page_ext.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/mmzone.h>
  4. #include <linux/bootmem.h>
  5. #include <linux/page_ext.h>
  6. #include <linux/memory.h>
  7. #include <linux/vmalloc.h>
  8. #include <linux/kmemleak.h>
  9. #include <linux/page_owner.h>
  10. #include <linux/page_idle.h>
  11. /*
  12. * struct page extension
  13. *
  14. * This is the feature to manage memory for extended data per page.
  15. *
  16. * Until now, we must modify struct page itself to store extra data per page.
  17. * This requires rebuilding the kernel and it is really time consuming process.
  18. * And, sometimes, rebuild is impossible due to third party module dependency.
  19. * At last, enlarging struct page could cause un-wanted system behaviour change.
  20. *
  21. * This feature is intended to overcome above mentioned problems. This feature
  22. * allocates memory for extended data per page in certain place rather than
  23. * the struct page itself. This memory can be accessed by the accessor
  24. * functions provided by this code. During the boot process, it checks whether
  25. * allocation of huge chunk of memory is needed or not. If not, it avoids
  26. * allocating memory at all. With this advantage, we can include this feature
  27. * into the kernel in default and can avoid rebuild and solve related problems.
  28. *
  29. * To help these things to work well, there are two callbacks for clients. One
  30. * is the need callback which is mandatory if user wants to avoid useless
  31. * memory allocation at boot-time. The other is optional, init callback, which
  32. * is used to do proper initialization after memory is allocated.
  33. *
  34. * The need callback is used to decide whether extended memory allocation is
  35. * needed or not. Sometimes users want to deactivate some features in this
  36. * boot and extra memory would be unneccessary. In this case, to avoid
  37. * allocating huge chunk of memory, each clients represent their need of
  38. * extra memory through the need callback. If one of the need callbacks
  39. * returns true, it means that someone needs extra memory so that
  40. * page extension core should allocates memory for page extension. If
  41. * none of need callbacks return true, memory isn't needed at all in this boot
  42. * and page extension core can skip to allocate memory. As result,
  43. * none of memory is wasted.
  44. *
  45. * When need callback returns true, page_ext checks if there is a request for
  46. * extra memory through size in struct page_ext_operations. If it is non-zero,
  47. * extra space is allocated for each page_ext entry and offset is returned to
  48. * user through offset in struct page_ext_operations.
  49. *
  50. * The init callback is used to do proper initialization after page extension
  51. * is completely initialized. In sparse memory system, extra memory is
  52. * allocated some time later than memmap is allocated. In other words, lifetime
  53. * of memory for page extension isn't same with memmap for struct page.
  54. * Therefore, clients can't store extra data until page extension is
  55. * initialized, even if pages are allocated and used freely. This could
  56. * cause inadequate state of extra data per page, so, to prevent it, client
  57. * can utilize this callback to initialize the state of it correctly.
  58. */
  59. static struct page_ext_operations *page_ext_ops[] = {
  60. #ifdef CONFIG_DEBUG_PAGEALLOC
  61. &debug_guardpage_ops,
  62. #endif
  63. #ifdef CONFIG_PAGE_OWNER
  64. &page_owner_ops,
  65. #endif
  66. #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  67. &page_idle_ops,
  68. #endif
  69. };
  70. static unsigned long total_usage;
  71. static unsigned long extra_mem;
  72. static bool __init invoke_need_callbacks(void)
  73. {
  74. int i;
  75. int entries = ARRAY_SIZE(page_ext_ops);
  76. bool need = false;
  77. for (i = 0; i < entries; i++) {
  78. if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  79. page_ext_ops[i]->offset = sizeof(struct page_ext) +
  80. extra_mem;
  81. extra_mem += page_ext_ops[i]->size;
  82. need = true;
  83. }
  84. }
  85. return need;
  86. }
  87. static void __init invoke_init_callbacks(void)
  88. {
  89. int i;
  90. int entries = ARRAY_SIZE(page_ext_ops);
  91. for (i = 0; i < entries; i++) {
  92. if (page_ext_ops[i]->init)
  93. page_ext_ops[i]->init();
  94. }
  95. }
  96. static unsigned long get_entry_size(void)
  97. {
  98. return sizeof(struct page_ext) + extra_mem;
  99. }
  100. static inline struct page_ext *get_entry(void *base, unsigned long index)
  101. {
  102. return base + get_entry_size() * index;
  103. }
  104. #if !defined(CONFIG_SPARSEMEM)
  105. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  106. {
  107. pgdat->node_page_ext = NULL;
  108. }
  109. struct page_ext *lookup_page_ext(const struct page *page)
  110. {
  111. unsigned long pfn = page_to_pfn(page);
  112. unsigned long index;
  113. struct page_ext *base;
  114. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  115. /*
  116. * The sanity checks the page allocator does upon freeing a
  117. * page can reach here before the page_ext arrays are
  118. * allocated when feeding a range of pages to the allocator
  119. * for the first time during bootup or memory hotplug.
