1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954 |
- /*
- * Procedures for maintaining information about logical memory blocks.
- *
- * Peter Bergner, IBM Corp. June 2001.
- * Copyright (C) 2001 Peter Bergner.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #include <linux/kernel.h>
- #include <linux/slab.h>
- #include <linux/init.h>
- #include <linux/bitops.h>
- #include <linux/poison.h>
- #include <linux/pfn.h>
- #include <linux/debugfs.h>
- #include <linux/kmemleak.h>
- #include <linux/seq_file.h>
- #include <linux/memblock.h>
- #include <linux/bootmem.h>
- #include <asm/sections.h>
- #include <linux/io.h>
- #include "internal.h"
- /**
- * DOC: memblock overview
- *
- * Memblock is a method of managing memory regions during the early
- * boot period when the usual kernel memory allocators are not up and
- * running.
- *
- * Memblock views the system memory as collections of contiguous
- * regions. There are several types of these collections:
- *
- * * ``memory`` - describes the physical memory available to the
- * kernel; this may differ from the actual physical memory installed
- * in the system, for instance when the memory is restricted with
- * ``mem=`` command line parameter
- * * ``reserved`` - describes the regions that were allocated
- * * ``physmap`` - describes the actual physical memory regardless of
- * the possible restrictions; the ``physmap`` type is only available
- * on some architectures.
- *
- * Each region is represented by :c:type:`struct memblock_region` that
- * defines the region extents, its attributes and NUMA node id on NUMA
- * systems. Every memory type is described by the :c:type:`struct
- * memblock_type` which contains an array of memory regions along with
- * the allocator metadata. The memory types are nicely wrapped with
- * :c:type:`struct memblock`. This structure is statically initialzed
- * at build time. The region arrays for the "memory" and "reserved"
- * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
- * "physmap" type to %INIT_PHYSMEM_REGIONS.
- * The :c:func:`memblock_allow_resize` enables automatic resizing of
- * the region arrays during addition of new regions. This feature
- * should be used with care so that memory allocated for the region
- * array will not overlap with areas that should be reserved, for
- * example initrd.
- *
- * The early architecture setup should tell memblock what the physical
- * memory layout is by using :c:func:`memblock_add` or
- * :c:func:`memblock_add_node` functions. The first function does not
- * assign the region to a NUMA node and it is appropriate for UMA
- * systems. Yet, it is possible to use it on NUMA systems as well and
- * assign the region to a NUMA node later in the setup process using
- * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
- * performs such an assignment directly.
- *
- * Once memblock is setup the memory can be allocated using either
- * memblock or bootmem APIs.
- *
- * As the system boot progresses, the architecture specific
- * :c:func:`mem_init` function frees all the memory to the buddy page
- * allocator.
- *
- * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
- * memblock data structures will be discarded after the system
- * initialization compltes.
- */
- static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
- static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
- #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
- static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
- #endif
- struct memblock memblock __initdata_memblock = {
- .memory.regions = memblock_memory_init_regions,
- .memory.cnt = 1, /* empty dummy entry */
- .memory.max = INIT_MEMBLOCK_REGIONS,
- .memory.name = "memory",
- .reserved.regions = memblock_reserved_init_regions,
- .reserved.cnt = 1, /* empty dummy entry */
- .reserved.max = INIT_MEMBLOCK_REGIONS,
- .reserved.name = "reserved",
- #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
- .physmem.regions = memblock_physmem_init_regions,
- .physmem.cnt = 1, /* empty dummy entry */
- .physmem.max = INIT_PHYSMEM_REGIONS,
- .physmem.name = "physmem",
- #endif
- .bottom_up = false,
- .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
- };
- int memblock_debug __initdata_memblock;
- static bool system_has_some_mirror __initdata_memblock = false;
- static int memblock_can_resize __initdata_memblock;
- static int memblock_memory_in_slab __initdata_memblock = 0;
- static int memblock_reserved_in_slab __initdata_memblock = 0;
- enum memblock_flags __init_memblock choose_memblock_flags(void)
- {
- return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
- }
- /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
- static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
- {
- return *size = min(*size, PHYS_ADDR_MAX - base);
- }
- /*
- * Address comparison utilities
- */
- static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
- phys_addr_t base2, phys_addr_t size2)
- {
- return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
- }
- bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
- {
- unsigned long i;
- for (i = 0; i < type->cnt; i++)
- if (memblock_addrs_overlap(base, size, type->regions[i].base,
- type->regions[i].size))
- break;
- return i < type->cnt;
- }
- /**
- * __memblock_find_range_bottom_up - find free area utility in bottom-up
- * @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
- * %MEMBLOCK_ALLOC_ACCESSIBLE
- * @size: size of free area to find
- * @align: alignment of free area to find
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- * @flags: pick from blocks based on memory attributes
- *
- * Utility called from memblock_find_in_range_node(), find free area bottom-up.
- *
- * Return:
- * Found address on success, 0 on failure.
- */
- static phys_addr_t __init_memblock
- __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
- phys_addr_t size, phys_addr_t align, int nid,
- enum memblock_flags flags)
- {
- phys_addr_t this_start, this_end, cand;
- u64 i;
- for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
- this_start = clamp(this_start, start, end);
- this_end = clamp(this_end, start, end);
- cand = round_up(this_start, align);
- if (cand < this_end && this_end - cand >= size)
- return cand;
- }
- return 0;
- }
- /**
- * __memblock_find_range_top_down - find free area utility, in top-down
- * @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
- * %MEMBLOCK_ALLOC_ACCESSIBLE
- * @size: size of free area to find
- * @align: alignment of free area to find
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- * @flags: pick from blocks based on memory attributes
- *
- * Utility called from memblock_find_in_range_node(), find free area top-down.
- *
- * Return:
- * Found address on success, 0 on failure.
- */
- static phys_addr_t __init_memblock
- __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
- phys_addr_t size, phys_addr_t align, int nid,
- enum memblock_flags flags)
- {
- phys_addr_t this_start, this_end, cand;
- u64 i;
- for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
- NULL) {
- this_start = clamp(this_start, start, end);
- this_end = clamp(this_end, start, end);
- if (this_end < size)
- continue;
- cand = round_down(this_end - size, align);
- if (cand >= this_start)
- return cand;
- }
- return 0;
- }
- /**
- * memblock_find_in_range_node - find free area in given range and node
- * @size: size of free area to find
- * @align: alignment of free area to find
- * @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
- * %MEMBLOCK_ALLOC_ACCESSIBLE
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- * @flags: pick from blocks based on memory attributes
- *
- * Find @size free area aligned to @align in the specified range and node.
