tail : *head;
- /* Head and tail of the reconstructed freelist */
- *head = NULL;
- *tail = NULL;
- do {
- object = next;
- next = get_freepointer(s, object);
- /* If object's reuse doesn't have to be delayed */
- if (!slab_free_hook(s, object)) {
- /* Move object to the new freelist */
- set_freepointer(s, object, *head);
- *head = object;
- if (!*tail)
- *tail = object;
- }
- } while (object != old_tail);
- if (*head == *tail)
- *tail = NULL;
- return *head != NULL;
- #else
- return true;
- #endif
- }
- static void setup_object(struct kmem_cache *s, struct page *page,
- void *object)
- {
- setup_object_debug(s, page, object);
- kasan_init_slab_obj(s, object);
- if (unlikely(s->ctor)) {
- kasan_unpoison_object_data(s, object);
- s->ctor(object);
- kasan_poison_object_data(s, object);
- }
- }
- /*
- * Slab allocation and freeing
- */
- static inline struct page *alloc_slab_page(struct kmem_cache *s,
- gfp_t flags, int node, struct kmem_cache_order_objects oo)
- {
- struct page *page;
- unsigned int order = oo_order(oo);
- if (node == NUMA_NO_NODE)
- page = alloc_pages(flags, order);
- else
- page = __alloc_pages_node(node, flags, order);
- if (page && memcg_charge_slab(page, flags, order, s)) {
- __free_pages(page, order);
- page = NULL;
- }
- return page;
- }
- #ifdef CONFIG_SLAB_FREELIST_RANDOM
- /* Pre-initialize the random sequence cache */
- static int init_cache_random_seq(struct kmem_cache *s)
- {
- unsigned int count = oo_objects(s->oo);
- int err;
- /* Bailout if already initialised */
- if (s->random_seq)
- return 0;
- err = cache_random_seq_create(s, count, GFP_KERNEL);
- if (err) {
- pr_err("SLUB: Unable to initialize free list for %s\n",
- s->name);
- return err;
- }
- /* Transform to an offset on the set of pages */
- if (s->random_seq) {
- unsigned int i;
- for (i = 0; i < count; i++)
- s->random_seq[i] *= s->size;
- }
- return 0;
- }
- /* Initialize each random sequence freelist per cache */
- static void __init init_freelist_randomization(void)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- init_cache_random_seq(s);
- mutex_unlock(&slab_mutex);
- }
- /* Get the next entry on the pre-computed freelist randomized */
- static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
- unsigned long *pos, void *start,
- unsigned long page_limit,
- unsigned long freelist_count)
- {
- unsigned int idx;
- /*
- * If the target page allocation failed, the number of objects on the
- * page might be smaller than the usual size defined by the cache.
- */
- do {
- idx = s->random_seq[*pos];
- *pos += 1;
- if (*pos >= freelist_count)
- *pos = 0;
- } while (unlikely(idx >= page_limit));
- return (char *)start + idx;
- }
- /* Shuffle the single linked freelist based on a random pre-computed sequence */
- static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
- {
- void *start;
- void *cur;
- void *next;
- unsigned long idx, pos, page_limit, freelist_count;
- if (page->objects < 2 || !s->random_seq)
- return false;
- freelist_count = oo_objects(s->oo);
- pos = get_random_int() % freelist_count;
- page_limit = page->objects * s->size;
- start = fixup_red_left(s, page_address(page));
- /* First entry is used as the base of the freelist */
- cur = next_freelist_entry(s, page, &pos, start, page_limit,
- freelist_count);
- page->freelist = cur;
- for (idx = 1; idx < page->objects; idx++) {
- setup_object(s, page, cur);
- next = next_freelist_entry(s, page, &pos, start, page_limit,
- freelist_count);
- set_freepointer(s, cur, next);
- cur = next;
- }
- setup_object(s, page, cur);
- set_freepointer(s, cur, NULL);
- return true;
- }
- #else
- static inline int init_cache_random_seq(struct kmem_cache *s)
- {
- return 0;
- }
- static inline void init_freelist_randomization(void) { }
- static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
- {
- return false;
- }
- #endif /* CONFIG_SLAB_FREELIST_RANDOM */
- static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- struct page *page;
- struct kmem_cache_order_objects oo = s->oo;
- gfp_t alloc_gfp;
- void *start, *p;
- int idx, order;
- bool shuffle;
- flags &= gfp_allowed_mask;
- if (gfpflags_allow_blocking(flags))
- local_irq_enable();
- flags |= s->allocflags;
- /*
- * Let the initial higher-order allocation fail under memory pressure
- * so we fall-back to the minimum order allocation.
- */
- alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
- if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
- alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
- page = alloc_slab_page(s, alloc_gfp, node, oo);
- if (unlikely(!page)) {
- oo = s->min;
- alloc_gfp = flags;
- /*
- * Allocation may have failed due to fragmentation.
- * Try a lower order alloc if possible
- */
- page = alloc_slab_page(s, alloc_gfp, node, oo);
- if (unlikely(!page))
- goto out;
- stat(s, ORDER_FALLBACK);
- }
- page->objects = oo_objects(oo);
- order = compound_order(page);
- page->slab_cache = s;
- __SetPageSlab(page);
- if (page_is_pfmemalloc(page))
- SetPageSlabPfmemalloc(page);
- start = page_address(page);
- if (unlikely(s->flags & SLAB_POISON))
- memset(start, POISON_INUSE, PAGE_SIZE << order);
- kasan_poison_slab(page);
- shuffle = shuffle_freelist(s, page);
- if (!shuffle) {
- for_each_object_idx(p, idx, s, start, page->objects) {
- setup_object(s, page, p);
- if (likely(idx < page->objects))
- set_freepointer(s, p, p + s->size);
- else
- set_freepointer(s, p, NULL);
- }
- page->freelist = fixup_red_left(s, start);
- }
- page->inuse = page->objects;
- page->frozen = 1;
- out:
- if (gfpflags_allow_blocking(flags))
- local_irq_disable();
- if (!page)
- return NULL;
- mod_lruvec_page_state(page,
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- 1 << oo_order(oo));
- inc_slabs_node(s, page_to_nid(page), page->objects);
- return page;
- }
- static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
- {
- if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
- gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
- flags &= ~GFP_SLAB_BUG_MASK;
- pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
- invalid_mask, &invalid_mask, flags, &flags);
- dump_stack();
- }
- return allocate_slab(s,
- flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
- }
- static void __free_slab(struct kmem_cache *s, struct page *page)
- {
- int order = compound_order(page);
- int pages = 1 << order;
- if (s->flags & SLAB_CONSISTENCY_CHECKS) {
- void *p;
- slab_pad_check(s, page);
- for_each_object(p, s, page_address(page),
- page->objects)
- check_object(s, page, p, SLUB_RED_INACTIVE);
- }
- mod_lruvec_page_state(page,
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- -pages);
- __ClearPageSlabPfmemalloc(page);
- __ClearPageSlab(page);
- page->mapping = NULL;
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += pages;
- memcg_uncharge_slab(page, order, s);
- __free_pages(page, order);
- }
- static void rcu_free_slab(struct rcu_head *h)
- {
- struct page *page = container_of(h, struct page, rcu_head);
- __free_slab(page->slab_cache, page);
- }
- static void free_slab(struct kmem_cache *s, struct page *page)
- {
- if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
- call_rcu(&page->rcu_head, rcu_free_slab);
- } else
- __free_slab(s, page);
- }
- static void discard_slab(struct kmem_cache *s, struct page *page)
- {
- dec_slabs_node(s, page_to_nid(page), page->objects);
- free_slab(s, page);
- }
- /*
- * Management of partially allocated slabs.
- */
- static inline void
- __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
- {
- n->nr_partial++;
- if (tail == DEACTIVATE_TO_TAIL)
- list_add_tail(&page->lru, &n->partial);
- else
- list_add(&page->lru, &n->partial);
- }
- static inline void add_partial(struct kmem_cache_node *n,
- struct page *page, int tail)
- {
- lockdep_assert_held(&n->list_lock);
- __add_partial(n, page, tail);
- }
- static inline void remove_partial(struct kmem_cache_node *n,
- struct page *page)
- {
- lockdep_assert_held(&n->list_lock);
- list_del(&page->lru);
- n->nr_partial--;
- }
- /*
- * Remove slab from the partial list, freeze it and
- * return the pointer to the freelist.
- *
- * Returns a list of objects or NULL if it fails.
- */
- static inline void *acquire_slab(struct kmem_cache *s,
- struct kmem_cache_node *n, struct page *page,
- int mode, int *objects)
- {
- void *freelist;
- unsigned long counters;
- struct page new;
- lockdep_assert_held(&n->list_lock);
- /*
- * Zap the freelist and set the frozen bit.
- * The old freelist is the list of objects for the
- * per cpu allocation list.
- */
- freelist = page->freelist;
- counters = page->counters;
- new.counters = counters;
- *objects = new.objects - new.inuse;
- if (mode) {
- new.inuse = page->objects;
- new.freelist = NULL;
- } else {
- new.freelist = freelist;
- }
- VM_BUG_ON(new.frozen);
- new.frozen = 1;
- if (!__cmpxchg_double_slab(s, page,
- freelist, counters,
- new.freelist, new.counters,
- "acquire_slab"))
- return NULL;
- remove_partial(n, page);
- WARN_ON(!freelist);
- return freelist;
- }
- static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
- static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
- /*
- * Try to allocate a partial slab from a specific node.
- */
- static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
- struct kmem_cache_cpu *c, gfp_t flags)
- {
- struct page *page, *page2;
- void *object = NULL;
- unsigned int available = 0;
- int objects;
- /*
- * Racy check. If we mistakenly see no partial slabs then we
- * just allocate an empty slab. If we mistakenly try to get a
- * partial slab and there is none available then get_partials()
- * will return NULL.
- */
- if (!n || !n->nr_partial)
- return NULL;
- spin_lock(&n->list_lock);
- list_for_each_entry_safe(page, page2, &n->partial, lru) {
- void *t;
- if (!pfmemalloc_match(page, flags))
- continue;
- t = acquire_slab(s, n, page, object == NULL, &objects);
- if (!t)
- break;
- available += objects;
- if (!object) {
- c->page = page;
- stat(s, ALLOC_FROM_PARTIAL);
- object = t;
- } else {
- put_cpu_partial(s, page, 0);
- stat(s, CPU_PARTIAL_NODE);
- }
- if (!kmem_cache_has_cpu_partial(s)
- || available > slub_cpu_partial(s) / 2)
- break;
- }
- spin_unlock(&n->list_lock);
- return object;
- }
- /*
- * Get a page from somewhere. Search in increasing NUMA distances.
- */
- static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
- struct kmem_cache_cpu *c)
- {
- #ifdef CONFIG_NUMA
- struct zonelist *zonelist;
- struct zoneref *z;
- struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(flags);
- void *object;
- unsigned int cpuset_mems_cookie;
- /*
- * The defrag ratio allows a configuration of the tradeoffs between
- * inter node defragmentation and node local allocations. A lower
- * defrag_ratio increases the tendency to do local allocations
- * instead of attempting to obtain partial slabs from other nodes.
- *
- * If the defrag_ratio is set to 0 then kmalloc() always
- * returns node local objects. If the ratio is higher then kmalloc()
- * may return off node objects because partial slabs are obtained
- * from other nodes and filled up.
- *
- * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
- * (which makes defrag_ratio = 1000) then every (well almost)
- * allocation will first attempt to defrag slab caches on other nodes.
- * This means scanning over all nodes to look for partial slabs which
- * may be expensive if we do it every time we are trying to find a slab
- * with available objects.
- */
- if (!s->remote_node_defrag_ratio ||
- get_cycles() % 1024 > s->remote_node_defrag_ratio)
- return NULL;
- do {
- cpuset_mems_cookie = read_mems_allowed_begin();
- zonelist = node_zonelist(mempolicy_slab_node(), flags);
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
- struct kmem_cache_node *n;
- n = get_node(s, zone_to_nid(zone));
- if (n && cpuset_zone_allowed(zone, flags) &&
- n->nr_partial > s->min_partial) {
- object = get_partial_node(s, n, c, flags);
- if (object) {
- /*
- * Don't check read_mems_allowed_retry()
- * here - if mems_allowed was updated in
- * parallel, that was a harmless race
- * between allocation and the cpuset
- * update
- */
- return object;
- }
- }
- }
- } while (read_mems_allowed_retry(cpuset_mems_cookie));
- #endif
- return NULL;
- }
- /*
- * Get a partial page, lock it and return it.
- */
- static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
- struct kmem_cache_cpu *c)
- {
- void *object;
- int searchnode = node;
- if (node == NUMA_NO_NODE)
- searchnode = numa_mem_id();
- object = get_partial_node(s, get_node(s, searchnode), c, flags);
- if (object || node != NUMA_NO_NODE)
- return object;
- return get_any_partial(s, flags, c);
- }
- #ifdef CONFIG_PREEMPT
- /*
- * Calculate the next globally unique transaction for disambiguiation
- * during cmpxchg. The transactions start with the cpu number and are then
- * incremented by CONFIG_NR_CPUS.
- */
- #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
- #else
- /*
- * No preemption supported therefore also no need to check for
- * different cpus.
