page_io.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * linux/mm/page_io.c
  4. *
  5. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  6. *
  7. * Swap reorganised 29.12.95,
  8. * Asynchronous swapping added 30.12.95. Stephen Tweedie
  9. * Removed race in async swapping. 14.4.1996. Bruno Haible
  10. * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
  11. * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/kernel_stat.h>
  15. #include <linux/gfp.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/swap.h>
  18. #include <linux/bio.h>
  19. #include <linux/swapops.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/writeback.h>
  22. #include <linux/frontswap.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/uio.h>
  25. #include <linux/sched/task.h>
  26. #include <asm/pgtable.h>
  27. static struct bio *get_swap_bio(gfp_t gfp_flags,
  28. struct page *page, bio_end_io_t end_io)
  29. {
  30. int i, nr = hpage_nr_pages(page);
  31. struct bio *bio;
  32. bio = bio_alloc(gfp_flags, nr);
  33. if (bio) {
  34. struct block_device *bdev;
  35. bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
  36. bio_set_dev(bio, bdev);
  37. bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
  38. bio->bi_end_io = end_io;
  39. for (i = 0; i < nr; i++)
  40. bio_add_page(bio, page + i, PAGE_SIZE, 0);
  41. VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr);
  42. }
  43. return bio;
  44. }
  45. void end_swap_bio_write(struct bio *bio)
  46. {
  47. struct page *page = bio_first_page_all(bio);
  48. if (bio->bi_status) {
  49. SetPageError(page);
  50. /*
  51. * We failed to write the page out to swap-space.
  52. * Re-dirty the page in order to avoid it being reclaimed.
  53. * Also print a dire warning that things will go BAD (tm)
  54. * very quickly.
  55. *
  56. * Also clear PG_reclaim to avoid rotate_reclaimable_page()
  57. */
  58. set_page_dirty(page);
  59. pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
  60. MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  61. (unsigned long long)bio->bi_iter.bi_sector);
  62. ClearPageReclaim(page);
  63. }
  64. end_page_writeback(page);
  65. bio_put(bio);
  66. }
  67. static void swap_slot_free_notify(struct page *page)
  68. {
  69. struct swap_info_struct *sis;
  70. struct gendisk *disk;
  71. swp_entry_t entry;
  72. /*
  73. * There is no guarantee that the page is in swap cache - the software
  74. * suspend code (at least) uses end_swap_bio_read() against a non-
  75. * swapcache page. So we must check PG_swapcache before proceeding with
  76. * this optimization.
  77. */
  78. if (unlikely(!PageSwapCache(page)))
  79. return;
  80. sis = page_swap_info(page);
  81. if (!(sis->flags & SWP_BLKDEV))
  82. return;
  83. /*
  84. * The swap subsystem performs lazy swap slot freeing,
  85. * expecting that the page will be swapped out again.
  86. * So we can avoid an unnecessary write if the page
  87. * isn't redirtied.
  88. * This is good for real swap storage because we can
  89. * reduce unnecessary I/O and enhance wear-leveling
  90. * if an SSD is used as the as swap device.
  91. * But if in-memory swap device (eg zram) is used,
  92. * this causes a duplicated copy between uncompressed
  93. * data in VM-owned memory and compressed data in
  94. * zram-owned memory. So let's free zram-owned memory
  95. * and make the VM-owned decompressed page *dirty*,
  96. * so the page should be swapped out somewhere again if
  97. * we again wish to reclaim it.
  98. */
  99. disk = sis->bdev->bd_disk;
  100. entry.val = page_private(page);
  101. if (disk->fops->swap_slot_free_notify &&
  102. __swap_count(sis, entry) == 1) {
  103. unsigned long offset;
  104. offset = swp_offset(entry);
  105. SetPageDirty(page);
  106. disk->fops->swap_slot_free_notify(sis->bdev,
  107. offset);
  108. }
  109. }
  110. static void end_swap_bio_read(struct bio *bio)
  111. {
  112. struct page *page = bio_first_page_all(bio);
  113. struct task_struct *waiter = bio->bi_private;
  114. if (bio->bi_status) {
  115. SetPageError(page);
  116. ClearPageUptodate(page);
  117. pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
  118. MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
  119. (unsigned long long)bio->bi_iter.bi_sector);
  120. goto out;
  121. }
  122. SetPageUptodate(page);
  123. swap_slot_free_notify(page);
  124. out:
  125. unlock_page(page);
  126. WRITE_ONCE(bio->bi_private, NULL);
  127. bio_put(bio);
  128. wake_up_process(waiter);
  129. put_task_struct(waiter);
  130. }
  131. int generic_swapfile_activate(struct swap_info_struct *sis,
  132. struct file *swap_file,
  133. sector_t *span)
  134. {
  135. struct address_space *mapping = swap_file->f_mapping;
  136. struct inode *inode = mapping->host;
  137. unsigned blocks_per_page;
  138. unsigned long page_no;
  139. unsigned blkbits;
  140. sector_t probe_block;
  141. sector_t last_block;
  142. sector_t lowest_block = -1;
  143. sector_t highest_block = 0;
  144. int nr_extents = 0;
  145. int ret;
  146. blkbits = inode->i_blkbits;
  147. blocks_per_page = PAGE_SIZE >> blkbits;
  148. /*
  149. * Map all the blocks into the extent list. This code doesn't try
  150. * to be very smart.