- *
- * When allocation direction is bottom-up, the @start should be greater
- * than the end of the kernel image. Otherwise, it will be trimmed. The
- * reason is that we want the bottom-up allocation just near the kernel
- * image so it is highly likely that the allocated memory and the kernel
- * will reside in the same node.
- *
- * If bottom-up allocation failed, will try to allocate memory top-down.
- *
- * Return:
- * Found address on success, 0 on failure.
- */
- phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
- phys_addr_t align, phys_addr_t start,
- phys_addr_t end, int nid,
- enum memblock_flags flags)
- {
- phys_addr_t kernel_end, ret;
- /* pump up @end */
- if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
- end = memblock.current_limit;
- /* avoid allocating the first page */
- start = max_t(phys_addr_t, start, PAGE_SIZE);
- end = max(start, end);
- kernel_end = __pa_symbol(_end);
- /*
- * try bottom-up allocation only when bottom-up mode
- * is set and @end is above the kernel image.
- */
- if (memblock_bottom_up() && end > kernel_end) {
- phys_addr_t bottom_up_start;
- /* make sure we will allocate above the kernel */
- bottom_up_start = max(start, kernel_end);
- /* ok, try bottom-up allocation first */
- ret = __memblock_find_range_bottom_up(bottom_up_start, end,
- size, align, nid, flags);
- if (ret)
- return ret;
- /*
- * we always limit bottom-up allocation above the kernel,
- * but top-down allocation doesn't have the limit, so
- * retrying top-down allocation may succeed when bottom-up
- * allocation failed.
- *
- * bottom-up allocation is expected to be fail very rarely,
- * so we use WARN_ONCE() here to see the stack trace if
- * fail happens.
- */
- WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
- "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
- }
- return __memblock_find_range_top_down(start, end, size, align, nid,
- flags);
- }
- /**
- * memblock_find_in_range - find free area in given range
- * @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
- * %MEMBLOCK_ALLOC_ACCESSIBLE
- * @size: size of free area to find
- * @align: alignment of free area to find
- *
- * Find @size free area aligned to @align in the specified range.
- *
- * Return:
- * Found address on success, 0 on failure.
- */
- phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
- phys_addr_t end, phys_addr_t size,
- phys_addr_t align)
- {
- phys_addr_t ret;
- enum memblock_flags flags = choose_memblock_flags();
- again:
- ret = memblock_find_in_range_node(size, align, start, end,
- NUMA_NO_NODE, flags);
- if (!ret && (flags & MEMBLOCK_MIRROR)) {
- pr_warn("Could not allocate %pap bytes of mirrored memory\n",
- &size);
- flags &= ~MEMBLOCK_MIRROR;
- goto again;
- }
- return ret;
- }
- static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
- {
- type->total_size -= type->regions[r].size;
- memmove(&type->regions[r], &type->regions[r + 1],
- (type->cnt - (r + 1)) * sizeof(type->regions[r]));
- type->cnt--;
- /* Special case for empty arrays */
- if (type->cnt == 0) {
- WARN_ON(type->total_size != 0);
- type->cnt = 1;
- type->regions[0].base = 0;
- type->regions[0].size = 0;
- type->regions[0].flags = 0;
- memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
- }
- }
- #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
- /**
- * memblock_discard - discard memory and reserved arrays if they were allocated
- */
- void __init memblock_discard(void)
- {
- phys_addr_t addr, size;
- if (memblock.reserved.regions != memblock_reserved_init_regions) {
- addr = __pa(memblock.reserved.regions);
- size = PAGE_ALIGN(sizeof(struct memblock_region) *
- memblock.reserved.max);
- __memblock_free_late(addr, size);
- }
- if (memblock.memory.regions != memblock_memory_init_regions) {
- addr = __pa(memblock.memory.regions);
- size = PAGE_ALIGN(sizeof(struct memblock_region) *
- memblock.memory.max);
- __memblock_free_late(addr, size);
- }
- }
- #endif
- /**
- * memblock_double_array - double the size of the memblock regions array
- * @type: memblock type of the regions array being doubled
- * @new_area_start: starting address of memory range to avoid overlap with
- * @new_area_size: size of memory range to avoid overlap with
- *
- * Double the size of the @type regions array. If memblock is being used to
- * allocate memory for a new reserved regions array and there is a previously
- * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
- * waiting to be reserved, ensure the memory used by the new array does
- * not overlap.
- *
- * Return:
- * 0 on success, -1 on failure.
- */
- static int __init_memblock memblock_double_array(struct memblock_type *type,
- phys_addr_t new_area_start,
- phys_addr_t new_area_size)
- {
- struct memblock_region *new_array, *old_array;
- phys_addr_t old_alloc_size, new_alloc_size;
- phys_addr_t old_size, new_size, addr, new_end;
- int use_slab = slab_is_available();
- int *in_slab;
- /* We don't allow resizing until we know about the reserved regions
- * of memory that aren't suitable for allocation
- */
- if (!memblock_can_resize)
- return -1;
- /* Calculate new doubled size */
- old_size = type->max * sizeof(struct memblock_region);
- new_size = old_size << 1;
- /*
- * We need to allocated new one align to PAGE_SIZE,
- * so we can free them completely later.
- */
- old_alloc_size = PAGE_ALIGN(old_size);
- new_alloc_size = PAGE_ALIGN(new_size);
- /* Retrieve the slab flag */
- if (type == &memblock.memory)
- in_slab = &memblock_memory_in_slab;
- else
- in_slab = &memblock_reserved_in_slab;
- /* Try to find some space for it.
- *
- * WARNING: We assume that either slab_is_available() and we use it or
- * we use MEMBLOCK for allocations. That means that this is unsafe to
- * use when bootmem is currently active (unless bootmem itself is
- * implemented on top of MEMBLOCK which isn't the case yet)
- *
- * This should however not be an issue for now, as we currently only
- * call into MEMBLOCK while it's still active, or much later when slab
- * is active for memory hotplug operations
- */
- if (use_slab) {
- new_array = kmalloc(new_size, GFP_KERNEL);
- addr = new_array ? __pa(new_array) : 0;
- } else {
- /* only exclude range when trying to double reserved.regions */
- if (type != &memblock.reserved)
- new_area_start = new_area_size = 0;
- addr = memblock_find_in_range(new_area_start + new_area_size,
- memblock.current_limit,
- new_alloc_size, PAGE_SIZE);
- if (!addr && new_area_size)
- addr = memblock_find_in_range(0,
- min(new_area_start, memblock.current_limit),
- new_alloc_size, PAGE_SIZE);
- new_array = addr ? __va(addr) : NULL;
- }
- if (!addr) {
- pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
- type->name, type->max, type->max * 2);
- return -1;
- }
- new_end = addr + new_size - 1;
- memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
- type->name, type->max * 2, &addr, &new_end);
- /*
- * Found space, we now need to move the array over before we add the
- * reserved region since it may be our reserved array itself that is
- * full.