- */
- #define TID_STEP 1
- #endif
- static inline unsigned long next_tid(unsigned long tid)
- {
- return tid + TID_STEP;
- }
- static inline unsigned int tid_to_cpu(unsigned long tid)
- {
- return tid % TID_STEP;
- }
- static inline unsigned long tid_to_event(unsigned long tid)
- {
- return tid / TID_STEP;
- }
- static inline unsigned int init_tid(int cpu)
- {
- return cpu;
- }
- static inline void note_cmpxchg_failure(const char *n,
- const struct kmem_cache *s, unsigned long tid)
- {
- #ifdef SLUB_DEBUG_CMPXCHG
- unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
- pr_info("%s %s: cmpxchg redo ", n, s->name);
- #ifdef CONFIG_PREEMPT
- if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
- pr_warn("due to cpu change %d -> %d\n",
- tid_to_cpu(tid), tid_to_cpu(actual_tid));
- else
- #endif
- if (tid_to_event(tid) != tid_to_event(actual_tid))
- pr_warn("due to cpu running other code. Event %ld->%ld\n",
- tid_to_event(tid), tid_to_event(actual_tid));
- else
- pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
- actual_tid, tid, next_tid(tid));
- #endif
- stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
- }
- static void init_kmem_cache_cpus(struct kmem_cache *s)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
- }
- /*
- * Remove the cpu slab
- */
- static void deactivate_slab(struct kmem_cache *s, struct page *page,
- void *freelist, struct kmem_cache_cpu *c)
- {
- enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- int lock = 0;
- enum slab_modes l = M_NONE, m = M_NONE;
- void *nextfree;
- int tail = DEACTIVATE_TO_HEAD;
- struct page new;
- struct page old;
- if (page->freelist) {
- stat(s, DEACTIVATE_REMOTE_FREES);
- tail = DEACTIVATE_TO_TAIL;
- }
- /*
- * Stage one: Free all available per cpu objects back
- * to the page freelist while it is still frozen. Leave the
- * last one.
- *
- * There is no need to take the list->lock because the page
- * is still frozen.
- */
- while (freelist && (nextfree = get_freepointer(s, freelist))) {
- void *prior;
- unsigned long counters;
- do {
- prior = page->freelist;
- counters = page->counters;
- set_freepointer(s, freelist, prior);
- new.counters = counters;
- new.inuse--;
- VM_BUG_ON(!new.frozen);
- } while (!__cmpxchg_double_slab(s, page,
- prior, counters,
- freelist, new.counters,
- "drain percpu freelist"));
- freelist = nextfree;
- }
- /*
- * Stage two: Ensure that the page is unfrozen while the
- * list presence reflects the actual number of objects
- * during unfreeze.
- *
- * We setup the list membership and then perform a cmpxchg
- * with the count. If there is a mismatch then the page
- * is not unfrozen but the page is on the wrong list.
- *
- * Then we restart the process which may have to remove
- * the page from the list that we just put it on again
- * because the number of objects in the slab may have
- * changed.
- */
- redo:
- old.freelist = page->freelist;
- old.counters = page->counters;
- VM_BUG_ON(!old.frozen);
- /* Determine target state of the slab */
- new.counters = old.counters;
- if (freelist) {
- new.inuse--;
- set_freepointer(s, freelist, old.freelist);
- new.freelist = freelist;
- } else
- new.freelist = old.freelist;
- new.frozen = 0;
- if (!new.inuse && n->nr_partial >= s->min_partial)
- m = M_FREE;
- else if (new.freelist) {
- m = M_PARTIAL;
- if (!lock) {
- lock = 1;
- /*
- * Taking the spinlock removes the possiblity
- * that acquire_slab() will see a slab page that
- * is frozen
- */
- spin_lock(&n->list_lock);
- }
- } else {
- m = M_FULL;
- if (kmem_cache_debug(s) && !lock) {
- lock = 1;
- /*
- * This also ensures that the scanning of full
- * slabs from diagnostic functions will not see
- * any frozen slabs.
- */
- spin_lock(&n->list_lock);
- }
- }
- if (l != m) {
- if (l == M_PARTIAL)
- remove_partial(n, page);
- else if (l == M_FULL)
- remove_full(s, n, page);
- if (m == M_PARTIAL) {
- add_partial(n, page, tail);
- stat(s, tail);
- } else if (m == M_FULL) {
- stat(s, DEACTIVATE_FULL);
- add_full(s, n, page);
- }
- }
- l = m;
- if (!__cmpxchg_double_slab(s, page,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"))
- goto redo;
- if (lock)
- spin_unlock(&n->list_lock);
- if (m == M_FREE) {
- stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, page);
- stat(s, FREE_SLAB);
- }
- c->page = NULL;
- c->freelist = NULL;
- }
- /*
- * Unfreeze all the cpu partial slabs.
- *
- * This function must be called with interrupts disabled
- * for the cpu using c (or some other guarantee must be there
- * to guarantee no concurrent accesses).
- */
- static void unfreeze_partials(struct kmem_cache *s,
- struct kmem_cache_cpu *c)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- struct kmem_cache_node *n = NULL, *n2 = NULL;
- struct page *page, *discard_page = NULL;
- while ((page = c->partial)) {
- struct page new;
- struct page old;
- c->partial = page->next;
- n2 = get_node(s, page_to_nid(page));
- if (n != n2) {
- if (n)
- spin_unlock(&n->list_lock);
- n = n2;
- spin_lock(&n->list_lock);
- }
- do {
- old.freelist = page->freelist;
- old.counters = page->counters;
- VM_BUG_ON(!old.frozen);
- new.counters = old.counters;
- new.freelist = old.freelist;
- new.frozen = 0;
- } while (!__cmpxchg_double_slab(s, page,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"));
- if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
- page->next = discard_page;
- discard_page = page;
- } else {
- add_partial(n, page, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- }
- if (n)
- spin_unlock(&n->list_lock);
- while (discard_page) {
- page = discard_page;
- discard_page = discard_page->next;
- stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, page);
- stat(s, FREE_SLAB);
- }
- #endif
- }
- /*
- * Put a page that was just frozen (in __slab_free) into a partial page
- * slot if available.
- *
- * If we did not find a slot then simply move all the partials to the
- * per node partial list.
- */
- static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- struct page *oldpage;
- int pages;
- int pobjects;
- preempt_disable();
- do {
- pages = 0;
- pobjects = 0;
- oldpage = this_cpu_read(s->cpu_slab->partial);
- if (oldpage) {
- pobjects = oldpage->pobjects;
- pages = oldpage->pages;
- if (drain && pobjects > s->cpu_partial) {
- unsigned long flags;
- /*
- * partial array is full. Move the existing
- * set to the per node partial list.
- */
- local_irq_save(flags);
- unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
- local_irq_restore(flags);
- oldpage = NULL;
- pobjects = 0;
- pages = 0;
- stat(s, CPU_PARTIAL_DRAIN);
- }
- }
- pages++;
- pobjects += page->objects - page->inuse;
- page->pages = pages;
- page->pobjects = pobjects;
- page->next = oldpage;
- } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
- != oldpage);
- if (unlikely(!s->cpu_partial)) {
- unsigned long flags;
- local_irq_save(flags);
- unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
- local_irq_restore(flags);
- }
- preempt_enable();
- #endif
- }
- static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
- {
- stat(s, CPUSLAB_FLUSH);
- deactivate_slab(s, c->page, c->freelist, c);
- c->tid = next_tid(c->tid);
- }
- /*
- * Flush cpu slab.
- *
- * Called from IPI handler with interrupts disabled.
- */
- static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
- {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- if (likely(c)) {
- if (c->page)
- flush_slab(s, c);
- unfreeze_partials(s, c);
- }
- }
- static void flush_cpu_slab(void *d)
- {
- struct kmem_cache *s = d;
- __flush_cpu_slab(s, smp_processor_id());
- }
- static bool has_cpu_slab(int cpu, void *info)
- {
- struct kmem_cache *s = info;
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
- return c->page || slub_percpu_partial(c);
- }
- static void flush_all(struct kmem_cache *s)
- {
- on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
- }
- /*
- * Use the cpu notifier to insure that the cpu slabs are flushed when
- * necessary.
- */
- static int slub_cpu_dead(unsigned int cpu)
- {
- struct kmem_cache *s;
- unsigned long flags;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- local_irq_save(flags);
- __flush_cpu_slab(s, cpu);
- local_irq_restore(flags);
- }
- mutex_unlock(&slab_mutex);
- return 0;
- }
- /*
- * Check if the objects in a per cpu structure fit numa
- * locality expectations.
- */
- static inline int node_match(struct page *page, int node)
- {
- #ifdef CONFIG_NUMA
- if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
- return 0;
- #endif
- return 1;
- }
- #ifdef CONFIG_SLUB_DEBUG
- static int count_free(struct page *page)
- {
- return page->objects - page->inuse;
- }
- static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
- {
- return atomic_long_read(&n->total_objects);
- }
- #endif /* CONFIG_SLUB_DEBUG */
- #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
- static unsigned long count_partial(struct kmem_cache_node *n,
- int (*get_count)(struct page *))
- {
- unsigned long flags;
- unsigned long x = 0;
- struct page *page;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- x += get_count(page);
- spin_unlock_irqrestore(&n->list_lock, flags);
- return x;
- }
- #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
- static noinline void
- slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
- {
- #ifdef CONFIG_SLUB_DEBUG
- static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
- int node;
- struct kmem_cache_node *n;
- if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
- return;
- pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
- nid, gfpflags, &gfpflags);
- pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
- s->name, s->object_size, s->size, oo_order(s->oo),
- oo_order(s->min));
- if (oo_order(s->min) > get_order(s->object_size))
- pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
- s->name);
- for_each_kmem_cache_node(s, node, n) {
- unsigned long nr_slabs;
- unsigned long nr_objs;
- unsigned long nr_free;
- nr_free = count_partial(n, count_free);
- nr_slabs = node_nr_slabs(n);
- nr_objs = node_nr_objs(n);
- pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
- node, nr_slabs, nr_objs, nr_free);
- }
- #endif
- }
- static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
- int node, struct kmem_cache_cpu **pc)
- {
- void *freelist;
- struct kmem_cache_cpu *c = *pc;
- struct page *page;
- WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
- freelist = get_partial(s, flags, node, c);
- if (freelist)
- return freelist;
- page = new_slab(s, flags, node);
- if (page) {
- c = raw_cpu_ptr(s->cpu_slab);
- if (c->page)
- flush_slab(s, c);
- /*
- * No other reference to the page yet so we can
- * muck around with it freely without cmpxchg
- */
- freelist = page->freelist;
- page->freelist = NULL;
- stat(s, ALLOC_SLAB);
- c->page = page;
- *pc = c;
- } else
- freelist = NULL;
- return freelist;
- }
- static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
- {
- if (unlikely(PageSlabPfmemalloc(page)))
- return gfp_pfmemalloc_allowed(gfpflags);
- return true;
- }
- /*
- * Check the page->freelist of a page and either transfer the freelist to the
- * per cpu freelist or deactivate the page.
- *
- * The page is still frozen if the return value is not NULL.
- *
- * If this function returns NULL then the page has been unfrozen.
- *
- * This function must be called with interrupt disabled.
- */
- static inline void *get_freelist(struct kmem_cache *s, struct page *page)
- {
- struct page new;
- unsigned long counters;
- void *freelist;
- do {
- freelist = page->freelist;
- counters = page->counters;
- new.counters = counters;
- VM_BUG_ON(!new.frozen);
- new.inuse = page->objects;
- new.frozen = freelist != NULL;
- } while (!__cmpxchg_double_slab(s, page,
- freelist, counters,
- NULL, new.counters,
- "get_freelist"));
- return freelist;
- }
- /*
- * Slow path. The lockless freelist is empty or we need to perform
- * debugging duties.
- *
- * Processing is still very fast if new objects have been freed to the
- * regular freelist. In that case we simply take over the regular freelist
- * as the lockless freelist and zap the regular freelist.
- *
- * If that is not working then we fall back to the partial lists. We take the
- * first element of the freelist as the object to allocate now and move the
- * rest of the freelist to the lockless freelist.
- *
- * And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is the slowest path since it involves
- * a call to the page allocator and the setup of a new slab.
- *
- * Version of __slab_alloc to use when we know that interrupts are
- * already disabled (which is the case for bulk allocation).
- */
- static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
- {
- void *freelist;
- struct page *page;
- page = c->page;
- if (!page) {
- /*
- * if the node is not online or has no normal memory, just
- * ignore the node constraint
- */
- if (unlikely(node != NUMA_NO_NODE &&
- !node_state(node, N_NORMAL_MEMORY)))
- node = NUMA_NO_NODE;
- goto new_slab;
- }
- redo:
- if (unlikely(!node_match(page, node))) {
- /*
- * same as above but node_match() being false already
- * implies node != NUMA_NO_NODE
- */
- if (!node_state(node, N_NORMAL_MEMORY)) {
- node = NUMA_NO_NODE;
- goto redo;
- } else {
- stat(s, ALLOC_NODE_MISMATCH);
- deactivate_slab(s, page, c->freelist, c);
- goto new_slab;
- }
- }
- /*
- * By rights, we should be searching for a slab page that was
- * PFMEMALLOC but right now, we are losing the pfmemalloc
- * information when the page leaves the per-cpu allocator
- */
- if (unlikely(!pfmemalloc_match(page, gfpflags))) {
- deactivate_slab(s, page, c->freelist, c);
- goto new_slab;
- }
- /* must check again c->freelist in case of cpu migration or IRQ */
- freelist = c->freelist;
- if (freelist)
- goto load_freelist;
- freelist = get_freelist(s, page);
- if (!freelist) {
- c->page = NULL;
- stat(s, DEACTIVATE_BYPASS);
- goto new_slab;
- }
- stat(s, ALLOC_REFILL);
- load_freelist:
- /*
- * freelist is pointing to the list of objects to be used.