  151. */
  152. probe_block = 0;
  153. page_no = 0;
  154. last_block = i_size_read(inode) >> blkbits;
  155. while ((probe_block + blocks_per_page) <= last_block &&
  156. page_no < sis->max) {
  157. unsigned block_in_page;
  158. sector_t first_block;
  159. cond_resched();
  160. first_block = bmap(inode, probe_block);
  161. if (first_block == 0)
  162. goto bad_bmap;
  163. /*
  164. * It must be PAGE_SIZE aligned on-disk
  165. */
  166. if (first_block & (blocks_per_page - 1)) {
  167. probe_block++;
  168. goto reprobe;
  169. }
  170. for (block_in_page = 1; block_in_page < blocks_per_page;
  171. block_in_page++) {
  172. sector_t block;
  173. block = bmap(inode, probe_block + block_in_page);
  174. if (block == 0)
  175. goto bad_bmap;
  176. if (block != first_block + block_in_page) {
  177. /* Discontiguity */
  178. probe_block++;
  179. goto reprobe;
  180. }
  181. }
  182. first_block >>= (PAGE_SHIFT - blkbits);
  183. if (page_no) { /* exclude the header page */
  184. if (first_block < lowest_block)
  185. lowest_block = first_block;
  186. if (first_block > highest_block)
  187. highest_block = first_block;
  188. }
  189. /*
  190. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  191. */
  192. ret = add_swap_extent(sis, page_no, 1, first_block);
  193. if (ret < 0)
  194. goto out;
  195. nr_extents += ret;
  196. page_no++;
  197. probe_block += blocks_per_page;
  198. reprobe:
  199. continue;
  200. }
  201. ret = nr_extents;
  202. *span = 1 + highest_block - lowest_block;
  203. if (page_no == 0)
  204. page_no = 1; /* force Empty message */
  205. sis->max = page_no;
  206. sis->pages = page_no - 1;
  207. sis->highest_bit = page_no - 1;
  208. out:
  209. return ret;
  210. bad_bmap:
  211. pr_err("swapon: swapfile has holes\n");
  212. ret = -EINVAL;
  213. goto out;
  214. }
  215. /*
  216. * We may have stale swap cache pages in memory: notice
  217. * them here and get rid of the unnecessary final write.
  218. */
  219. int swap_writepage(struct page *page, struct writeback_control *wbc)
  220. {
  221. int ret = 0;
  222. if (try_to_free_swap(page)) {
  223. unlock_page(page);
  224. goto out;
  225. }
  226. if (frontswap_store(page) == 0) {
  227. set_page_writeback(page);
  228. unlock_page(page);
  229. end_page_writeback(page);
  230. goto out;
  231. }
  232. ret = __swap_writepage(page, wbc, end_swap_bio_write);
  233. out:
  234. return ret;
  235. }
  236. static sector_t swap_page_sector(struct page *page)
  237. {
  238. return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
  239. }
  240. static inline void count_swpout_vm_event(struct page *page)
  241. {
  242. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  243. if (unlikely(PageTransHuge(page)))
  244. count_vm_event(THP_SWPOUT);
  245. #endif
  246. count_vm_events(PSWPOUT, hpage_nr_pages(page));
  247. }
  248. int __swap_writepage(struct page *page, struct writeback_control *wbc,
  249. bio_end_io_t end_write_func)
  250. {
  251. struct bio *bio;
  252. int ret;
  253. struct swap_info_struct *sis = page_swap_info(page);
  254. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  255. if (sis->flags & SWP_FILE) {
  256. struct kiocb kiocb;
  257. struct file *swap_file = sis->swap_file;
  258. struct address_space *mapping = swap_file->f_mapping;
  259. struct bio_vec bv = {
  260. .bv_page = page,
  261. .bv_len = PAGE_SIZE,
  262. .bv_offset = 0
  263. };
  264. struct iov_iter from;
  265. iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
  266. init_sync_kiocb(&kiocb, swap_file);
  267. kiocb.ki_pos = page_file_offset(page);
  268. set_page_writeback(page);
  269. unlock_page(page);
  270. ret = mapping->a_ops->direct_IO(&kiocb, &from);
  271. if (ret == PAGE_SIZE) {
  272. count_vm_event(PSWPOUT);
  273. ret = 0;
  274. } else {
  275. /*
  276. * In the case of swap-over-nfs, this can be a
  277. * temporary failure if the system has limited
  278. * memory for allocating transmit buffers.