- */
- memcpy(new_array, type->regions, old_size);
- memset(new_array + type->max, 0, old_size);
- old_array = type->regions;
- type->regions = new_array;
- type->max <<= 1;
- /* Free old array. We needn't free it if the array is the static one */
- if (*in_slab)
- kfree(old_array);
- else if (old_array != memblock_memory_init_regions &&
- old_array != memblock_reserved_init_regions)
- memblock_free(__pa(old_array), old_alloc_size);
- /*
- * Reserve the new array if that comes from the memblock. Otherwise, we
- * needn't do it
- */
- if (!use_slab)
- BUG_ON(memblock_reserve(addr, new_alloc_size));
- /* Update slab flag */
- *in_slab = use_slab;
- return 0;
- }
- /**
- * memblock_merge_regions - merge neighboring compatible regions
- * @type: memblock type to scan
- *
- * Scan @type and merge neighboring compatible regions.
- */
- static void __init_memblock memblock_merge_regions(struct memblock_type *type)
- {
- int i = 0;
- /* cnt never goes below 1 */
- while (i < type->cnt - 1) {
- struct memblock_region *this = &type->regions[i];
- struct memblock_region *next = &type->regions[i + 1];
- if (this->base + this->size != next->base ||
- memblock_get_region_node(this) !=
- memblock_get_region_node(next) ||
- this->flags != next->flags) {
- BUG_ON(this->base + this->size > next->base);
- i++;
- continue;
- }
- this->size += next->size;
- /* move forward from next + 1, index of which is i + 2 */
- memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
- type->cnt--;
- }
- }
- /**
- * memblock_insert_region - insert new memblock region
- * @type: memblock type to insert into
- * @idx: index for the insertion point
- * @base: base address of the new region
- * @size: size of the new region
- * @nid: node id of the new region
- * @flags: flags of the new region
- *
- * Insert new memblock region [@base, @base + @size) into @type at @idx.
- * @type must already have extra room to accommodate the new region.
- */
- static void __init_memblock memblock_insert_region(struct memblock_type *type,
- int idx, phys_addr_t base,
- phys_addr_t size,
- int nid,
- enum memblock_flags flags)
- {
- struct memblock_region *rgn = &type->regions[idx];
- BUG_ON(type->cnt >= type->max);
- memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
- rgn->base = base;
- rgn->size = size;
- rgn->flags = flags;
- memblock_set_region_node(rgn, nid);
- type->cnt++;
- type->total_size += size;
- }
- /**
- * memblock_add_range - add new memblock region
- * @type: memblock type to add new region into
- * @base: base address of the new region
- * @size: size of the new region
- * @nid: nid of the new region
- * @flags: flags of the new region
- *
- * Add new memblock region [@base, @base + @size) into @type. The new region
- * is allowed to overlap with existing ones - overlaps don't affect already
- * existing regions. @type is guaranteed to be minimal (all neighbouring
- * compatible regions are merged) after the addition.
- *
- * Return:
- * 0 on success, -errno on failure.
- */
- int __init_memblock memblock_add_range(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size,
- int nid, enum memblock_flags flags)
- {
- bool insert = false;
- phys_addr_t obase = base;
- phys_addr_t end = base + memblock_cap_size(base, &size);
- int idx, nr_new;
- struct memblock_region *rgn;
- if (!size)
- return 0;
- /* special case for empty array */
- if (type->regions[0].size == 0) {
- WARN_ON(type->cnt != 1 || type->total_size);
- type->regions[0].base = base;
- type->regions[0].size = size;
- type->regions[0].flags = flags;
- memblock_set_region_node(&type->regions[0], nid);
- type->total_size = size;
- return 0;
- }
- repeat:
- /*
- * The following is executed twice. Once with %false @insert and
- * then with %true. The first counts the number of regions needed
- * to accommodate the new area. The second actually inserts them.
- */
- base = obase;
- nr_new = 0;
- for_each_memblock_type(idx, type, rgn) {
- phys_addr_t rbase = rgn->base;
- phys_addr_t rend = rbase + rgn->size;
- if (rbase >= end)
- break;
- if (rend <= base)
- continue;
- /*
- * @rgn overlaps. If it separates the lower part of new
- * area, insert that portion.
- */
- if (rbase > base) {
- #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- WARN_ON(nid != memblock_get_region_node(rgn));
- #endif
- WARN_ON(flags != rgn->flags);
- nr_new++;
- if (insert)
- memblock_insert_region(type, idx++, base,
- rbase - base, nid,
- flags);
- }
- /* area below @rend is dealt with, forget about it */
- base = min(rend, end);
- }
- /* insert the remaining portion */
- if (base < end) {
- nr_new++;
- if (insert)
- memblock_insert_region(type, idx, base, end - base,
- nid, flags);
- }
- if (!nr_new)
- return 0;
- /*
- * If this was the first round, resize array and repeat for actual
- * insertions; otherwise, merge and return.
- */
- if (!insert) {
- while (type->cnt + nr_new > type->max)
- if (memblock_double_array(type, obase, size) < 0)
- return -ENOMEM;
- insert = true;
- goto repeat;
- } else {
- memblock_merge_regions(type);
- return 0;
- }
- }
- /**
- * memblock_add_node - add new memblock region within a NUMA node
- * @base: base address of the new region
- * @size: size of the new region
- * @nid: nid of the new region
- *
- * Add new memblock region [@base, @base + @size) to the "memory"
- * type. See memblock_add_range() description for mode details
- *
- * Return:
- * 0 on success, -errno on failure.
- */
- int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
- int nid)
- {
- return memblock_add_range(&memblock.memory, base, size, nid, 0);
- }
- /**
- * memblock_add - add new memblock region
- * @base: base address of the new region
- * @size: size of the new region
- *
- * Add new memblock region [@base, @base + @size) to the "memory"
- * type. See memblock_add_range() description for mode details
- *
- * Return:
- * 0 on success, -errno on failure.