- * page is pointing to the page from which the objects are obtained.
- * That page must be frozen for per cpu allocations to work.
- */
- VM_BUG_ON(!c->page->frozen);
- c->freelist = get_freepointer(s, freelist);
- c->tid = next_tid(c->tid);
- return freelist;
- new_slab:
- if (slub_percpu_partial(c)) {
- page = c->page = slub_percpu_partial(c);
- slub_set_percpu_partial(c, page);
- stat(s, CPU_PARTIAL_ALLOC);
- goto redo;
- }
- freelist = new_slab_objects(s, gfpflags, node, &c);
- if (unlikely(!freelist)) {
- slab_out_of_memory(s, gfpflags, node);
- return NULL;
- }
- page = c->page;
- if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
- goto load_freelist;
- /* Only entered in the debug case */
- if (kmem_cache_debug(s) &&
- !alloc_debug_processing(s, page, freelist, addr))
- goto new_slab; /* Slab failed checks. Next slab needed */
- deactivate_slab(s, page, get_freepointer(s, freelist), c);
- return freelist;
- }
- /*
- * Another one that disabled interrupt and compensates for possible
- * cpu changes by refetching the per cpu area pointer.
- */
- static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
- {
- void *p;
- unsigned long flags;
- local_irq_save(flags);
- #ifdef CONFIG_PREEMPT
- /*
- * We may have been preempted and rescheduled on a different
- * cpu before disabling interrupts. Need to reload cpu area
- * pointer.
- */
- c = this_cpu_ptr(s->cpu_slab);
- #endif
- p = ___slab_alloc(s, gfpflags, node, addr, c);
- local_irq_restore(flags);
- return p;
- }
- /*
- * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
- * have the fastpath folded into their functions. So no function call
- * overhead for requests that can be satisfied on the fastpath.
- *
- * The fastpath works by first checking if the lockless freelist can be used.
- * If not then __slab_alloc is called for slow processing.
- *
- * Otherwise we can simply pick the next object from the lockless free list.
- */
- static __always_inline void *slab_alloc_node(struct kmem_cache *s,
- gfp_t gfpflags, int node, unsigned long addr)
- {
- void *object;
- struct kmem_cache_cpu *c;
- struct page *page;
- unsigned long tid;
- s = slab_pre_alloc_hook(s, gfpflags);
- if (!s)
- return NULL;
- redo:
- /*
- * Must read kmem_cache cpu data via this cpu ptr. Preemption is
- * enabled. We may switch back and forth between cpus while
- * reading from one cpu area. That does not matter as long
- * as we end up on the original cpu again when doing the cmpxchg.
- *
- * We should guarantee that tid and kmem_cache are retrieved on
- * the same cpu. It could be different if CONFIG_PREEMPT so we need
- * to check if it is matched or not.
- */
- do {
- tid = this_cpu_read(s->cpu_slab->tid);
- c = raw_cpu_ptr(s->cpu_slab);
- } while (IS_ENABLED(CONFIG_PREEMPT) &&
- unlikely(tid != READ_ONCE(c->tid)));
- /*
- * Irqless object alloc/free algorithm used here depends on sequence
- * of fetching cpu_slab's data. tid should be fetched before anything
- * on c to guarantee that object and page associated with previous tid
- * won't be used with current tid. If we fetch tid first, object and
- * page could be one associated with next tid and our alloc/free
- * request will be failed. In this case, we will retry. So, no problem.
- */
- barrier();
- /*
- * The transaction ids are globally unique per cpu and per operation on
- * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
- * occurs on the right processor and that there was no operation on the
- * linked list in between.
- */
- object = c->freelist;
- page = c->page;
- if (unlikely(!object || !node_match(page, node))) {
- object = __slab_alloc(s, gfpflags, node, addr, c);
- stat(s, ALLOC_SLOWPATH);
- } else {
- void *next_object = get_freepointer_safe(s, object);
- /*
- * The cmpxchg will only match if there was no additional
- * operation and if we are on the right processor.
- *
- * The cmpxchg does the following atomically (without lock
- * semantics!)
- * 1. Relocate first pointer to the current per cpu area.
- * 2. Verify that tid and freelist have not been changed
- * 3. If they were not changed replace tid and freelist
- *
- * Since this is without lock semantics the protection is only
- * against code executing on this cpu *not* from access by
- * other cpus.
- */
- if (unlikely(!this_cpu_cmpxchg_double(
- s->cpu_slab->freelist, s->cpu_slab->tid,
- object, tid,
- next_object, next_tid(tid)))) {
- note_cmpxchg_failure("slab_alloc", s, tid);
- goto redo;
- }
- prefetch_freepointer(s, next_object);
- stat(s, ALLOC_FASTPATH);
- }
- if (unlikely(gfpflags & __GFP_ZERO) && object)
- memset(object, 0, s->object_size);
- slab_post_alloc_hook(s, gfpflags, 1, &object);
- return object;
- }
- static __always_inline void *slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, unsigned long addr)
- {
- return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
- }
- void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
- {
- void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
- s->size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- #ifdef CONFIG_TRACING
- void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
- {
- void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
- kasan_kmalloc(s, ret, size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_trace);
- #endif
- #ifdef CONFIG_NUMA
- void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
- {
- void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
- trace_kmem_cache_alloc_node(_RET_IP_, ret,
- s->object_size, s->size, gfpflags, node);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- #ifdef CONFIG_TRACING
- void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
- gfp_t gfpflags,
- int node, size_t size)
- {
- void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
- trace_kmalloc_node(_RET_IP_, ret,
- size, s->size, gfpflags, node);
- kasan_kmalloc(s, ret, size, gfpflags);
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
- #endif
- #endif
- /*
- * Slow path handling. This may still be called frequently since objects
- * have a longer lifetime than the cpu slabs in most processing loads.
- *
- * So we still attempt to reduce cache line usage. Just take the slab
- * lock and free the item. If there is no additional partial page
- * handling required then we can return immediately.
- */
- static void __slab_free(struct kmem_cache *s, struct page *page,
- void *head, void *tail, int cnt,
- unsigned long addr)
- {
- void *prior;
- int was_frozen;
- struct page new;
- unsigned long counters;
- struct kmem_cache_node *n = NULL;
- unsigned long uninitialized_var(flags);
- stat(s, FREE_SLOWPATH);
- if (kmem_cache_debug(s) &&
- !free_debug_processing(s, page, head, tail, cnt, addr))
- return;
- do {
- if (unlikely(n)) {
- spin_unlock_irqrestore(&n->list_lock, flags);
- n = NULL;
- }
- prior = page->freelist;
- counters = page->counters;
- set_freepointer(s, tail, prior);
- new.counters = counters;
- was_frozen = new.frozen;
- new.inuse -= cnt;
- if ((!new.inuse || !prior) && !was_frozen) {
- if (kmem_cache_has_cpu_partial(s) && !prior) {
- /*
- * Slab was on no list before and will be
- * partially empty
- * We can defer the list move and instead
- * freeze it.
- */
- new.frozen = 1;
- } else { /* Needs to be taken off a list */
- n = get_node(s, page_to_nid(page));
- /*
- * Speculatively acquire the list_lock.
- * If the cmpxchg does not succeed then we may
- * drop the list_lock without any processing.
- *
- * Otherwise the list_lock will synchronize with
- * other processors updating the list of slabs.
- */
- spin_lock_irqsave(&n->list_lock, flags);
- }
- }
- } while (!cmpxchg_double_slab(s, page,
- prior, counters,
- head, new.counters,
- "__slab_free"));
- if (likely(!n)) {
- /*
- * If we just froze the page then put it onto the
- * per cpu partial list.
- */
- if (new.frozen && !was_frozen) {
- put_cpu_partial(s, page, 1);
- stat(s, CPU_PARTIAL_FREE);
- }
- /*
- * The list lock was not taken therefore no list
- * activity can be necessary.
- */
- if (was_frozen)
- stat(s, FREE_FROZEN);
- return;
- }
- if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
- goto slab_empty;
- /*
- * Objects left in the slab. If it was not on the partial list before
- * then add it.
- */
- if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
- if (kmem_cache_debug(s))
- remove_full(s, n, page);
- add_partial(n, page, DEACTIVATE_TO_TAIL);
- stat(s, FREE_ADD_PARTIAL);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- return;
- slab_empty:
- if (prior) {
- /*
- * Slab on the partial list.
- */
- remove_partial(n, page);
- stat(s, FREE_REMOVE_PARTIAL);
- } else {
- /* Slab must be on the full list */
- remove_full(s, n, page);
- }
- spin_unlock_irqrestore(&n->list_lock, flags);
- stat(s, FREE_SLAB);
- discard_slab(s, page);
- }
- /*
- * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
- * can perform fastpath freeing without additional function calls.
- *
- * The fastpath is only possible if we are freeing to the current cpu slab
- * of this processor. This typically the case if we have just allocated
- * the item before.
- *
- * If fastpath is not possible then fall back to __slab_free where we deal
- * with all sorts of special processing.
- *
- * Bulk free of a freelist with several objects (all pointing to the
- * same page) possible by specifying head and tail ptr, plus objects
- * count (cnt). Bulk free indicated by tail pointer being set.
- */
- static __always_inline void do_slab_free(struct kmem_cache *s,
- struct page *page, void *head, void *tail,
- int cnt, unsigned long addr)
- {
- void *tail_obj = tail ? : head;
- struct kmem_cache_cpu *c;
- unsigned long tid;
- redo:
- /*
- * Determine the currently cpus per cpu slab.
- * The cpu may change afterward. However that does not matter since
- * data is retrieved via this pointer. If we are on the same cpu
- * during the cmpxchg then the free will succeed.
- */
- do {
- tid = this_cpu_read(s->cpu_slab->tid);
- c = raw_cpu_ptr(s->cpu_slab);
- } while (IS_ENABLED(CONFIG_PREEMPT) &&
- unlikely(tid != READ_ONCE(c->tid)));
- /* Same with comment on barrier() in slab_alloc_node() */
- barrier();
- if (likely(page == c->page)) {
- void **freelist = READ_ONCE(c->freelist);
- set_freepointer(s, tail_obj, freelist);
- if (unlikely(!this_cpu_cmpxchg_double(
- s->cpu_slab->freelist, s->cpu_slab->tid,
- freelist, tid,
- head, next_tid(tid)))) {
- note_cmpxchg_failure("slab_free", s, tid);
- goto redo;
- }
- stat(s, FREE_FASTPATH);
- } else
- __slab_free(s, page, head, tail_obj, cnt, addr);
- }
- static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
- void *head, void *tail, int cnt,
- unsigned long addr)
- {
- /*
- * With KASAN enabled slab_free_freelist_hook modifies the freelist
- * to remove objects, whose reuse must be delayed.
- */
- if (slab_free_freelist_hook(s, &head, &tail))
- do_slab_free(s, page, head, tail, cnt, addr);
- }
- #ifdef CONFIG_KASAN
- void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
- {
- do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
- }
- #endif
- void kmem_cache_free(struct kmem_cache *s, void *x)
- {
- s = cache_from_obj(s, x);
- if (!s)
- return;
- slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
- trace_kmem_cache_free(_RET_IP_, x);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- struct detached_freelist {
- struct page *page;
- void *tail;
- void *freelist;
- int cnt;
- struct kmem_cache *s;
- };
- /*
- * This function progressively scans the array with free objects (with
- * a limited look ahead) and extract objects belonging to the same
- * page. It builds a detached freelist directly within the given
- * page/objects. This can happen without any need for
- * synchronization, because the objects are owned by running process.
- * The freelist is build up as a single linked list in the objects.
- * The idea is, that this detached freelist can then be bulk
- * transferred to the real freelist(s), but only requiring a single
- * synchronization primitive. Look ahead in the array is limited due
- * to performance reasons.