  279. * Mark the page dirty and avoid
  280. * rotate_reclaimable_page but rate-limit the
  281. * messages but do not flag PageError like
  282. * the normal direct-to-bio case as it could
  283. * be temporary.
  284. */
  285. set_page_dirty(page);
  286. ClearPageReclaim(page);
  287. pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
  288. page_file_offset(page));
  289. }
  290. end_page_writeback(page);
  291. return ret;
  292. }
  293. ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
  294. if (!ret) {
  295. count_swpout_vm_event(page);
  296. return 0;
  297. }
  298. ret = 0;
  299. bio = get_swap_bio(GFP_NOIO, page, end_write_func);
  300. if (bio == NULL) {
  301. set_page_dirty(page);
  302. unlock_page(page);
  303. ret = -ENOMEM;
  304. goto out;
  305. }
  306. bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
  307. bio_associate_blkcg_from_page(bio, page);
  308. count_swpout_vm_event(page);
  309. set_page_writeback(page);
  310. unlock_page(page);
  311. submit_bio(bio);
  312. out:
  313. return ret;
  314. }
  315. int swap_readpage(struct page *page, bool synchronous)
  316. {
  317. struct bio *bio;
  318. int ret = 0;
  319. struct swap_info_struct *sis = page_swap_info(page);
  320. blk_qc_t qc;
  321. struct gendisk *disk;
  322. VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
  323. VM_BUG_ON_PAGE(!PageLocked(page), page);
  324. VM_BUG_ON_PAGE(PageUptodate(page), page);
  325. if (frontswap_load(page) == 0) {
  326. SetPageUptodate(page);
  327. unlock_page(page);
  328. goto out;
  329. }
  330. if (sis->flags & SWP_FILE) {
  331. struct file *swap_file = sis->swap_file;
  332. struct address_space *mapping = swap_file->f_mapping;
  333. ret = mapping->a_ops->readpage(swap_file, page);
  334. if (!ret)
  335. count_vm_event(PSWPIN);
  336. return ret;
  337. }
  338. ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
  339. if (!ret) {
  340. if (trylock_page(page)) {
  341. swap_slot_free_notify(page);
  342. unlock_page(page);
  343. }
  344. count_vm_event(PSWPIN);
  345. return 0;
  346. }
  347. ret = 0;
  348. bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
  349. if (bio == NULL) {
  350. unlock_page(page);
  351. ret = -ENOMEM;
  352. goto out;
  353. }
  354. disk = bio->bi_disk;
  355. /*
  356. * Keep this task valid during swap readpage because the oom killer may
  357. * attempt to access it in the page fault retry time check.
  358. */
  359. get_task_struct(current);
  360. bio->bi_private = current;
  361. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  362. count_vm_event(PSWPIN);
  363. bio_get(bio);
  364. qc = submit_bio(bio);
  365. while (synchronous) {
  366. set_current_state(TASK_UNINTERRUPTIBLE);
  367. if (!READ_ONCE(bio->bi_private))
  368. break;
  369. if (!blk_poll(disk->queue, qc))
  370. break;
  371. }
  372. __set_current_state(TASK_RUNNING);
  373. bio_put(bio);
  374. out:
  375. return ret;
  376. }
  377. int swap_set_page_dirty(struct page *page)
  378. {
  379. struct swap_info_struct *sis = page_swap_info(page);
  380. if (sis->flags & SWP_FILE) {
  381. struct address_space *mapping = sis->swap_file->f_mapping;
  382. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  383. return mapping->a_ops->set_page_dirty(page);
  384. } else {
  385. return __set_page_dirty_no_writeback(page);
  386. }
  387. }