- */
- int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
- {
- phys_addr_t end = base + size - 1;
- memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
- &base, &end, (void *)_RET_IP_);
- return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
- }
- /**
- * memblock_isolate_range - isolate given range into disjoint memblocks
- * @type: memblock type to isolate range for
- * @base: base of range to isolate
- * @size: size of range to isolate
- * @start_rgn: out parameter for the start of isolated region
- * @end_rgn: out parameter for the end of isolated region
- *
- * Walk @type and ensure that regions don't cross the boundaries defined by
- * [@base, @base + @size). Crossing regions are split at the boundaries,
- * which may create at most two more regions. The index of the first
- * region inside the range is returned in *@start_rgn and end in *@end_rgn.
- *
- * Return:
- * 0 on success, -errno on failure.
- */
- static int __init_memblock memblock_isolate_range(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size,
- int *start_rgn, int *end_rgn)
- {
- phys_addr_t end = base + memblock_cap_size(base, &size);
- int idx;
- struct memblock_region *rgn;
- *start_rgn = *end_rgn = 0;
- if (!size)
- return 0;
- /* we'll create at most two more regions */
- while (type->cnt + 2 > type->max)
- if (memblock_double_array(type, base, size) < 0)
- return -ENOMEM;
- for_each_memblock_type(idx, type, rgn) {
- phys_addr_t rbase = rgn->base;
- phys_addr_t rend = rbase + rgn->size;
- if (rbase >= end)
- break;
- if (rend <= base)
- continue;
- if (rbase < base) {
- /*
- * @rgn intersects from below. Split and continue
- * to process the next region - the new top half.
- */
- rgn->base = base;
- rgn->size -= base - rbase;
- type->total_size -= base - rbase;
- memblock_insert_region(type, idx, rbase, base - rbase,
- memblock_get_region_node(rgn),
- rgn->flags);
- } else if (rend > end) {
- /*
- * @rgn intersects from above. Split and redo the
- * current region - the new bottom half.
- */
- rgn->base = end;
- rgn->size -= end - rbase;
- type->total_size -= end - rbase;
- memblock_insert_region(type, idx--, rbase, end - rbase,
- memblock_get_region_node(rgn),
- rgn->flags);
- } else {
- /* @rgn is fully contained, record it */
- if (!*end_rgn)
- *start_rgn = idx;
- *end_rgn = idx + 1;
- }
- }
- return 0;
- }
- static int __init_memblock memblock_remove_range(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
- {
- int start_rgn, end_rgn;
- int i, ret;
- ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
- if (ret)
- return ret;
- for (i = end_rgn - 1; i >= start_rgn; i--)
- memblock_remove_region(type, i);
- return 0;
- }
- int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
- {
- phys_addr_t end = base + size - 1;
- memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
- &base, &end, (void *)_RET_IP_);
- return memblock_remove_range(&memblock.memory, base, size);
- }
- int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
- {
- phys_addr_t end = base + size - 1;
- memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
- &base, &end, (void *)_RET_IP_);
- kmemleak_free_part_phys(base, size);
- return memblock_remove_range(&memblock.reserved, base, size);
- }
- int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
- {
- phys_addr_t end = base + size - 1;
- memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
- &base, &end, (void *)_RET_IP_);
- return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
- }
- /**
- * memblock_setclr_flag - set or clear flag for a memory region
- * @base: base address of the region
- * @size: size of the region
- * @set: set or clear the flag
- * @flag: the flag to udpate
- *
- * This function isolates region [@base, @base + @size), and sets/clears flag
- *
- * Return: 0 on success, -errno on failure.
- */
- static int __init_memblock memblock_setclr_flag(phys_addr_t base,
- phys_addr_t size, int set, int flag)
- {
- struct memblock_type *type = &memblock.memory;
- int i, ret, start_rgn, end_rgn;
- ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
- if (ret)
- return ret;
- for (i = start_rgn; i < end_rgn; i++)
- if (set)
- memblock_set_region_flags(&type->regions[i], flag);
- else
- memblock_clear_region_flags(&type->regions[i], flag);
- memblock_merge_regions(type);
- return 0;
- }
- /**
- * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
- * @base: the base phys addr of the region
- * @size: the size of the region
- *
- * Return: 0 on success, -errno on failure.
- */
- int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
- {
- return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
- }
- /**
- * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
- * @base: the base phys addr of the region
- * @size: the size of the region
- *
- * Return: 0 on success, -errno on failure.
- */
- int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
- {
- return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
- }
- /**
- * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
- * @base: the base phys addr of the region
- * @size: the size of the region
- *
- * Return: 0 on success, -errno on failure.
- */
- int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
- {
- system_has_some_mirror = true;
- return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
- }
- /**
- * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
- * @base: the base phys addr of the region
- * @size: the size of the region
- *
- * Return: 0 on success, -errno on failure.
- */
- int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
- {
- return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
- }
- /**
- * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
- * @base: the base phys addr of the region
- * @size: the size of the region
- *
- * Return: 0 on success, -errno on failure.
- */
- int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
- {
- return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
- }
- /**
- * __next_reserved_mem_region - next function for for_each_reserved_region()
- * @idx: pointer to u64 loop variable
- * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
- * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
- *
- * Iterate over all reserved memory regions.
- */
- void __init_memblock __next_reserved_mem_region(u64 *idx,
- phys_addr_t *out_start,
- phys_addr_t *out_end)
- {
- struct memblock_type *type = &memblock.reserved;
- if (*idx < type->cnt) {
- struct memblock_region *r = &type->regions[*idx];
- phys_addr_t base = r->base;
- phys_addr_t size = r->size;
- if (out_start)
- *out_start = base;
- if (out_end)
- *out_end = base + size - 1;
- *idx += 1;
- return;
- }
- /* signal end of iteration */
- *idx = ULLONG_MAX;
- }
- /**
- * __next__mem_range - next function for for_each_free_mem_range() etc.
- * @idx: pointer to u64 loop variable
- * @nid: node selector, %NUMA_NO_NODE for all nodes
- * @flags: pick from blocks based on memory attributes
- * @type_a: pointer to memblock_type from where the range is taken
- * @type_b: pointer to memblock_type which excludes memory from being taken
- * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
- * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
- * @out_nid: ptr to int for nid of the range, can be %NULL
- *
- * Find the first area from *@idx which matches @nid, fill the out
- * parameters, and update *@idx for the next iteration. The lower 32bit of
- * *@idx contains index into type_a and the upper 32bit indexes the
- * areas before each region in type_b. For example, if type_b regions
- * look like the following,
- *
- * 0:[0-16), 1:[32-48), 2:[128-130)
- *
- * The upper 32bit indexes the following regions.
- *
- * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
- *
- * As both region arrays are sorted, the function advances the two indices
- * in lockstep and returns each intersection.