- */
- static inline
- int build_detached_freelist(struct kmem_cache *s, size_t size,
- void **p, struct detached_freelist *df)
- {
- size_t first_skipped_index = 0;
- int lookahead = 3;
- void *object;
- struct page *page;
- /* Always re-init detached_freelist */
- df->page = NULL;
- do {
- object = p[--size];
- /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
- } while (!object && size);
- if (!object)
- return 0;
- page = virt_to_head_page(object);
- if (!s) {
- /* Handle kalloc'ed objects */
- if (unlikely(!PageSlab(page))) {
- BUG_ON(!PageCompound(page));
- kfree_hook(object);
- __free_pages(page, compound_order(page));
- p[size] = NULL; /* mark object processed */
- return size;
- }
- /* Derive kmem_cache from object */
- df->s = page->slab_cache;
- } else {
- df->s = cache_from_obj(s, object); /* Support for memcg */
- }
- /* Start new detached freelist */
- df->page = page;
- set_freepointer(df->s, object, NULL);
- df->tail = object;
- df->freelist = object;
- p[size] = NULL; /* mark object processed */
- df->cnt = 1;
- while (size) {
- object = p[--size];
- if (!object)
- continue; /* Skip processed objects */
- /* df->page is always set at this point */
- if (df->page == virt_to_head_page(object)) {
- /* Opportunity build freelist */
- set_freepointer(df->s, object, df->freelist);
- df->freelist = object;
- df->cnt++;
- p[size] = NULL; /* mark object processed */
- continue;
- }
- /* Limit look ahead search */
- if (!--lookahead)
- break;
- if (!first_skipped_index)
- first_skipped_index = size + 1;
- }
- return first_skipped_index;
- }
- /* Note that interrupts must be enabled when calling this function. */
- void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
- {
- if (WARN_ON(!size))
- return;
- do {
- struct detached_freelist df;
- size = build_detached_freelist(s, size, p, &df);
- if (!df.page)
- continue;
- slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
- } while (likely(size));
- }
- EXPORT_SYMBOL(kmem_cache_free_bulk);
- /* Note that interrupts must be enabled when calling this function. */
- int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
- void **p)
- {
- struct kmem_cache_cpu *c;
- int i;
- /* memcg and kmem_cache debug support */
- s = slab_pre_alloc_hook(s, flags);
- if (unlikely(!s))
- return false;
- /*
- * Drain objects in the per cpu slab, while disabling local
- * IRQs, which protects against PREEMPT and interrupts
- * handlers invoking normal fastpath.
- */
- local_irq_disable();
- c = this_cpu_ptr(s->cpu_slab);
- for (i = 0; i < size; i++) {
- void *object = c->freelist;
- if (unlikely(!object)) {
- /*
- * We may have removed an object from c->freelist using
- * the fastpath in the previous iteration; in that case,
- * c->tid has not been bumped yet.
- * Since ___slab_alloc() may reenable interrupts while
- * allocating memory, we should bump c->tid now.
- */
- c->tid = next_tid(c->tid);
- /*
- * Invoking slow path likely have side-effect
- * of re-populating per CPU c->freelist
- */
- p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
- _RET_IP_, c);
- if (unlikely(!p[i]))
- goto error;
- c = this_cpu_ptr(s->cpu_slab);
- continue; /* goto for-loop */
- }
- c->freelist = get_freepointer(s, object);
- p[i] = object;
- }
- c->tid = next_tid(c->tid);
- local_irq_enable();
- /* Clear memory outside IRQ disabled fastpath loop */
- if (unlikely(flags & __GFP_ZERO)) {
- int j;
- for (j = 0; j < i; j++)
- memset(p[j], 0, s->object_size);
- }
- /* memcg and kmem_cache debug support */
- slab_post_alloc_hook(s, flags, size, p);
- return i;
- error:
- local_irq_enable();
- slab_post_alloc_hook(s, flags, i, p);
- __kmem_cache_free_bulk(s, i, p);
- return 0;
- }
- EXPORT_SYMBOL(kmem_cache_alloc_bulk);
- /*
- * Object placement in a slab is made very easy because we always start at
- * offset 0. If we tune the size of the object to the alignment then we can
- * get the required alignment by putting one properly sized object after
- * another.
- *
- * Notice that the allocation order determines the sizes of the per cpu
- * caches. Each processor has always one slab available for allocations.
- * Increasing the allocation order reduces the number of times that slabs
- * must be moved on and off the partial lists and is therefore a factor in
- * locking overhead.
- */
- /*
- * Mininum / Maximum order of slab pages. This influences locking overhead
- * and slab fragmentation. A higher order reduces the number of partial slabs
- * and increases the number of allocations possible without having to
- * take the list_lock.
- */
- static unsigned int slub_min_order;
- static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
- static unsigned int slub_min_objects;
- /*
- * Calculate the order of allocation given an slab object size.
- *
- * The order of allocation has significant impact on performance and other
- * system components. Generally order 0 allocations should be preferred since
- * order 0 does not cause fragmentation in the page allocator. Larger objects
- * be problematic to put into order 0 slabs because there may be too much
- * unused space left. We go to a higher order if more than 1/16th of the slab
- * would be wasted.
- *
- * In order to reach satisfactory performance we must ensure that a minimum
- * number of objects is in one slab. Otherwise we may generate too much
- * activity on the partial lists which requires taking the list_lock. This is
- * less a concern for large slabs though which are rarely used.
- *
- * slub_max_order specifies the order where we begin to stop considering the
- * number of objects in a slab as critical. If we reach slub_max_order then
- * we try to keep the page order as low as possible. So we accept more waste
- * of space in favor of a small page order.
- *
- * Higher order allocations also allow the placement of more objects in a
- * slab and thereby reduce object handling overhead. If the user has
- * requested a higher mininum order then we start with that one instead of
- * the smallest order which will fit the object.
- */
- static inline unsigned int slab_order(unsigned int size,
- unsigned int min_objects, unsigned int max_order,
- unsigned int fract_leftover)
- {
- unsigned int min_order = slub_min_order;
- unsigned int order;
- if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
- return get_order(size * MAX_OBJS_PER_PAGE) - 1;
- for (order = max(min_order, (unsigned int)get_order(min_objects * size));
- order <= max_order; order++) {
- unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
- unsigned int rem;
- rem = slab_size % size;
- if (rem <= slab_size / fract_leftover)
- break;
- }
- return order;
- }
- static inline int calculate_order(unsigned int size)
- {
- unsigned int order;
- unsigned int min_objects;
- unsigned int max_objects;
- /*
- * Attempt to find best configuration for a slab. This
- * works by first attempting to generate a layout with
- * the best configuration and backing off gradually.
- *
- * First we increase the acceptable waste in a slab. Then
- * we reduce the minimum objects required in a slab.
- */
- min_objects = slub_min_objects;
- if (!min_objects)
- min_objects = 4 * (fls(nr_cpu_ids) + 1);
- max_objects = order_objects(slub_max_order, size);
- min_objects = min(min_objects, max_objects);
- while (min_objects > 1) {
- unsigned int fraction;
- fraction = 16;
- while (fraction >= 4) {
- order = slab_order(size, min_objects,
- slub_max_order, fraction);
- if (order <= slub_max_order)
- return order;
- fraction /= 2;
- }
- min_objects--;
- }
- /*
- * We were unable to place multiple objects in a slab. Now
- * lets see if we can place a single object there.
- */
- order = slab_order(size, 1, slub_max_order, 1);
- if (order <= slub_max_order)
- return order;
- /*
- * Doh this slab cannot be placed using slub_max_order.
- */
- order = slab_order(size, 1, MAX_ORDER, 1);
- if (order < MAX_ORDER)
- return order;
- return -ENOSYS;
- }
- static void
- init_kmem_cache_node(struct kmem_cache_node *n)
- {
- n->nr_partial = 0;
- spin_lock_init(&n->list_lock);
- INIT_LIST_HEAD(&n->partial);
- #ifdef CONFIG_SLUB_DEBUG
- atomic_long_set(&n->nr_slabs, 0);
- atomic_long_set(&n->total_objects, 0);
- INIT_LIST_HEAD(&n->full);
- #endif
- }
- static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
- {
- BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
- KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
- /*
- * Must align to double word boundary for the double cmpxchg
- * instructions to work; see __pcpu_double_call_return_bool().
- */
- s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
- 2 * sizeof(void *));
- if (!s->cpu_slab)
- return 0;
- init_kmem_cache_cpus(s);
- return 1;
- }
- static struct kmem_cache *kmem_cache_node;
- /*
- * No kmalloc_node yet so do it by hand. We know that this is the first
- * slab on the node for this slabcache. There are no concurrent accesses
- * possible.
- *
- * Note that this function only works on the kmem_cache_node
- * when allocating for the kmem_cache_node. This is used for bootstrapping
- * memory on a fresh node that has no slab structures yet.
- */
- static void early_kmem_cache_node_alloc(int node)
- {
- struct page *page;
- struct kmem_cache_node *n;
- BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
- page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
- BUG_ON(!page);
- if (page_to_nid(page) != node) {
- pr_err("SLUB: Unable to allocate memory from node %d\n", node);
- pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
- }
- n = page->freelist;
- BUG_ON(!n);
- page->freelist = get_freepointer(kmem_cache_node, n);
- page->inuse = 1;
- page->frozen = 0;
- kmem_cache_node->node[node] = n;
- #ifdef CONFIG_SLUB_DEBUG
- init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
- init_tracking(kmem_cache_node, n);
- #endif
- kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
- GFP_KERNEL);
- init_kmem_cache_node(n);
- inc_slabs_node(kmem_cache_node, node, page->objects);
- /*
- * No locks need to be taken here as it has just been
- * initialized and there is no concurrent access.
- */
- __add_partial(n, page, DEACTIVATE_TO_HEAD);
- }
- static void free_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- s->node[node] = NULL;
- kmem_cache_free(kmem_cache_node, n);
- }
- }
- void __kmem_cache_release(struct kmem_cache *s)
- {
- cache_random_seq_destroy(s);
- free_percpu(s->cpu_slab);
- free_kmem_cache_nodes(s);
- }
- static int init_kmem_cache_nodes(struct kmem_cache *s)
- {
- int node;
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n;
- if (slab_state == DOWN) {
- early_kmem_cache_node_alloc(node);
- continue;
- }
- n = kmem_cache_alloc_node(kmem_cache_node,
- GFP_KERNEL, node);
- if (!n) {
- free_kmem_cache_nodes(s);
- return 0;
- }
- init_kmem_cache_node(n);
- s->node[node] = n;
- }
- return 1;
- }
- static void set_min_partial(struct kmem_cache *s, unsigned long min)
- {
- if (min < MIN_PARTIAL)
- min = MIN_PARTIAL;
- else if (min > MAX_PARTIAL)
- min = MAX_PARTIAL;
- s->min_partial = min;
- }
- static void set_cpu_partial(struct kmem_cache *s)
- {
- #ifdef CONFIG_SLUB_CPU_PARTIAL
- /*
- * cpu_partial determined the maximum number of objects kept in the
- * per cpu partial lists of a processor.
- *
- * Per cpu partial lists mainly contain slabs that just have one
- * object freed. If they are used for allocation then they can be
- * filled up again with minimal effort. The slab will never hit the
- * per node partial lists and therefore no locking will be required.
- *
- * This setting also determines
- *
- * A) The number of objects from per cpu partial slabs dumped to the
- * per node list when we reach the limit.
- * B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch
- * 50% to keep some capacity around for frees.
- */
- if (!kmem_cache_has_cpu_partial(s))
- s->cpu_partial = 0;
- else if (s->size >= PAGE_SIZE)
- s->cpu_partial = 2;
- else if (s->size >= 1024)
- s->cpu_partial = 6;
- else if (s->size >= 256)
- s->cpu_partial = 13;
- else
- s->cpu_partial = 30;
- #endif
- }
- /*
- * calculate_sizes() determines the order and the distribution of data within
- * a slab object.
- */
- static int calculate_sizes(struct kmem_cache *s, int forced_order)
- {
- slab_flags_t flags = s->flags;
- unsigned int size = s->object_size;
- unsigned int order;
- /*
- * Round up object size to the next word boundary. We can only
- * place the free pointer at word boundaries and this determines
- * the possible location of the free pointer.
- */
- size = ALIGN(size, sizeof(void *));
- #ifdef CONFIG_SLUB_DEBUG
- /*
- * Determine if we can poison the object itself. If the user of
- * the slab may touch the object after free or before allocation
- * then we should never poison the object itself.
- */
- if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
- !s->ctor)
- s->flags |= __OBJECT_POISON;
- else
- s->flags &= ~__OBJECT_POISON;
- /*
- * If we are Redzoning then check if there is some space between the
- * end of the object and the free pointer. If not then add an
- * additional word to have some bytes to store Redzone information.
- */
- if ((flags & SLAB_RED_ZONE) && size == s->object_size)
- size += sizeof(void *);
- #endif
- /*
- * With that we have determined the number of bytes in actual use
- * by the object. This is the potential offset to the free pointer.
- */
- s->inuse = size;
- if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
- s->ctor)) {
- /*
- * Relocate free pointer after the object if it is not
- * permitted to overwrite the first word of the object on
- * kmem_cache_free.
- *
- * This is the case if we do RCU, have a constructor or
- * destructor or are poisoning the objects.
- */
- s->offset = size;
- size += sizeof(void *);
- }
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_STORE_USER)
- /*
- * Need to store information about allocs and frees after
- * the object.
- */
- size += 2 * sizeof(struct track);
- #endif
- kasan_cache_create(s, &size, &s->flags);
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_RED_ZONE) {
- /*
- * Add some empty padding so that we can catch
- * overwrites from earlier objects rather than let
- * tracking information or the free pointer be
- * corrupted if a user writes before the start
- * of the object.
- */
- size += sizeof(void *);
- s->red_left_pad = sizeof(void *);
- s->red_left_pad = ALIGN(s->red_left_pad, s->align);
- size += s->red_left_pad;
- }
- #endif
- /*
- * SLUB stores one object immediately after another beginning from
- * offset 0. In order to align the objects we have to simply size
- * each object to conform to the alignment.