  120. */
  121. if (unlikely(!base))
  122. return NULL;
  123. index = pfn - round_down(node_start_pfn(page_to_nid(page)),
  124. MAX_ORDER_NR_PAGES);
  125. return get_entry(base, index);
  126. }
  127. static int __init alloc_node_page_ext(int nid)
  128. {
  129. struct page_ext *base;
  130. unsigned long table_size;
  131. unsigned long nr_pages;
  132. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  133. if (!nr_pages)
  134. return 0;
  135. /*
  136. * Need extra space if node range is not aligned with
  137. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  138. * checks buddy's status, range could be out of exact node range.
  139. */
  140. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  141. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  142. nr_pages += MAX_ORDER_NR_PAGES;
  143. table_size = get_entry_size() * nr_pages;
  144. base = memblock_virt_alloc_try_nid_nopanic(
  145. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  146. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  147. if (!base)
  148. return -ENOMEM;
  149. NODE_DATA(nid)->node_page_ext = base;
  150. total_usage += table_size;
  151. return 0;
  152. }
  153. void __init page_ext_init_flatmem(void)
  154. {
  155. int nid, fail;
  156. if (!invoke_need_callbacks())
  157. return;
  158. for_each_online_node(nid) {
  159. fail = alloc_node_page_ext(nid);
  160. if (fail)
  161. goto fail;
  162. }
  163. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  164. invoke_init_callbacks();
  165. return;
  166. fail:
  167. pr_crit("allocation of page_ext failed.\n");
  168. panic("Out of memory");
  169. }
  170. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  171. struct page_ext *lookup_page_ext(const struct page *page)
  172. {
  173. unsigned long pfn = page_to_pfn(page);
  174. struct mem_section *section = __pfn_to_section(pfn);
  175. /*
  176. * The sanity checks the page allocator does upon freeing a
  177. * page can reach here before the page_ext arrays are
  178. * allocated when feeding a range of pages to the allocator
  179. * for the first time during bootup or memory hotplug.
  180. */
  181. if (!section->page_ext)
  182. return NULL;
  183. return get_entry(section->page_ext, pfn);
  184. }
  185. static void *__meminit alloc_page_ext(size_t size, int nid)
  186. {
  187. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  188. void *addr = NULL;
  189. addr = alloc_pages_exact_nid(nid, size, flags);
  190. if (addr) {
  191. kmemleak_alloc(addr, size, 1, flags);
  192. return addr;
  193. }
  194. addr = vzalloc_node(size, nid);
  195. return addr;
  196. }
  197. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  198. {
  199. struct mem_section *section;
  200. struct page_ext *base;
  201. unsigned long table_size;
  202. section = __pfn_to_section(pfn);
  203. if (section->page_ext)
  204. return 0;
  205. table_size = get_entry_size() * PAGES_PER_SECTION;
  206. base = alloc_page_ext(table_size, nid);
  207. /*
  208. * The value stored in section->page_ext is (base - pfn)
  209. * and it does not point to the memory block allocated above,
  210. * causing kmemleak false positives.
  211. */
  212. kmemleak_not_leak(base);
  213. if (!base) {
  214. pr_err("page ext allocation failure\n");
  215. return -ENOMEM;
  216. }
  217. /*
  218. * The passed "pfn" may not be aligned to SECTION. For the calculation
  219. * we need to apply a mask.