- */
- void __init_memblock __next_mem_range(u64 *idx, int nid,
- enum memblock_flags flags,
- struct memblock_type *type_a,
- struct memblock_type *type_b,
- phys_addr_t *out_start,
- phys_addr_t *out_end, int *out_nid)
- {
- int idx_a = *idx & 0xffffffff;
- int idx_b = *idx >> 32;
- if (WARN_ONCE(nid == MAX_NUMNODES,
- "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
- nid = NUMA_NO_NODE;
- for (; idx_a < type_a->cnt; idx_a++) {
- struct memblock_region *m = &type_a->regions[idx_a];
- phys_addr_t m_start = m->base;
- phys_addr_t m_end = m->base + m->size;
- int m_nid = memblock_get_region_node(m);
- /* only memory regions are associated with nodes, check it */
- if (nid != NUMA_NO_NODE && nid != m_nid)
- continue;
- /* skip hotpluggable memory regions if needed */
- if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
- continue;
- /* if we want mirror memory skip non-mirror memory regions */
- if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
- continue;
- /* skip nomap memory unless we were asked for it explicitly */
- if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
- continue;
- if (!type_b) {
- if (out_start)
- *out_start = m_start;
- if (out_end)
- *out_end = m_end;
- if (out_nid)
- *out_nid = m_nid;
- idx_a++;
- *idx = (u32)idx_a | (u64)idx_b << 32;
- return;
- }
- /* scan areas before each reservation */
- for (; idx_b < type_b->cnt + 1; idx_b++) {
- struct memblock_region *r;
- phys_addr_t r_start;
- phys_addr_t r_end;
- r = &type_b->regions[idx_b];
- r_start = idx_b ? r[-1].base + r[-1].size : 0;
- r_end = idx_b < type_b->cnt ?
- r->base : PHYS_ADDR_MAX;
- /*
- * if idx_b advanced past idx_a,
- * break out to advance idx_a
- */
- if (r_start >= m_end)
- break;
- /* if the two regions intersect, we're done */
- if (m_start < r_end) {
- if (out_start)
- *out_start =
- max(m_start, r_start);
- if (out_end)
- *out_end = min(m_end, r_end);
- if (out_nid)
- *out_nid = m_nid;
- /*
- * The region which ends first is
- * advanced for the next iteration.
- */
- if (m_end <= r_end)
- idx_a++;
- else
- idx_b++;
- *idx = (u32)idx_a | (u64)idx_b << 32;
- return;
- }
- }
- }
- /* signal end of iteration */
- *idx = ULLONG_MAX;
- }
- /**
- * __next_mem_range_rev - generic next function for for_each_*_range_rev()
- *
- * @idx: pointer to u64 loop variable
- * @nid: node selector, %NUMA_NO_NODE for all nodes
- * @flags: pick from blocks based on memory attributes
- * @type_a: pointer to memblock_type from where the range is taken
- * @type_b: pointer to memblock_type which excludes memory from being taken
- * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
- * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
- * @out_nid: ptr to int for nid of the range, can be %NULL
- *
- * Finds the next range from type_a which is not marked as unsuitable
- * in type_b.
- *
- * Reverse of __next_mem_range().
- */
- void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
- enum memblock_flags flags,
- struct memblock_type *type_a,
- struct memblock_type *type_b,
- phys_addr_t *out_start,
- phys_addr_t *out_end, int *out_nid)
- {
- int idx_a = *idx & 0xffffffff;
- int idx_b = *idx >> 32;
- if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
- nid = NUMA_NO_NODE;
- if (*idx == (u64)ULLONG_MAX) {
- idx_a = type_a->cnt - 1;
- if (type_b != NULL)
- idx_b = type_b->cnt;
- else
- idx_b = 0;
- }
- for (; idx_a >= 0; idx_a--) {
- struct memblock_region *m = &type_a->regions[idx_a];
- phys_addr_t m_start = m->base;
- phys_addr_t m_end = m->base + m->size;
- int m_nid = memblock_get_region_node(m);
- /* only memory regions are associated with nodes, check it */
- if (nid != NUMA_NO_NODE && nid != m_nid)
- continue;
- /* skip hotpluggable memory regions if needed */
- if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
- continue;
- /* if we want mirror memory skip non-mirror memory regions */
- if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
- continue;
- /* skip nomap memory unless we were asked for it explicitly */
- if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
- continue;
- if (!type_b) {
- if (out_start)
- *out_start = m_start;
- if (out_end)
- *out_end = m_end;
- if (out_nid)
- *out_nid = m_nid;
- idx_a--;
- *idx = (u32)idx_a | (u64)idx_b << 32;
- return;
- }
- /* scan areas before each reservation */
- for (; idx_b >= 0; idx_b--) {
- struct memblock_region *r;
- phys_addr_t r_start;
- phys_addr_t r_end;
- r = &type_b->regions[idx_b];
- r_start = idx_b ? r[-1].base + r[-1].size : 0;
- r_end = idx_b < type_b->cnt ?
- r->base : PHYS_ADDR_MAX;
- /*
- * if idx_b advanced past idx_a,
- * break out to advance idx_a
- */
- if (r_end <= m_start)
- break;
- /* if the two regions intersect, we're done */
- if (m_end > r_start) {
- if (out_start)
- *out_start = max(m_start, r_start);
- if (out_end)
- *out_end = min(m_end, r_end);
- if (out_nid)
- *out_nid = m_nid;
- if (m_start >= r_start)
- idx_a--;
- else
- idx_b--;
- *idx = (u32)idx_a | (u64)idx_b << 32;
- return;
- }
- }
- }
- /* signal end of iteration */
- *idx = ULLONG_MAX;
- }
- #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- /*
- * Common iterator interface used to define for_each_mem_range().
- */
- void __init_memblock __next_mem_pfn_range(int *idx, int nid,
- unsigned long *out_start_pfn,
- unsigned long *out_end_pfn, int *out_nid)
- {
- struct memblock_type *type = &memblock.memory;
- struct memblock_region *r;
- while (++*idx < type->cnt) {
- r = &type->regions[*idx];
- if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
- continue;
- if (nid == MAX_NUMNODES || nid == r->nid)
- break;
- }
- if (*idx >= type->cnt) {
- *idx = -1;
- return;
- }
- if (out_start_pfn)
- *out_start_pfn = PFN_UP(r->base);
- if (out_end_pfn)
- *out_end_pfn = PFN_DOWN(r->base + r->size);
- if (out_nid)
- *out_nid = r->nid;
- }
- /**
- * memblock_set_node - set node ID on memblock regions
- * @base: base of area to set node ID for
- * @size: size of area to set node ID for
- * @type: memblock type to set node ID for
- * @nid: node ID to set
- *
- * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
- * Regions which cross the area boundaries are split as necessary.