- */
- size = ALIGN(size, s->align);
- s->size = size;
- if (forced_order >= 0)
- order = forced_order;
- else
- order = calculate_order(size);
- if ((int)order < 0)
- return 0;
- s->allocflags = 0;
- if (order)
- s->allocflags |= __GFP_COMP;
- if (s->flags & SLAB_CACHE_DMA)
- s->allocflags |= GFP_DMA;
- if (s->flags & SLAB_CACHE_DMA32)
- s->allocflags |= GFP_DMA32;
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- s->allocflags |= __GFP_RECLAIMABLE;
- /*
- * Determine the number of objects per slab
- */
- s->oo = oo_make(order, size);
- s->min = oo_make(get_order(size), size);
- if (oo_objects(s->oo) > oo_objects(s->max))
- s->max = s->oo;
- return !!oo_objects(s->oo);
- }
- static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
- {
- s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
- #ifdef CONFIG_SLAB_FREELIST_HARDENED
- s->random = get_random_long();
- #endif
- if (!calculate_sizes(s, -1))
- goto error;
- if (disable_higher_order_debug) {
- /*
- * Disable debugging flags that store metadata if the min slab
- * order increased.
- */
- if (get_order(s->size) > get_order(s->object_size)) {
- s->flags &= ~DEBUG_METADATA_FLAGS;
- s->offset = 0;
- if (!calculate_sizes(s, -1))
- goto error;
- }
- }
- #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
- /* Enable fast mode */
- s->flags |= __CMPXCHG_DOUBLE;
- #endif
- /*
- * The larger the object size is, the more pages we want on the partial
- * list to avoid pounding the page allocator excessively.
- */
- set_min_partial(s, ilog2(s->size) / 2);
- set_cpu_partial(s);
- #ifdef CONFIG_NUMA
- s->remote_node_defrag_ratio = 1000;
- #endif
- /* Initialize the pre-computed randomized freelist if slab is up */
- if (slab_state >= UP) {
- if (init_cache_random_seq(s))
- goto error;
- }
- if (!init_kmem_cache_nodes(s))
- goto error;
- if (alloc_kmem_cache_cpus(s))
- return 0;
- free_kmem_cache_nodes(s);
- error:
- if (flags & SLAB_PANIC)
- panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
- s->name, s->size, s->size,
- oo_order(s->oo), s->offset, (unsigned long)flags);
- return -EINVAL;
- }
- static void list_slab_objects(struct kmem_cache *s, struct page *page,
- const char *text)
- {
- #ifdef CONFIG_SLUB_DEBUG
- void *addr = page_address(page);
- void *p;
- unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
- sizeof(long),
- GFP_ATOMIC);
- if (!map)
- return;
- slab_err(s, page, text, s->name);
- slab_lock(page);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects) {
- if (!test_bit(slab_index(p, s, addr), map)) {
- pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
- print_tracking(s, p);
- }
- }
- slab_unlock(page);
- kfree(map);
- #endif
- }
- /*
- * Attempt to free all partial slabs on a node.
- * This is called from __kmem_cache_shutdown(). We must take list_lock
- * because sysfs file might still access partial list after the shutdowning.
- */
- static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
- {
- LIST_HEAD(discard);
- struct page *page, *h;
- BUG_ON(irqs_disabled());
- spin_lock_irq(&n->list_lock);
- list_for_each_entry_safe(page, h, &n->partial, lru) {
- if (!page->inuse) {
- remove_partial(n, page);
- list_add(&page->lru, &discard);
- } else {
- list_slab_objects(s, page,
- "Objects remaining in %s on __kmem_cache_shutdown()");
- }
- }
- spin_unlock_irq(&n->list_lock);
- list_for_each_entry_safe(page, h, &discard, lru)
- discard_slab(s, page);
- }
- bool __kmem_cache_empty(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n)
- if (n->nr_partial || slabs_node(s, node))
- return false;
- return true;
- }
- /*
- * Release all resources used by a slab cache.
- */
- int __kmem_cache_shutdown(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- flush_all(s);
- /* Attempt to free all objects */
- for_each_kmem_cache_node(s, node, n) {
- free_partial(s, n);
- if (n->nr_partial || slabs_node(s, node))
- return 1;
- }
- sysfs_slab_remove(s);
- return 0;
- }
- /********************************************************************
- * Kmalloc subsystem
- *******************************************************************/
- static int __init setup_slub_min_order(char *str)
- {
- get_option(&str, (int *)&slub_min_order);
- return 1;
- }
- __setup("slub_min_order=", setup_slub_min_order);
- static int __init setup_slub_max_order(char *str)
- {
- get_option(&str, (int *)&slub_max_order);
- slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
- return 1;
- }
- __setup("slub_max_order=", setup_slub_max_order);
- static int __init setup_slub_min_objects(char *str)
- {
- get_option(&str, (int *)&slub_min_objects);
- return 1;
- }
- __setup("slub_min_objects=", setup_slub_min_objects);
- void *__kmalloc(size_t size, gfp_t flags)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
- return kmalloc_large(size, flags);
- s = kmalloc_slab(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc(s, flags, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
- kasan_kmalloc(s, ret, size, flags);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc);
- #ifdef CONFIG_NUMA
- static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
- {
- struct page *page;
- void *ptr = NULL;
- flags |= __GFP_COMP;
- page = alloc_pages_node(node, flags, get_order(size));
- if (page)
- ptr = page_address(page);
- kmalloc_large_node_hook(ptr, size, flags);
- return ptr;
- }
- void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = kmalloc_large_node(size, flags, node);
- trace_kmalloc_node(_RET_IP_, ret,
- size, PAGE_SIZE << get_order(size),
- flags, node);
- return ret;
- }
- s = kmalloc_slab(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc_node(s, flags, node, _RET_IP_);
- trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
- kasan_kmalloc(s, ret, size, flags);
- return ret;
- }
- EXPORT_SYMBOL(__kmalloc_node);
- #endif
- #ifdef CONFIG_HARDENED_USERCOPY
- /*
- * Rejects incorrectly sized objects and objects that are to be copied
- * to/from userspace but do not fall entirely within the containing slab
- * cache's usercopy region.
- *
- * Returns NULL if check passes, otherwise const char * to name of cache
- * to indicate an error.
- */
- void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
- bool to_user)
- {
- struct kmem_cache *s;
- unsigned int offset;
- size_t object_size;
- /* Find object and usable object size. */
- s = page->slab_cache;
- /* Reject impossible pointers. */
- if (ptr < page_address(page))
- usercopy_abort("SLUB object not in SLUB page?!", NULL,
- to_user, 0, n);
- /* Find offset within object. */
- offset = (ptr - page_address(page)) % s->size;
- /* Adjust for redzone and reject if within the redzone. */
- if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
- if (offset < s->red_left_pad)
- usercopy_abort("SLUB object in left red zone",
- s->name, to_user, offset, n);
- offset -= s->red_left_pad;
- }
- /* Allow address range falling entirely within usercopy region. */
- if (offset >= s->useroffset &&
- offset - s->useroffset <= s->usersize &&
- n <= s->useroffset - offset + s->usersize)
- return;
- /*
- * If the copy is still within the allocated object, produce
- * a warning instead of rejecting the copy. This is intended
- * to be a temporary method to find any missing usercopy
- * whitelists.
- */
- object_size = slab_ksize(s);
- if (usercopy_fallback &&
- offset <= object_size && n <= object_size - offset) {
- usercopy_warn("SLUB object", s->name, to_user, offset, n);
- return;
- }
- usercopy_abort("SLUB object", s->name, to_user, offset, n);
- }
- #endif /* CONFIG_HARDENED_USERCOPY */
- static size_t __ksize(const void *object)
- {
- struct page *page;
- if (unlikely(object == ZERO_SIZE_PTR))
- return 0;
- page = virt_to_head_page(object);
- if (unlikely(!PageSlab(page))) {
- WARN_ON(!PageCompound(page));
- return PAGE_SIZE << compound_order(page);
- }
- return slab_ksize(page->slab_cache);
- }
- size_t ksize(const void *object)
- {
- size_t size = __ksize(object);
- /* We assume that ksize callers could use whole allocated area,
- * so we need to unpoison this area.
- */
- kasan_unpoison_shadow(object, size);
- return size;
- }
- EXPORT_SYMBOL(ksize);
- void kfree(const void *x)
- {
- struct page *page;
- void *object = (void *)x;
- trace_kfree(_RET_IP_, x);
- if (unlikely(ZERO_OR_NULL_PTR(x)))
- return;
- page = virt_to_head_page(x);
- if (unlikely(!PageSlab(page))) {
- BUG_ON(!PageCompound(page));
- kfree_hook(object);
- __free_pages(page, compound_order(page));
- return;
- }
- slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
- }
- EXPORT_SYMBOL(kfree);
- #define SHRINK_PROMOTE_MAX 32
- /*
- * kmem_cache_shrink discards empty slabs and promotes the slabs filled
- * up most to the head of the partial lists. New allocations will then
- * fill those up and thus they can be removed from the partial lists.
- *
- * The slabs with the least items are placed last. This results in them
- * being allocated from last increasing the chance that the last objects
- * are freed in them.
- */
- int __kmem_cache_shrink(struct kmem_cache *s)
- {
- int node;
- int i;
- struct kmem_cache_node *n;
- struct page *page;
- struct page *t;
- struct list_head discard;
- struct list_head promote[SHRINK_PROMOTE_MAX];
- unsigned long flags;
- int ret = 0;
- flush_all(s);
- for_each_kmem_cache_node(s, node, n) {
- INIT_LIST_HEAD(&discard);
- for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
- INIT_LIST_HEAD(promote + i);
- spin_lock_irqsave(&n->list_lock, flags);
- /*
- * Build lists of slabs to discard or promote.
- *
- * Note that concurrent frees may occur while we hold the
- * list_lock. page->inuse here is the upper limit.
- */
- list_for_each_entry_safe(page, t, &n->partial, lru) {
- int free = page->objects - page->inuse;
- /* Do not reread page->inuse */
- barrier();
- /* We do not keep full slabs on the list */
- BUG_ON(free <= 0);
- if (free == page->objects) {
- list_move(&page->lru, &discard);
- n->nr_partial--;
- } else if (free <= SHRINK_PROMOTE_MAX)
- list_move(&page->lru, promote + free - 1);
- }
- /*
- * Promote the slabs filled up most to the head of the
- * partial list.
- */
- for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
- list_splice(promote + i, &n->partial);
- spin_unlock_irqrestore(&n->list_lock, flags);
- /* Release empty slabs */
- list_for_each_entry_safe(page, t, &discard, lru)
- discard_slab(s, page);
- if (slabs_node(s, node))
- ret = 1;
- }
- return ret;
- }
- #ifdef CONFIG_MEMCG
- static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
- {
- /*
- * Called with all the locks held after a sched RCU grace period.
- * Even if @s becomes empty after shrinking, we can't know that @s
- * doesn't have allocations already in-flight and thus can't
- * destroy @s until the associated memcg is released.
- *
- * However, let's remove the sysfs files for empty caches here.
- * Each cache has a lot of interface files which aren't
- * particularly useful for empty draining caches; otherwise, we can
- * easily end up with millions of unnecessary sysfs files on
- * systems which have a lot of memory and transient cgroups.
- */
- if (!__kmem_cache_shrink(s))
- sysfs_slab_remove(s);
- }
- void __kmemcg_cache_deactivate(struct kmem_cache *s)
- {
- /*
- * Disable empty slabs caching. Used to avoid pinning offline
- * memory cgroups by kmem pages that can be freed.
- */
- slub_set_cpu_partial(s, 0);
- s->min_partial = 0;
- /*
- * s->cpu_partial is checked locklessly (see put_cpu_partial), so
- * we have to make sure the change is visible before shrinking.
- */
- slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
- }
- #endif
- static int slab_mem_going_offline_callback(void *arg)
- {
- struct kmem_cache *s;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- __kmem_cache_shrink(s);
- mutex_unlock(&slab_mutex);
- return 0;
- }
- static void slab_mem_offline_callback(void *arg)
- {
- struct kmem_cache_node *n;
- struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int offline_node;
- offline_node = marg->status_change_nid_normal;
- /*
- * If the node still has available memory. we need kmem_cache_node
- * for it yet.
- */
- if (offline_node < 0)
- return;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- n = get_node(s, offline_node);
- if (n) {
- /*
- * if n->nr_slabs > 0, slabs still exist on the node
- * that is going down. We were unable to free them,
- * and offline_pages() function shouldn't call this
- * callback. So, we must fail.
- */
- BUG_ON(slabs_node(s, offline_node));
- s->node[offline_node] = NULL;
- kmem_cache_free(kmem_cache_node, n);
- }
- }
- mutex_unlock(&slab_mutex);
- }
- static int slab_mem_going_online_callback(void *arg)
- {
- struct kmem_cache_node *n;
- struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int nid = marg->status_change_nid_normal;
- int ret = 0;
- /*
- * If the node's memory is already available, then kmem_cache_node is
- * already created. Nothing to do.
- */
- if (nid < 0)
- return 0;
- /*
- * We are bringing a node online. No memory is available yet. We must
- * allocate a kmem_cache_node structure in order to bring the node
- * online.