  220. */
  221. pfn &= PAGE_SECTION_MASK;
  222. section->page_ext = (void *)base - get_entry_size() * pfn;
  223. total_usage += table_size;
  224. return 0;
  225. }
  226. #ifdef CONFIG_MEMORY_HOTPLUG
  227. static void free_page_ext(void *addr)
  228. {
  229. if (is_vmalloc_addr(addr)) {
  230. vfree(addr);
  231. } else {
  232. struct page *page = virt_to_page(addr);
  233. size_t table_size;
  234. table_size = get_entry_size() * PAGES_PER_SECTION;
  235. BUG_ON(PageReserved(page));
  236. kmemleak_free(addr);
  237. free_pages_exact(addr, table_size);
  238. }
  239. }
  240. static void __free_page_ext(unsigned long pfn)
  241. {
  242. struct mem_section *ms;
  243. struct page_ext *base;
  244. ms = __pfn_to_section(pfn);
  245. if (!ms || !ms->page_ext)
  246. return;
  247. base = get_entry(ms->page_ext, pfn);
  248. free_page_ext(base);
  249. ms->page_ext = NULL;
  250. }
  251. static int __meminit online_page_ext(unsigned long start_pfn,
  252. unsigned long nr_pages,
  253. int nid)
  254. {
  255. unsigned long start, end, pfn;
  256. int fail = 0;
  257. start = SECTION_ALIGN_DOWN(start_pfn);
  258. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  259. if (nid == -1) {
  260. /*
  261. * In this case, "nid" already exists and contains valid memory.
  262. * "start_pfn" passed to us is a pfn which is an arg for
  263. * online__pages(), and start_pfn should exist.
  264. */
  265. nid = pfn_to_nid(start_pfn);
  266. VM_BUG_ON(!node_state(nid, N_ONLINE));
  267. }
  268. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  269. if (!pfn_present(pfn))
  270. continue;
  271. fail = init_section_page_ext(pfn, nid);
  272. }
  273. if (!fail)
  274. return 0;
  275. /* rollback */
  276. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  277. __free_page_ext(pfn);
  278. return -ENOMEM;
  279. }
  280. static int __meminit offline_page_ext(unsigned long start_pfn,
  281. unsigned long nr_pages, int nid)
  282. {
  283. unsigned long start, end, pfn;
  284. start = SECTION_ALIGN_DOWN(start_pfn);
  285. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  286. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  287. __free_page_ext(pfn);
  288. return 0;
  289. }
  290. static int __meminit page_ext_callback(struct notifier_block *self,
  291. unsigned long action, void *arg)
  292. {
  293. struct memory_notify *mn = arg;
  294. int ret = 0;
  295. switch (action) {
  296. case MEM_GOING_ONLINE:
  297. ret = online_page_ext(mn->start_pfn,
  298. mn->nr_pages, mn->status_change_nid);
  299. break;
  300. case MEM_OFFLINE:
  301. offline_page_ext(mn->start_pfn,
  302. mn->nr_pages, mn->status_change_nid);
  303. break;
  304. case MEM_CANCEL_ONLINE:
  305. offline_page_ext(mn->start_pfn,
  306. mn->nr_pages, mn->status_change_nid);
  307. break;
  308. case MEM_GOING_OFFLINE:
  309. break;
  310. case MEM_ONLINE:
  311. case MEM_CANCEL_OFFLINE:
  312. break;
  313. }
  314. return notifier_from_errno(ret);
  315. }
  316. #endif
  317. void __init page_ext_init(void)
  318. {
  319. unsigned long pfn;
  320. int nid;
  321. if (!invoke_need_callbacks())
  322. return;
  323. for_each_node_state(nid, N_MEMORY) {
  324. unsigned long start_pfn, end_pfn;
  325. start_pfn = node_start_pfn(nid);
  326. end_pfn = node_end_pfn(nid);
  327. /*
  328. * start_pfn and end_pfn may not be aligned to SECTION and the
  329. * page->flags of out of node pages are not initialized. So we
  330. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  331. */
  332. for (pfn = start_pfn; pfn < end_pfn;
  333. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  334. if (!pfn_valid(pfn))
  335. continue;
  336. /*
  337. * Nodes's pfns can be overlapping.
  338. * We know some arch can have a nodes layout such as
  339. * -------------pfn-------------->
  340. * N0 | N1 | N2 | N0 | N1 | N2|....
  341. */
  342. if (pfn_to_nid(pfn) != nid)
  343. continue;
  344. if (init_section_page_ext(pfn, nid))
  345. goto oom;
  346. cond_resched();
  347. }
  348. }
  349. hotplug_memory_notifier(page_ext_callback, 0);
  350. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  351. invoke_init_callbacks();
  352. return;
  353. oom:
  354. panic("Out of memory");
  355. }
  356. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  357. {
  358. }
  359. #endif