- *
- * Return:
- * 0 on success, -errno on failure.
- */
- int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
- struct memblock_type *type, int nid)
- {
- int start_rgn, end_rgn;
- int i, ret;
- ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
- if (ret)
- return ret;
- for (i = start_rgn; i < end_rgn; i++)
- memblock_set_region_node(&type->regions[i], nid);
- memblock_merge_regions(type);
- return 0;
- }
- #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
- static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
- phys_addr_t align, phys_addr_t start,
- phys_addr_t end, int nid,
- enum memblock_flags flags)
- {
- phys_addr_t found;
- if (!align)
- align = SMP_CACHE_BYTES;
- found = memblock_find_in_range_node(size, align, start, end, nid,
- flags);
- if (found && !memblock_reserve(found, size)) {
- /*
- * The min_count is set to 0 so that memblock allocations are
- * never reported as leaks.
- */
- kmemleak_alloc_phys(found, size, 0, 0);
- return found;
- }
- return 0;
- }
- phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
- phys_addr_t start, phys_addr_t end,
- enum memblock_flags flags)
- {
- return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
- flags);
- }
- phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
- phys_addr_t align, phys_addr_t max_addr,
- int nid, enum memblock_flags flags)
- {
- return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
- }
- phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
- {
- enum memblock_flags flags = choose_memblock_flags();
- phys_addr_t ret;
- again:
- ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
- nid, flags);
- if (!ret && (flags & MEMBLOCK_MIRROR)) {
- flags &= ~MEMBLOCK_MIRROR;
- goto again;
- }
- return ret;
- }
- phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
- {
- return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
- MEMBLOCK_NONE);
- }
- phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
- {
- phys_addr_t alloc;
- alloc = __memblock_alloc_base(size, align, max_addr);
- if (alloc == 0)
- panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
- &size, &max_addr);
- return alloc;
- }
- phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
- {
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
- }
- phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
- {
- phys_addr_t res = memblock_alloc_nid(size, align, nid);
- if (res)
- return res;
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
- }
- #if defined(CONFIG_NO_BOOTMEM)
- /**
- * memblock_virt_alloc_internal - allocate boot memory block
- * @size: size of memory block to be allocated in bytes
- * @align: alignment of the region and block's size
- * @min_addr: the lower bound of the memory region to allocate (phys address)
- * @max_addr: the upper bound of the memory region to allocate (phys address)
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- *
- * The @min_addr limit is dropped if it can not be satisfied and the allocation
- * will fall back to memory below @min_addr. Also, allocation may fall back
- * to any node in the system if the specified node can not
- * hold the requested memory.
- *
- * The allocation is performed from memory region limited by
- * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
- *
- * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
- *
- * The phys address of allocated boot memory block is converted to virtual and
- * allocated memory is reset to 0.
- *
- * In addition, function sets the min_count to 0 using kmemleak_alloc for
- * allocated boot memory block, so that it is never reported as leaks.
- *
- * Return:
- * Virtual address of allocated memory block on success, NULL on failure.
- */
- static void * __init memblock_virt_alloc_internal(
- phys_addr_t size, phys_addr_t align,
- phys_addr_t min_addr, phys_addr_t max_addr,
- int nid, bool exact_nid)
- {
- phys_addr_t alloc;
- void *ptr;
- enum memblock_flags flags = choose_memblock_flags();
- if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
- nid = NUMA_NO_NODE;
- /*
- * Detect any accidental use of these APIs after slab is ready, as at
- * this moment memblock may be deinitialized already and its
- * internal data may be destroyed (after execution of free_all_bootmem)
- */
- if (WARN_ON_ONCE(slab_is_available()))
- return kzalloc_node(size, GFP_NOWAIT, nid);
- if (!align)
- align = SMP_CACHE_BYTES;
- if (max_addr > memblock.current_limit)
- max_addr = memblock.current_limit;
- again:
- alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
- nid, flags);
- if (alloc && !memblock_reserve(alloc, size))
- goto done;
- if (nid != NUMA_NO_NODE && !exact_nid) {
- alloc = memblock_find_in_range_node(size, align, min_addr,
- max_addr, NUMA_NO_NODE,
- flags);
- if (alloc && !memblock_reserve(alloc, size))
- goto done;
- }
- if (min_addr) {
- min_addr = 0;
- goto again;
- }
- if (flags & MEMBLOCK_MIRROR) {
- flags &= ~MEMBLOCK_MIRROR;
- pr_warn("Could not allocate %pap bytes of mirrored memory\n",
- &size);
- goto again;
- }
- return NULL;
- done:
- ptr = phys_to_virt(alloc);
- /*
- * The min_count is set to 0 so that bootmem allocated blocks
- * are never reported as leaks. This is because many of these blocks
- * are only referred via the physical address which is not
- * looked up by kmemleak.
- */
- kmemleak_alloc(ptr, size, 0, 0);
- return ptr;
- }
- /**
- * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
- * memory and without panicking
- * @size: size of memory block to be allocated in bytes
- * @align: alignment of the region and block's size
- * @min_addr: the lower bound of the memory region from where the allocation
- * is preferred (phys address)
- * @max_addr: the upper bound of the memory region from where the allocation
- * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
- * allocate only from memory limited by memblock.current_limit value
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- *
- * Public function, provides additional debug information (including caller
- * info), if enabled. Does not zero allocated memory, does not panic if request
- * cannot be satisfied.
- *
- * Return:
- * Virtual address of allocated memory block on success, NULL on failure.
- */
- void * __init memblock_virt_alloc_try_nid_raw(
- phys_addr_t size, phys_addr_t align,
- phys_addr_t min_addr, phys_addr_t max_addr,
- int nid)
- {
- void *ptr;
- memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
- __func__, (u64)size, (u64)align, nid, &min_addr,
- &max_addr, (void *)_RET_IP_);
- ptr = memblock_virt_alloc_internal(size, align,
- min_addr, max_addr, nid, false);
- #ifdef CONFIG_DEBUG_VM
- if (ptr && size > 0)
- memset(ptr, PAGE_POISON_PATTERN, size);
- #endif
- return ptr;
- }
- /**
- * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
- * without zeroing memory
- * @size: size of memory block to be allocated in bytes
- * @align: alignment of the region and block's size
- * @min_addr: the lower bound of the memory region from where the allocation
- * is preferred (phys address)
- * @max_addr: the upper bound of the memory region from where the allocation
- * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
- * allocate only from memory limited by memblock.current_limit value
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- *
- * Public function, provides additional debug information (including caller
- * info), if enabled. Does not zero allocated memory.