- */
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- /*
- * XXX: kmem_cache_alloc_node will fallback to other nodes
- * since memory is not yet available from the node that
- * is brought up.
- */
- n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
- if (!n) {
- ret = -ENOMEM;
- goto out;
- }
- init_kmem_cache_node(n);
- s->node[nid] = n;
- }
- out:
- mutex_unlock(&slab_mutex);
- return ret;
- }
- static int slab_memory_callback(struct notifier_block *self,
- unsigned long action, void *arg)
- {
- int ret = 0;
- switch (action) {
- case MEM_GOING_ONLINE:
- ret = slab_mem_going_online_callback(arg);
- break;
- case MEM_GOING_OFFLINE:
- ret = slab_mem_going_offline_callback(arg);
- break;
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- slab_mem_offline_callback(arg);
- break;
- case MEM_ONLINE:
- case MEM_CANCEL_OFFLINE:
- break;
- }
- if (ret)
- ret = notifier_from_errno(ret);
- else
- ret = NOTIFY_OK;
- return ret;
- }
- static struct notifier_block slab_memory_callback_nb = {
- .notifier_call = slab_memory_callback,
- .priority = SLAB_CALLBACK_PRI,
- };
- /********************************************************************
- * Basic setup of slabs
- *******************************************************************/
- /*
- * Used for early kmem_cache structures that were allocated using
- * the page allocator. Allocate them properly then fix up the pointers
- * that may be pointing to the wrong kmem_cache structure.
- */
- static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
- {
- int node;
- struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
- struct kmem_cache_node *n;
- memcpy(s, static_cache, kmem_cache->object_size);
- /*
- * This runs very early, and only the boot processor is supposed to be
- * up. Even if it weren't true, IRQs are not up so we couldn't fire
- * IPIs around.
- */
- __flush_cpu_slab(s, smp_processor_id());
- for_each_kmem_cache_node(s, node, n) {
- struct page *p;
- list_for_each_entry(p, &n->partial, lru)
- p->slab_cache = s;
- #ifdef CONFIG_SLUB_DEBUG
- list_for_each_entry(p, &n->full, lru)
- p->slab_cache = s;
- #endif
- }
- slab_init_memcg_params(s);
- list_add(&s->list, &slab_caches);
- memcg_link_cache(s);
- return s;
- }
- void __init kmem_cache_init(void)
- {
- static __initdata struct kmem_cache boot_kmem_cache,
- boot_kmem_cache_node;
- if (debug_guardpage_minorder())
- slub_max_order = 0;
- kmem_cache_node = &boot_kmem_cache_node;
- kmem_cache = &boot_kmem_cache;
- create_boot_cache(kmem_cache_node, "kmem_cache_node",
- sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
- register_hotmemory_notifier(&slab_memory_callback_nb);
- /* Able to allocate the per node structures */
- slab_state = PARTIAL;
- create_boot_cache(kmem_cache, "kmem_cache",
- offsetof(struct kmem_cache, node) +
- nr_node_ids * sizeof(struct kmem_cache_node *),
- SLAB_HWCACHE_ALIGN, 0, 0);
- kmem_cache = bootstrap(&boot_kmem_cache);
- kmem_cache_node = bootstrap(&boot_kmem_cache_node);
- /* Now we can use the kmem_cache to allocate kmalloc slabs */
- setup_kmalloc_cache_index_table();
- create_kmalloc_caches(0);
- /* Setup random freelists for each cache */
- init_freelist_randomization();
- cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
- slub_cpu_dead);
- pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
- cache_line_size(),
- slub_min_order, slub_max_order, slub_min_objects,
- nr_cpu_ids, nr_node_ids);
- }
- void __init kmem_cache_init_late(void)
- {
- }
- struct kmem_cache *
- __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
- slab_flags_t flags, void (*ctor)(void *))
- {
- struct kmem_cache *s, *c;
- s = find_mergeable(size, align, flags, name, ctor);
- if (s) {
- s->refcount++;
- /*
- * Adjust the object sizes so that we clear
- * the complete object on kzalloc.
- */
- s->object_size = max(s->object_size, size);
- s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
- for_each_memcg_cache(c, s) {
- c->object_size = s->object_size;
- c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
- }
- if (sysfs_slab_alias(s, name)) {
- s->refcount--;
- s = NULL;
- }
- }
- return s;
- }
- int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
- {
- int err;
- err = kmem_cache_open(s, flags);
- if (err)
- return err;
- /* Mutex is not taken during early boot */
- if (slab_state <= UP)
- return 0;
- memcg_propagate_slab_attrs(s);
- err = sysfs_slab_add(s);
- if (err)
- __kmem_cache_release(s);
- return err;
- }
- void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
- return kmalloc_large(size, gfpflags);
- s = kmalloc_slab(size, gfpflags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc(s, gfpflags, caller);
- /* Honor the call site pointer we received. */
- trace_kmalloc(caller, ret, size, s->size, gfpflags);
- return ret;
- }
- #ifdef CONFIG_NUMA
- void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
- int node, unsigned long caller)
- {
- struct kmem_cache *s;
- void *ret;
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = kmalloc_large_node(size, gfpflags, node);
- trace_kmalloc_node(caller, ret,
- size, PAGE_SIZE << get_order(size),
- gfpflags, node);
- return ret;
- }
- s = kmalloc_slab(size, gfpflags);
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
- ret = slab_alloc_node(s, gfpflags, node, caller);
- /* Honor the call site pointer we received. */
- trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
- return ret;
- }
- #endif
- #ifdef CONFIG_SYSFS
- static int count_inuse(struct page *page)
- {
- return page->inuse;
- }
- static int count_total(struct page *page)
- {
- return page->objects;
- }
- #endif
- #ifdef CONFIG_SLUB_DEBUG
- static int validate_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
- {
- void *p;
- void *addr = page_address(page);
- if (!check_slab(s, page) ||
- !on_freelist(s, page, NULL))
- return 0;
- /* Now we know that a valid freelist exists */
- bitmap_zero(map, page->objects);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects) {
- if (test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, SLUB_RED_INACTIVE))
- return 0;
- }
- for_each_object(p, s, addr, page->objects)
- if (!test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, SLUB_RED_ACTIVE))
- return 0;
- return 1;
- }
- static void validate_slab_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
- {
- slab_lock(page);
- validate_slab(s, page, map);
- slab_unlock(page);
- }
- static int validate_slab_node(struct kmem_cache *s,
- struct kmem_cache_node *n, unsigned long *map)
- {
- unsigned long count = 0;
- struct page *page;
- unsigned long flags;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru) {
- validate_slab_slab(s, page, map);
- count++;
- }
- if (count != n->nr_partial)
- pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
- s->name, count, n->nr_partial);
- if (!(s->flags & SLAB_STORE_USER))
- goto out;
- list_for_each_entry(page, &n->full, lru) {
- validate_slab_slab(s, page, map);
- count++;
- }
- if (count != atomic_long_read(&n->nr_slabs))
- pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
- s->name, count, atomic_long_read(&n->nr_slabs));
- out:
- spin_unlock_irqrestore(&n->list_lock, flags);
- return count;
- }
- static long validate_slab_cache(struct kmem_cache *s)
- {
- int node;
- unsigned long count = 0;
- unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
- sizeof(unsigned long),
- GFP_KERNEL);
- struct kmem_cache_node *n;
- if (!map)
- return -ENOMEM;
- flush_all(s);
- for_each_kmem_cache_node(s, node, n)
- count += validate_slab_node(s, n, map);
- kfree(map);
- return count;
- }
- /*
- * Generate lists of code addresses where slabcache objects are allocated
- * and freed.
- */
- struct location {
- unsigned long count;
- unsigned long addr;
- long long sum_time;
- long min_time;
- long max_time;
- long min_pid;
- long max_pid;
- DECLARE_BITMAP(cpus, NR_CPUS);
- nodemask_t nodes;
- };
- struct loc_track {
- unsigned long max;
- unsigned long count;
- struct location *loc;
- };
- static void free_loc_track(struct loc_track *t)
- {
- if (t->max)
- free_pages((unsigned long)t->loc,
- get_order(sizeof(struct location) * t->max));
- }
- static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
- {
- struct location *l;
- int order;
- order = get_order(sizeof(struct location) * max);
- l = (void *)__get_free_pages(flags, order);
- if (!l)
- return 0;
- if (t->count) {
- memcpy(l, t->loc, sizeof(struct location) * t->count);
- free_loc_track(t);
- }
- t->max = max;
- t->loc = l;
- return 1;
- }
- static int add_location(struct loc_track *t, struct kmem_cache *s,
- const struct track *track)
- {
- long start, end, pos;
- struct location *l;
- unsigned long caddr;
- unsigned long age = jiffies - track->when;
- start = -1;
- end = t->count;
- for ( ; ; ) {
- pos = start + (end - start + 1) / 2;
- /*
- * There is nothing at "end". If we end up there
- * we need to add something to before end.
- */
- if (pos == end)
- break;
- caddr = t->loc[pos].addr;
- if (track->addr == caddr) {
- l = &t->loc[pos];
- l->count++;
- if (track->when) {
- l->sum_time += age;
- if (age < l->min_time)
- l->min_time = age;
- if (age > l->max_time)
- l->max_time = age;
- if (track->pid < l->min_pid)
- l->min_pid = track->pid;
- if (track->pid > l->max_pid)
- l->max_pid = track->pid;
- cpumask_set_cpu(track->cpu,
- to_cpumask(l->cpus));
- }
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- if (track->addr < caddr)
- end = pos;
- else
- start = pos;
- }
- /*
- * Not found. Insert new tracking element.
- */
- if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
- return 0;
- l = t->loc + pos;
- if (pos < t->count)
- memmove(l + 1, l,
- (t->count - pos) * sizeof(struct location));
- t->count++;
- l->count = 1;
- l->addr = track->addr;
- l->sum_time = age;
- l->min_time = age;
- l->max_time = age;
- l->min_pid = track->pid;
- l->max_pid = track->pid;
- cpumask_clear(to_cpumask(l->cpus));
- cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
- nodes_clear(l->nodes);
- node_set(page_to_nid(virt_to_page(track)), l->nodes);
- return 1;
- }
- static void process_slab(struct loc_track *t, struct kmem_cache *s,
- struct page *page, enum track_item alloc,
- unsigned long *map)
- {
- void *addr = page_address(page);
- void *p;
- bitmap_zero(map, page->objects);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects)
- if (!test_bit(slab_index(p, s, addr), map))
- add_location(t, s, get_track(s, p, alloc));
- }
- static int list_locations(struct kmem_cache *s, char *buf,
- enum track_item alloc)
- {
- int len = 0;
- unsigned long i;
- struct loc_track t = { 0, 0, NULL };
- int node;
- unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
- sizeof(unsigned long),
- GFP_KERNEL);
- struct kmem_cache_node *n;
- if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
- GFP_KERNEL)) {
- kfree(map);
- return sprintf(buf, "Out of memory\n");
- }
- /* Push back cpu slabs */
- flush_all(s);
- for_each_kmem_cache_node(s, node, n) {
- unsigned long flags;
- struct page *page;
- if (!atomic_long_read(&n->nr_slabs))
- continue;
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- process_slab(&t, s, page, alloc, map);
- list_for_each_entry(page, &n->full, lru)
- process_slab(&t, s, page, alloc, map);
- spin_unlock_irqrestore(&n->list_lock, flags);
- }
- for (i = 0; i < t.count; i++) {
- struct location *l = &t.loc[i];
- if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
- break;
- len += sprintf(buf + len, "%7ld ", l->count);
- if (l->addr)
- len += sprintf(buf + len, "%pS", (void *)l->addr);
- else
- len += sprintf(buf + len, "<not-available>");
- if (l->sum_time != l->min_time) {
- len += sprintf(buf + len, " age=%ld/%ld/%ld",
- l->min_time,
- (long)div_u64(l->sum_time, l->count),
- l->max_time);
- } else
- len += sprintf(buf + len, " age=%ld",
- l->min_time);
- if (l->min_pid != l->max_pid)
- len += sprintf(buf + len, " pid=%ld-%ld",
- l->min_pid, l->max_pid);
- else
- len += sprintf(buf + len, " pid=%ld",
- l->min_pid);
- if (num_online_cpus() > 1 &&
- !cpumask_empty(to_cpumask(l->cpus)) &&
- len < PAGE_SIZE - 60)
- len += scnprintf(buf + len, PAGE_SIZE - len - 50,
- " cpus=%*pbl",
- cpumask_pr_args(to_cpumask(l->cpus)));
- if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
- len < PAGE_SIZE - 60)
- len += scnprintf(buf + len, PAGE_SIZE - len - 50,
- " nodes=%*pbl",
- nodemask_pr_args(&l->nodes));
- len += sprintf(buf + len, "\n");
- }
- free_loc_track(&t);
- kfree(map);
- if (!t.count)
- len += sprintf(buf, "No data\n");
- return len;
- }
- #endif
- #ifdef SLUB_RESILIENCY_TEST
- static void __init resiliency_test(void)
- {
- u8 *p;
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
- pr_err("SLUB resiliency testing\n");
- pr_err("-----------------------\n");
- pr_err("A. Corruption after allocation\n");
- p = kzalloc(16, GFP_KERNEL);
- p[16] = 0x12;
- pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
- p + 16);
- validate_slab_cache(kmalloc_caches[4]);
- /* Hmmm... The next two are dangerous */
- p = kzalloc(32, GFP_KERNEL);
- p[32 + sizeof(void *)] = 0x34;
- pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
- p);
- pr_err("If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches[5]);
- p = kzalloc(64, GFP_KERNEL);
- p += 64 + (get_cycles() & 0xff) * sizeof(void *);
- *p = 0x56;
- pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
- p);
- pr_err("If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches[6]);
- pr_err("\nB. Corruption after free\n");
- p = kzalloc(128, GFP_KERNEL);
- kfree(p);
- *p = 0x78;
- pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[7]);
- p = kzalloc(256, GFP_KERNEL);
- kfree(p);
- p[50] = 0x9a;
- pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[8]);
- p = kzalloc(512, GFP_KERNEL);
- kfree(p);
- p[512] = 0xab;
- pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[9]);
- }
- #else
- #ifdef CONFIG_SYSFS
- static void resiliency_test(void) {};
- #endif
- #endif
- #ifdef CONFIG_SYSFS
- enum slab_stat_type {
- SL_ALL, /* All slabs */
- SL_PARTIAL, /* Only partially allocated slabs */
- SL_CPU, /* Only slabs used for cpu caches */
- SL_OBJECTS, /* Determine allocated objects not slabs */
- SL_TOTAL /* Determine object capacity not slabs */
- };
- #define SO_ALL (1 << SL_ALL)
- #define SO_PARTIAL (1 << SL_PARTIAL)
- #define SO_CPU (1 << SL_CPU)
- #define SO_OBJECTS (1 << SL_OBJECTS)
- #define SO_TOTAL (1 << SL_TOTAL)
- #ifdef CONFIG_MEMCG
- static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
- static int __init setup_slub_memcg_sysfs(char *str)
- {
- int v;
- if (get_option(&str, &v) > 0)
- memcg_sysfs_enabled = v;
- return 1;
- }
- __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
- #endif
- static ssize_t show_slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
- {
- unsigned long total = 0;
- int node;
- int x;
- unsigned long *nodes;
- nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
- if (!nodes)
- return -ENOMEM;
- if (flags & SO_CPU) {
- int cpu;
- for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
- cpu);
- int node;
- struct page *page;
- page = READ_ONCE(c->page);
- if (!page)
- continue;
- node = page_to_nid(page);
- if (flags & SO_TOTAL)
- x = page->objects;
- else if (flags & SO_OBJECTS)
- x = page->inuse;
- else
- x = 1;
- total += x;
- nodes[node] += x;
- page = slub_percpu_partial_read_once(c);
- if (page) {
- node = page_to_nid(page);
- if (flags & SO_TOTAL)
- WARN_ON_ONCE(1);
- else if (flags & SO_OBJECTS)
- WARN_ON_ONCE(1);
- else
- x = page->pages;
- total += x;
- nodes[node] += x;
- }
- }
- }
- /*
- * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
- * already held which will conflict with an existing lock order:
- *
- * mem_hotplug_lock->slab_mutex->kernfs_mutex
- *
- * We don't really need mem_hotplug_lock (to hold off
- * slab_mem_going_offline_callback) here because slab's memory hot
- * unplug code doesn't destroy the kmem_cache->node[] data.