- *
- * Return:
- * Virtual address of allocated memory block on success, NULL on failure.
- */
- void * __init memblock_alloc_exact_nid_raw(
- phys_addr_t size, phys_addr_t align,
- phys_addr_t min_addr, phys_addr_t max_addr,
- int nid)
- {
- void *ptr;
- memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
- __func__, (u64)size, (u64)align, nid, &min_addr,
- &max_addr, (void *)_RET_IP_);
- ptr = memblock_virt_alloc_internal(size, align,
- min_addr, max_addr, nid, true);
- if (ptr && size > 0)
- memset(ptr, PAGE_POISON_PATTERN, size);
- return ptr;
- }
- /**
- * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
- * @size: size of memory block to be allocated in bytes
- * @align: alignment of the region and block's size
- * @min_addr: the lower bound of the memory region from where the allocation
- * is preferred (phys address)
- * @max_addr: the upper bound of the memory region from where the allocation
- * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
- * allocate only from memory limited by memblock.current_limit value
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- *
- * Public function, provides additional debug information (including caller
- * info), if enabled. This function zeroes the allocated memory.
- *
- * Return:
- * Virtual address of allocated memory block on success, NULL on failure.
- */
- void * __init memblock_virt_alloc_try_nid_nopanic(
- phys_addr_t size, phys_addr_t align,
- phys_addr_t min_addr, phys_addr_t max_addr,
- int nid)
- {
- void *ptr;
- memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
- __func__, (u64)size, (u64)align, nid, &min_addr,
- &max_addr, (void *)_RET_IP_);
- ptr = memblock_virt_alloc_internal(size, align,
- min_addr, max_addr, nid, false);
- if (ptr)
- memset(ptr, 0, size);
- return ptr;
- }
- /**
- * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
- * @size: size of memory block to be allocated in bytes
- * @align: alignment of the region and block's size
- * @min_addr: the lower bound of the memory region from where the allocation
- * is preferred (phys address)
- * @max_addr: the upper bound of the memory region from where the allocation
- * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
- * allocate only from memory limited by memblock.current_limit value
- * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
- *
- * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
- * which provides debug information (including caller info), if enabled,
- * and panics if the request can not be satisfied.
- *
- * Return:
- * Virtual address of allocated memory block on success, NULL on failure.
- */
- void * __init memblock_virt_alloc_try_nid(
- phys_addr_t size, phys_addr_t align,
- phys_addr_t min_addr, phys_addr_t max_addr,
- int nid)
- {
- void *ptr;
- memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
- __func__, (u64)size, (u64)align, nid, &min_addr,
- &max_addr, (void *)_RET_IP_);
- ptr = memblock_virt_alloc_internal(size, align,
- min_addr, max_addr, nid, false);
- if (ptr) {
- memset(ptr, 0, size);
- return ptr;
- }
- panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
- __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
- return NULL;
- }
- #endif
- /**
- * __memblock_free_early - free boot memory block
- * @base: phys starting address of the boot memory block
- * @size: size of the boot memory block in bytes
- *
- * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
- * The freeing memory will not be released to the buddy allocator.
- */
- void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
- {
- memblock_free(base, size);
- }
- /**
- * __memblock_free_late - free bootmem block pages directly to buddy allocator
- * @base: phys starting address of the boot memory block
- * @size: size of the boot memory block in bytes
- *
- * This is only useful when the bootmem allocator has already been torn
- * down, but we are still initializing the system. Pages are released directly
- * to the buddy allocator, no bootmem metadata is updated because it is gone.
- */
- void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
- {
- phys_addr_t cursor, end;
- end = base + size - 1;
- memblock_dbg("%s: [%pa-%pa] %pF\n",
- __func__, &base, &end, (void *)_RET_IP_);
- kmemleak_free_part_phys(base, size);
- cursor = PFN_UP(base);
- end = PFN_DOWN(base + size);
- for (; cursor < end; cursor++) {
- __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
- totalram_pages++;
- }
- }
- /*
- * Remaining API functions
- */
- phys_addr_t __init_memblock memblock_phys_mem_size(void)
- {
- return memblock.memory.total_size;
- }
- phys_addr_t __init_memblock memblock_reserved_size(void)
- {
- return memblock.reserved.total_size;
- }
- phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
- {
- unsigned long pages = 0;
- struct memblock_region *r;
- unsigned long start_pfn, end_pfn;
- for_each_memblock(memory, r) {
- start_pfn = memblock_region_memory_base_pfn(r);
- end_pfn = memblock_region_memory_end_pfn(r);
- start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
- end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
- pages += end_pfn - start_pfn;
- }
- return PFN_PHYS(pages);
- }
- /* lowest address */
- phys_addr_t __init_memblock memblock_start_of_DRAM(void)
- {
- return memblock.memory.regions[0].base;
- }
- phys_addr_t __init_memblock memblock_end_of_DRAM(void)
- {
- int idx = memblock.memory.cnt - 1;
- return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
- }
- static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
- {
- phys_addr_t max_addr = PHYS_ADDR_MAX;
- struct memblock_region *r;
- /*
- * translate the memory @limit size into the max address within one of
- * the memory memblock regions, if the @limit exceeds the total size
- * of those regions, max_addr will keep original value PHYS_ADDR_MAX
- */
- for_each_memblock(memory, r) {
- if (limit <= r->size) {
- max_addr = r->base + limit;
- break;
- }
- limit -= r->size;
- }
- return max_addr;
- }
- void __init memblock_enforce_memory_limit(phys_addr_t limit)
- {
- phys_addr_t max_addr = PHYS_ADDR_MAX;
- if (!limit)
- return;
- max_addr = __find_max_addr(limit);
- /* @limit exceeds the total size of the memory, do nothing */
- if (max_addr == PHYS_ADDR_MAX)
- return;
- /* truncate both memory and reserved regions */
- memblock_remove_range(&memblock.memory, max_addr,
- PHYS_ADDR_MAX);
- memblock_remove_range(&memblock.reserved, max_addr,
- PHYS_ADDR_MAX);
- }
- void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
- {
- int start_rgn, end_rgn;
- int i, ret;
- if (!size)
- return;
- ret = memblock_isolate_range(&memblock.memory, base, size,
- &start_rgn, &end_rgn);
- if (ret)
- return;
- /* remove all the MAP regions */
- for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
- if (!memblock_is_nomap(&memblock.memory.regions[i]))
- memblock_remove_region(&memblock.memory, i);
- for (i = start_rgn - 1; i >= 0; i--)
- if (!memblock_is_nomap(&memblock.memory.regions[i]))
- memblock_remove_region(&memblock.memory, i);
- /* truncate the reserved regions */
- memblock_remove_range(&memblock.reserved, 0, base);
- memblock_remove_range(&memblock.reserved,
- base + size, PHYS_ADDR_MAX);
- }
- void __init memblock_mem_limit_remove_map(phys_addr_t limit)
- {
- phys_addr_t max_addr;
- if (!limit)
- return;
- max_addr = __find_max_addr(limit);
- /* @limit exceeds the total size of the memory, do nothing */
- if (max_addr == PHYS_ADDR_MAX)
- return;
- memblock_cap_memory_range(0, max_addr);
- }
- static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
- {
- unsigned int left = 0, right = type->cnt;
- do {
- unsigned int mid = (right + left) / 2;
- if (addr < type->regions[mid].base)
- right = mid;
- else if (addr >= (type->regions[mid].base +
- type->regions[mid].size))
- left = mid + 1;
- else
- return mid;
- } while (left < right);
- return -1;
- }
- bool __init memblock_is_reserved(phys_addr_t addr)
- {
- return memblock_search(&memblock.reserved, addr) != -1;
- }
- bool __init_memblock memblock_is_memory(phys_addr_t addr)
- {
- return memblock_search(&memblock.memory, addr) != -1;
- }
- bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
- {
- int i = memblock_search(&memblock.memory, addr);
- if (i == -1)
- return false;
- return !memblock_is_nomap(&memblock.memory.regions[i]);
- }
- #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
- unsigned long *start_pfn, unsigned long *end_pfn)
- {
- struct memblock_type *type = &memblock.memory;
- int mid = memblock_search(type, PFN_PHYS(pfn));
- if (mid == -1)
- return -1;
- *start_pfn = PFN_DOWN(type->regions[mid].base);
- *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
- return type->regions[mid].nid;
- }
- #endif
- /**
- * memblock_is_region_memory - check if a region is a subset of memory
- * @base: base of region to check
- * @size: size of region to check
- *
- * Check if the region [@base, @base + @size) is a subset of a memory block.
- *
- * Return:
- * 0 if false, non-zero if true
- */
- bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
- {
- int idx = memblock_search(&memblock.memory, base);
- phys_addr_t end = base + memblock_cap_size(base, &size);
- if (idx == -1)
- return false;
- return (memblock.memory.regions[idx].base +
- memblock.memory.regions[idx].size) >= end;
- }
- /**
- * memblock_is_region_reserved - check if a region intersects reserved memory
- * @base: base of region to check
- * @size: size of region to check
- *
- * Check if the region [@base, @base + @size) intersects a reserved
- * memory block.
- *
- * Return:
- * True if they intersect, false if not.
- */
- bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
- {
- memblock_cap_size(base, &size);
- return memblock_overlaps_region(&memblock.reserved, base, size);
- }
- void __init_memblock memblock_trim_memory(phys_addr_t align)
- {
- phys_addr_t start, end, orig_start, orig_end;
- struct memblock_region *r;
- for_each_memblock(memory, r) {
- orig_start = r->base;
- orig_end = r->base + r->size;
- start = round_up(orig_start, align);
- end = round_down(orig_end, align);
- if (start == orig_start && end == orig_end)
- continue;
- if (start < end) {
- r->base = start;
- r->size = end - start;
- } else {
- memblock_remove_region(&memblock.memory,
- r - memblock.memory.regions);
- r--;
- }
- }
- }
- void __init_memblock memblock_set_current_limit(phys_addr_t limit)
- {
- memblock.current_limit = limit;
- }
- phys_addr_t __init_memblock memblock_get_current_limit(void)
- {
- return memblock.current_limit;
- }
- static void __init_memblock memblock_dump(struct memblock_type *type)
- {
- phys_addr_t base, end, size;
- enum memblock_flags flags;
- int idx;
- struct memblock_region *rgn;
- pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
- for_each_memblock_type(idx, type, rgn) {
- char nid_buf[32] = "";
- base = rgn->base;
- size = rgn->size;
- end = base + size - 1;
- flags = rgn->flags;
- #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- if (memblock_get_region_node(rgn) != MAX_NUMNODES)
- snprintf(nid_buf, sizeof(nid_buf), " on node %d",
- memblock_get_region_node(rgn));
- #endif
- pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
- type->name, idx, &base, &end, &size, nid_buf, flags);
- }
- }
- void __init_memblock __memblock_dump_all(void)
- {
- pr_info("MEMBLOCK configuration:\n");
- pr_info(" memory size = %pa reserved size = %pa\n",
- &memblock.memory.total_size,
- &memblock.reserved.total_size);
- memblock_dump(&memblock.memory);
- memblock_dump(&memblock.reserved);
- #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
- memblock_dump(&memblock.physmem);
- #endif
- }
- void __init memblock_allow_resize(void)
- {
- memblock_can_resize = 1;
- }
- static int __init early_memblock(char *p)
- {
- if (p && strstr(p, "debug"))
- memblock_debug = 1;
- return 0;
- }
- early_param("memblock", early_memblock);
- #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
- static int memblock_debug_show(struct seq_file *m, void *private)
- {
- struct memblock_type *type = m->private;
- struct memblock_region *reg;
- int i;
- phys_addr_t end;
- for (i = 0; i < type->cnt; i++) {
- reg = &type->regions[i];
- end = reg->base + reg->size - 1;
- seq_printf(m, "%4d: ", i);
- seq_printf(m, "%pa..%pa\n", ®->base, &end);
- }
- return 0;
- }
- DEFINE_SHOW_ATTRIBUTE(memblock_debug);
- static int __init memblock_init_debugfs(void)
- {
- struct dentry *root = debugfs_create_dir("memblock", NULL);
- if (!root)
- return -ENXIO;
- debugfs_create_file("memory", 0444, root,
- &memblock.memory, &memblock_debug_fops);
- debugfs_create_file("reserved", 0444, root,
- &memblock.reserved, &memblock_debug_fops);
- #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
- debugfs_create_file("physmem", 0444, root,
- &memblock.physmem, &memblock_debug_fops);
- #endif
- return 0;
- }
- __initcall(memblock_init_debugfs);
- #endif /* CONFIG_DEBUG_FS */
|