- */
- #ifdef CONFIG_SLUB_DEBUG
- if (flags & SO_ALL) {
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- if (flags & SO_TOTAL)
- x = atomic_long_read(&n->total_objects);
- else if (flags & SO_OBJECTS)
- x = atomic_long_read(&n->total_objects) -
- count_partial(n, count_free);
- else
- x = atomic_long_read(&n->nr_slabs);
- total += x;
- nodes[node] += x;
- }
- } else
- #endif
- if (flags & SO_PARTIAL) {
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- if (flags & SO_TOTAL)
- x = count_partial(n, count_total);
- else if (flags & SO_OBJECTS)
- x = count_partial(n, count_inuse);
- else
- x = n->nr_partial;
- total += x;
- nodes[node] += x;
- }
- }
- x = sprintf(buf, "%lu", total);
- #ifdef CONFIG_NUMA
- for (node = 0; node < nr_node_ids; node++)
- if (nodes[node])
- x += sprintf(buf + x, " N%d=%lu",
- node, nodes[node]);
- #endif
- kfree(nodes);
- return x + sprintf(buf + x, "\n");
- }
- #ifdef CONFIG_SLUB_DEBUG
- static int any_slab_objects(struct kmem_cache *s)
- {
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n)
- if (atomic_long_read(&n->total_objects))
- return 1;
- return 0;
- }
- #endif
- #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
- #define to_slab(n) container_of(n, struct kmem_cache, kobj)
- struct slab_attribute {
- struct attribute attr;
- ssize_t (*show)(struct kmem_cache *s, char *buf);
- ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
- };
- #define SLAB_ATTR_RO(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0400, _name##_show, NULL)
- #define SLAB_ATTR(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0600, _name##_show, _name##_store)
- static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", s->size);
- }
- SLAB_ATTR_RO(slab_size);
- static ssize_t align_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", s->align);
- }
- SLAB_ATTR_RO(align);
- static ssize_t object_size_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", s->object_size);
- }
- SLAB_ATTR_RO(object_size);
- static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", oo_objects(s->oo));
- }
- SLAB_ATTR_RO(objs_per_slab);
- static ssize_t order_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- unsigned int order;
- int err;
- err = kstrtouint(buf, 10, &order);
- if (err)
- return err;
- if (order > slub_max_order || order < slub_min_order)
- return -EINVAL;
- calculate_sizes(s, order);
- return length;
- }
- static ssize_t order_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", oo_order(s->oo));
- }
- SLAB_ATTR(order);
- static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%lu\n", s->min_partial);
- }
- static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- unsigned long min;
- int err;
- err = kstrtoul(buf, 10, &min);
- if (err)
- return err;
- set_min_partial(s, min);
- return length;
- }
- SLAB_ATTR(min_partial);
- static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", slub_cpu_partial(s));
- }
- static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- unsigned int objects;
- int err;
- err = kstrtouint(buf, 10, &objects);
- if (err)
- return err;
- if (objects && !kmem_cache_has_cpu_partial(s))
- return -EINVAL;
- slub_set_cpu_partial(s, objects);
- flush_all(s);
- return length;
- }
- SLAB_ATTR(cpu_partial);
- static ssize_t ctor_show(struct kmem_cache *s, char *buf)
- {
- if (!s->ctor)
- return 0;
- return sprintf(buf, "%pS\n", s->ctor);
- }
- SLAB_ATTR_RO(ctor);
- static ssize_t aliases_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
- }
- SLAB_ATTR_RO(aliases);
- static ssize_t partial_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_PARTIAL);
- }
- SLAB_ATTR_RO(partial);
- static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_CPU);
- }
- SLAB_ATTR_RO(cpu_slabs);
- static ssize_t objects_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects);
- static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
- }
- SLAB_ATTR_RO(objects_partial);
- static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
- {
- int objects = 0;
- int pages = 0;
- int cpu;
- int len;
- for_each_online_cpu(cpu) {
- struct page *page;
- page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
- if (page) {
- pages += page->pages;
- objects += page->pobjects;
- }
- }
- len = sprintf(buf, "%d(%d)", objects, pages);
- #ifdef CONFIG_SMP
- for_each_online_cpu(cpu) {
- struct page *page;
- page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
- if (page && len < PAGE_SIZE - 20)
- len += sprintf(buf + len, " C%d=%d(%d)", cpu,
- page->pobjects, page->pages);
- }
- #endif
- return len + sprintf(buf + len, "\n");
- }
- SLAB_ATTR_RO(slabs_cpu_partial);
- static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
- }
- static ssize_t reclaim_account_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- s->flags &= ~SLAB_RECLAIM_ACCOUNT;
- if (buf[0] == '1')
- s->flags |= SLAB_RECLAIM_ACCOUNT;
- return length;
- }
- SLAB_ATTR(reclaim_account);
- static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
- }
- SLAB_ATTR_RO(hwcache_align);
- #ifdef CONFIG_ZONE_DMA
- static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
- }
- SLAB_ATTR_RO(cache_dma);
- #endif
- static ssize_t usersize_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", s->usersize);
- }
- SLAB_ATTR_RO(usersize);
- static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
- }
- SLAB_ATTR_RO(destroy_by_rcu);
- #ifdef CONFIG_SLUB_DEBUG
- static ssize_t slabs_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL);
- }
- SLAB_ATTR_RO(slabs);
- static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
- {
- return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
- }
- SLAB_ATTR_RO(total_objects);
- static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
- }
- static ssize_t sanity_checks_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- s->flags &= ~SLAB_CONSISTENCY_CHECKS;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_CONSISTENCY_CHECKS;
- }
- return length;
- }
- SLAB_ATTR(sanity_checks);
- static ssize_t trace_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
- }
- static ssize_t trace_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- /*
- * Tracing a merged cache is going to give confusing results
- * as well as cause other issues like converting a mergeable
- * cache into an umergeable one.
- */
- if (s->refcount > 1)
- return -EINVAL;
- s->flags &= ~SLAB_TRACE;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_TRACE;
- }
- return length;
- }
- SLAB_ATTR(trace);
- static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
- }
- static ssize_t red_zone_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_RED_ZONE;
- if (buf[0] == '1') {
- s->flags |= SLAB_RED_ZONE;
- }
- calculate_sizes(s, -1);
- return length;
- }
- SLAB_ATTR(red_zone);
- static ssize_t poison_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
- }
- static ssize_t poison_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_POISON;
- if (buf[0] == '1') {
- s->flags |= SLAB_POISON;
- }
- calculate_sizes(s, -1);
- return length;
- }
- SLAB_ATTR(poison);
- static ssize_t store_user_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
- }
- static ssize_t store_user_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (any_slab_objects(s))
- return -EBUSY;
- s->flags &= ~SLAB_STORE_USER;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_STORE_USER;
- }
- calculate_sizes(s, -1);
- return length;
- }
- SLAB_ATTR(store_user);
- static ssize_t validate_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t validate_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- int ret = -EINVAL;
- if (buf[0] == '1') {
- ret = validate_slab_cache(s);
- if (ret >= 0)
- ret = length;
- }
- return ret;
- }
- SLAB_ATTR(validate);
- static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_ALLOC);
- }
- SLAB_ATTR_RO(alloc_calls);
- static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
- {
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_FREE);
- }
- SLAB_ATTR_RO(free_calls);
- #endif /* CONFIG_SLUB_DEBUG */
- #ifdef CONFIG_FAILSLAB
- static ssize_t failslab_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
- }
- static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
- size_t length)
- {
- if (s->refcount > 1)
- return -EINVAL;
- s->flags &= ~SLAB_FAILSLAB;
- if (buf[0] == '1')
- s->flags |= SLAB_FAILSLAB;
- return length;
- }
- SLAB_ATTR(failslab);
- #endif
- static ssize_t shrink_show(struct kmem_cache *s, char *buf)
- {
- return 0;
- }
- static ssize_t shrink_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- if (buf[0] == '1')
- kmem_cache_shrink(s);
- else
- return -EINVAL;
- return length;
- }
- SLAB_ATTR(shrink);
- #ifdef CONFIG_NUMA
- static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
- {
- return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
- }
- static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
- const char *buf, size_t length)
- {
- unsigned int ratio;
- int err;
- err = kstrtouint(buf, 10, &ratio);
- if (err)
- return err;
- if (ratio > 100)
- return -ERANGE;
- s->remote_node_defrag_ratio = ratio * 10;
- return length;
- }
- SLAB_ATTR(remote_node_defrag_ratio);
- #endif
- #ifdef CONFIG_SLUB_STATS
- static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
- {
- unsigned long sum = 0;
- int cpu;
- int len;
- int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
- if (!data)
- return -ENOMEM;
- for_each_online_cpu(cpu) {
- unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
- data[cpu] = x;
- sum += x;
- }
- len = sprintf(buf, "%lu", sum);
- #ifdef CONFIG_SMP
- for_each_online_cpu(cpu) {
- if (data[cpu] && len < PAGE_SIZE - 20)
- len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
- }
- #endif
- kfree(data);
- return len + sprintf(buf + len, "\n");
- }
- static void clear_stat(struct kmem_cache *s, enum stat_item si)
- {
- int cpu;
- for_each_online_cpu(cpu)
- per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
- }
- #define STAT_ATTR(si, text) \
- static ssize_t text##_show(struct kmem_cache *s, char *buf) \
- { \
- return show_stat(s, buf, si); \
- } \
- static ssize_t text##_store(struct kmem_cache *s, \
- const char *buf, size_t length) \
- { \
- if (buf[0] != '0') \
- return -EINVAL; \
- clear_stat(s, si); \
- return length; \
- } \
- SLAB_ATTR(text); \
- STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
- STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
- STAT_ATTR(FREE_FASTPATH, free_fastpath);
- STAT_ATTR(FREE_SLOWPATH, free_slowpath);
- STAT_ATTR(FREE_FROZEN, free_frozen);
- STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
- STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
- STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
- STAT_ATTR(ALLOC_SLAB, alloc_slab);
- STAT_ATTR(ALLOC_REFILL, alloc_refill);
- STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
- STAT_ATTR(FREE_SLAB, free_slab);
- STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
- STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
- STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
- STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
- STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
- STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
- STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
- STAT_ATTR(ORDER_FALLBACK, order_fallback);
- STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
- STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
- STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
- STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
- STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
- STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
- #endif
- static struct attribute *slab_attrs[] = {
- &slab_size_attr.attr,
- &object_size_attr.attr,
- &objs_per_slab_attr.attr,
- &order_attr.attr,
- &min_partial_attr.attr,
- &cpu_partial_attr.attr,
- &objects_attr.attr,
- &objects_partial_attr.attr,
- &partial_attr.attr,
- &cpu_slabs_attr.attr,
- &ctor_attr.attr,
- &aliases_attr.attr,
- &align_attr.attr,
- &hwcache_align_attr.attr,
- &reclaim_account_attr.attr,
- &destroy_by_rcu_attr.attr,
- &shrink_attr.attr,
- &slabs_cpu_partial_attr.attr,
- #ifdef CONFIG_SLUB_DEBUG
- &total_objects_attr.attr,
- &slabs_attr.attr,
- &sanity_checks_attr.attr,
- &trace_attr.attr,
- &red_zone_attr.attr,
- &poison_attr.attr,
- &store_user_attr.attr,
- &validate_attr.attr,
- &alloc_calls_attr.attr,
- &free_calls_attr.attr,
- #endif
- #ifdef CONFIG_ZONE_DMA
- &cache_dma_attr.attr,
- #endif
- #ifdef CONFIG_NUMA
- &remote_node_defrag_ratio_attr.attr,
- #endif
- #ifdef CONFIG_SLUB_STATS
- &alloc_fastpath_attr.attr,
- &alloc_slowpath_attr.attr,
- &free_fastpath_attr.attr,
- &free_slowpath_attr.attr,
- &free_frozen_attr.attr,
- &free_add_partial_attr.attr,
- &free_remove_partial_attr.attr,
- &alloc_from_partial_attr.attr,
- &alloc_slab_attr.attr,
- &alloc_refill_attr.attr,
- &alloc_node_mismatch_attr.attr,
- &free_slab_attr.attr,
- &cpuslab_flush_attr.attr,
- &deactivate_full_attr.attr,
- &deactivate_empty_attr.attr,
- &deactivate_to_head_attr.attr,
- &deactivate_to_tail_attr.attr,
- &deactivate_remote_frees_attr.attr,
- &deactivate_bypass_attr.attr,
- &order_fallback_attr.attr,
- &cmpxchg_double_fail_attr.attr,
- &cmpxchg_double_cpu_fail_attr.attr,
- &cpu_partial_alloc_attr.attr,
- &cpu_partial_free_attr.attr,
- &cpu_partial_node_attr.attr,
- &cpu_partial_drain_attr.attr,
- #endif
- #ifdef CONFIG_FAILSLAB
- &failslab_attr.attr,
- #endif
- &usersize_attr.attr,
- NULL
- };
- static const struct attribute_group slab_attr_group = {
- .attrs = slab_attrs,
- };
- static ssize_t slab_attr_show(struct kobject *kobj,
- struct attribute *attr,
- char *buf)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- int err;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->show)
- return -EIO;
- err = attribute->show(s, buf);
- return err;
- }
- static ssize_t slab_attr_store(struct kobject *kobj,
- struct attribute *attr,
- const char *buf, size_t len)
- {
- struct slab_attribute *attribute;
- struct kmem_cache *s;
- int err;
- attribute = to_slab_attr(attr);
- s = to_slab(kobj);
- if (!attribute->store)
- return -EIO;
- err = attribute->store(s, buf, len);
- #ifdef CONFIG_MEMCG
- if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
- struct kmem_cache *c;
- mutex_lock(&slab_mutex);
- if (s->max_attr_size < len)
- s->max_attr_size = len;
- /*
- * This is a best effort propagation, so this function's return
- * value will be determined by the parent cache only. This is
- * basically because not all attributes will have a well
- * defined semantics for rollbacks - most of the actions will
- * have permanent effects.
- *
- * Returning the error value of any of the children that fail
- * is not 100 % defined, in the sense that users seeing the
- * error code won't be able to know anything about the state of
- * the cache.
- *
- * Only returning the error code for the parent cache at least
- * has well defined semantics. The cache being written to
- * directly either failed or succeeded, in which case we loop
- * through the descendants with best-effort propagation.
- */
- for_each_memcg_cache(c, s)
- attribute->store(c, buf, len);
- mutex_unlock(&slab_mutex);
- }
- #endif
- return err;
- }
- static void memcg_propagate_slab_attrs(struct kmem_cache *s)
- {
- #ifdef CONFIG_MEMCG
- int i;
- char *buffer = NULL;
- struct kmem_cache *root_cache;
- if (is_root_cache(s))
- return;
- root_cache = s->memcg_params.root_cache;
- /*
- * This mean this cache had no attribute written. Therefore, no point
- * in copying default values around
- */
- if (!root_cache->max_attr_size)
- return;
- for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
- char mbuf[64];
- char *buf;
- struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
- ssize_t len;
- if (!attr || !attr->store || !attr->show)
- continue;
- /*
- * It is really bad that we have to allocate here, so we will
- * do it only as a fallback. If we actually allocate, though,
- * we can just use the allocated buffer until the end.
- *
- * Most of the slub attributes will tend to be very small in
- * size, but sysfs allows buffers up to a page, so they can
- * theoretically happen.
- */
- if (buffer)
- buf = buffer;
- else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
- buf = mbuf;
- else {
- buffer = (char *) get_zeroed_page(GFP_KERNEL);
- if (WARN_ON(!buffer))
- continue;
- buf = buffer;
- }
- len = attr->show(root_cache, buf);
- if (len > 0)
- attr->store(s, buf, len);
- }
- if (buffer)
- free_page((unsigned long)buffer);
- #endif
- }
- static void kmem_cache_release(struct kobject *k)
- {
- slab_kmem_cache_release(to_slab(k));
- }
- static const struct sysfs_ops slab_sysfs_ops = {
- .show = slab_attr_show,
- .store = slab_attr_store,
- };
- static struct kobj_type slab_ktype = {
- .sysfs_ops = &slab_sysfs_ops,
- .release = kmem_cache_release,
- };
- static int uevent_filter(struct kset *kset, struct kobject *kobj)
- {
- struct kobj_type *ktype = get_ktype(kobj);
- if (ktype == &slab_ktype)
- return 1;
- return 0;
- }
- static const struct kset_uevent_ops slab_uevent_ops = {
- .filter = uevent_filter,
- };
- static struct kset *slab_kset;
- static inline struct kset *cache_kset(struct kmem_cache *s)
- {
- #ifdef CONFIG_MEMCG
- if (!is_root_cache(s))
- return s->memcg_params.root_cache->memcg_kset;
- #endif
- return slab_kset;
- }
- #define ID_STR_LENGTH 64
- /* Create a unique string id for a slab cache:
- *
- * Format :[flags-]size
- */
- static char *create_unique_id(struct kmem_cache *s)
- {
- char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
- char *p = name;
- BUG_ON(!name);
- *p++ = ':';
- /*
- * First flags affecting slabcache operations. We will only
- * get here for aliasable slabs so we do not need to support
- * too many flags. The flags here must cover all flags that
- * are matched during merging to guarantee that the id is
- * unique.
- */
- if (s->flags & SLAB_CACHE_DMA)
- *p++ = 'd';
- if (s->flags & SLAB_CACHE_DMA32)
- *p++ = 'D';
- if (s->flags & SLAB_RECLAIM_ACCOUNT)
- *p++ = 'a';
- if (s->flags & SLAB_CONSISTENCY_CHECKS)
- *p++ = 'F';
- if (s->flags & SLAB_ACCOUNT)
- *p++ = 'A';
- if (p != name + 1)
- *p++ = '-';
- p += sprintf(p, "%07u", s->size);
- BUG_ON(p > name + ID_STR_LENGTH - 1);
- return name;
- }
- static void sysfs_slab_remove_workfn(struct work_struct *work)
- {
- struct kmem_cache *s =
- container_of(work, struct kmem_cache, kobj_remove_work);
- if (!s->kobj.state_in_sysfs)
- /*
- * For a memcg cache, this may be called during
- * deactivation and again on shutdown. Remove only once.
- * A cache is never shut down before deactivation is
- * complete, so no need to worry about synchronization.
- */
- goto out;
- #ifdef CONFIG_MEMCG
- kset_unregister(s->memcg_kset);
- #endif
- kobject_uevent(&s->kobj, KOBJ_REMOVE);
- out:
- kobject_put(&s->kobj);
- }
- static int sysfs_slab_add(struct kmem_cache *s)
- {
- int err;
- const char *name;
- struct kset *kset = cache_kset(s);
- int unmergeable = slab_unmergeable(s);
- INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
- if (!kset) {
- kobject_init(&s->kobj, &slab_ktype);
- return 0;
- }
- if (!unmergeable && disable_higher_order_debug &&
- (slub_debug & DEBUG_METADATA_FLAGS))
- unmergeable = 1;
- if (unmergeable) {
- /*
- * Slabcache can never be merged so we can use the name proper.
- * This is typically the case for debug situations. In that
- * case we can catch duplicate names easily.
- */
- sysfs_remove_link(&slab_kset->kobj, s->name);
- name = s->name;
- } else {
- /*
- * Create a unique name for the slab as a target
- * for the symlinks.
- */
- name = create_unique_id(s);
- }
- s->kobj.kset = kset;
- err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
- if (err)
- goto out;
- err = sysfs_create_group(&s->kobj, &slab_attr_group);
- if (err)
- goto out_del_kobj;
- #ifdef CONFIG_MEMCG
- if (is_root_cache(s) && memcg_sysfs_enabled) {
- s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
- if (!s->memcg_kset) {
- err = -ENOMEM;
- goto out_del_kobj;
- }
- }
- #endif
- kobject_uevent(&s->kobj, KOBJ_ADD);
- if (!unmergeable) {
- /* Setup first alias */
- sysfs_slab_alias(s, s->name);
- }
- out:
- if (!unmergeable)
- kfree(name);
- return err;
- out_del_kobj:
- kobject_del(&s->kobj);
- goto out;
- }
- static void sysfs_slab_remove(struct kmem_cache *s)
- {
- if (slab_state < FULL)
- /*
- * Sysfs has not been setup yet so no need to remove the
- * cache from sysfs.
- */
- return;
- kobject_get(&s->kobj);
- schedule_work(&s->kobj_remove_work);
- }
- void sysfs_slab_unlink(struct kmem_cache *s)
- {
- if (slab_state >= FULL)
- kobject_del(&s->kobj);
- }
- void sysfs_slab_release(struct kmem_cache *s)
- {
- if (slab_state >= FULL)
- kobject_put(&s->kobj);
- }
- /*
- * Need to buffer aliases during bootup until sysfs becomes
- * available lest we lose that information.
- */
- struct saved_alias {
- struct kmem_cache *s;
- const char *name;
- struct saved_alias *next;
- };
- static struct saved_alias *alias_list;
- static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
- {
- struct saved_alias *al;
- if (slab_state == FULL) {
- /*
- * If we have a leftover link then remove it.
- */
- sysfs_remove_link(&slab_kset->kobj, name);
- return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
- }
- al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
- if (!al)
- return -ENOMEM;
- al->s = s;
- al->name = name;
- al->next = alias_list;
- alias_list = al;
- return 0;
- }
- static int __init slab_sysfs_init(void)
- {
- struct kmem_cache *s;
- int err;
- mutex_lock(&slab_mutex);
- slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
- if (!slab_kset) {
- mutex_unlock(&slab_mutex);
- pr_err("Cannot register slab subsystem.\n");
- return -ENOSYS;
- }
- slab_state = FULL;
- list_for_each_entry(s, &slab_caches, list) {
- err = sysfs_slab_add(s);
- if (err)
- pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
- s->name);
- }
- while (alias_list) {
- struct saved_alias *al = alias_list;
- alias_list = alias_list->next;
- err = sysfs_slab_alias(al->s, al->name);
- if (err)
- pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
- al->name);
- kfree(al);
- }
- mutex_unlock(&slab_mutex);
- resiliency_test();
- return 0;
- }
- __initcall(slab_sysfs_init);
- #endif /* CONFIG_SYSFS */
- /*
- * The /proc/slabinfo ABI
- */
- #ifdef CONFIG_SLUB_DEBUG
- void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
- {
- unsigned long nr_slabs = 0;
- unsigned long nr_objs = 0;
- unsigned long nr_free = 0;
- int node;
- struct kmem_cache_node *n;
- for_each_kmem_cache_node(s, node, n) {
- nr_slabs += node_nr_slabs(n);
- nr_objs += node_nr_objs(n);
- nr_free += count_partial(n, count_free);
- }
- sinfo->active_objs = nr_objs - nr_free;
- sinfo->num_objs = nr_objs;
- sinfo->active_slabs = nr_slabs;
- sinfo->num_slabs = nr_slabs;
- sinfo->objects_per_slab = oo_objects(s->oo);
- sinfo->cache_order = oo_order(s->oo);
- }
- void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
- {
- }
- ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
- {
- return -EIO;
- }
- #endif /* CONFIG_SLUB_DEBUG */
|