kasan_init.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. /*
  2. * This file contains some kasan initialization code.
  3. *
  4. * Copyright (c) 2015 Samsung Electronics Co., Ltd.
  5. * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. */
  12. #include <linux/bootmem.h>
  13. #include <linux/init.h>
  14. #include <linux/kasan.h>
  15. #include <linux/kernel.h>
  16. #include <linux/memblock.h>
  17. #include <linux/mm.h>
  18. #include <linux/pfn.h>
  19. #include <linux/slab.h>
  20. #include <asm/page.h>
  21. #include <asm/pgalloc.h>
  22. #include "kasan.h"
  23. /*
  24. * This page serves two purposes:
  25. * - It used as early shadow memory. The entire shadow region populated
  26. * with this page, before we will be able to setup normal shadow memory.
  27. * - Latter it reused it as zero shadow to cover large ranges of memory
  28. * that allowed to access, but not handled by kasan (vmalloc/vmemmap ...).
  29. */
  30. unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss;
  31. #if CONFIG_PGTABLE_LEVELS > 4
  32. p4d_t kasan_zero_p4d[MAX_PTRS_PER_P4D] __page_aligned_bss;
  33. static inline bool kasan_p4d_table(pgd_t pgd)
  34. {
  35. return pgd_page(pgd) == virt_to_page(lm_alias(kasan_zero_p4d));
  36. }
  37. #else
  38. static inline bool kasan_p4d_table(pgd_t pgd)
  39. {
  40. return 0;
  41. }
  42. #endif
  43. #if CONFIG_PGTABLE_LEVELS > 3
  44. pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss;
  45. static inline bool kasan_pud_table(p4d_t p4d)
  46. {
  47. return p4d_page(p4d) == virt_to_page(lm_alias(kasan_zero_pud));
  48. }
  49. #else
  50. static inline bool kasan_pud_table(p4d_t p4d)
  51. {
  52. return 0;
  53. }
  54. #endif
  55. #if CONFIG_PGTABLE_LEVELS > 2
  56. pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss;
  57. static inline bool kasan_pmd_table(pud_t pud)
  58. {
  59. return pud_page(pud) == virt_to_page(lm_alias(kasan_zero_pmd));
  60. }
  61. #else
  62. static inline bool kasan_pmd_table(pud_t pud)
  63. {
  64. return 0;
  65. }
  66. #endif
  67. pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss;
  68. static inline bool kasan_pte_table(pmd_t pmd)
  69. {
  70. return pmd_page(pmd) == virt_to_page(lm_alias(kasan_zero_pte));
  71. }
  72. static inline bool kasan_zero_page_entry(pte_t pte)
  73. {
  74. return pte_page(pte) == virt_to_page(lm_alias(kasan_zero_page));
  75. }
  76. static __init void *early_alloc(size_t size, int node)
  77. {
  78. return memblock_virt_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
  79. BOOTMEM_ALLOC_ACCESSIBLE, node);
  80. }
  81. static void __ref zero_pte_populate(pmd_t *pmd, unsigned long addr,
  82. unsigned long end)
  83. {
  84. pte_t *pte = pte_offset_kernel(pmd, addr);
  85. pte_t zero_pte;
  86. zero_pte = pfn_pte(PFN_DOWN(__pa_symbol(kasan_zero_page)), PAGE_KERNEL);
  87. zero_pte = pte_wrprotect(zero_pte);
  88. while (addr + PAGE_SIZE <= end) {
  89. set_pte_at(&init_mm, addr, pte, zero_pte);
  90. addr += PAGE_SIZE;
  91. pte = pte_offset_kernel(pmd, addr);
  92. }
  93. }
  94. static int __ref zero_pmd_populate(pud_t *pud, unsigned long addr,
  95. unsigned long end)
  96. {
  97. pmd_t *pmd = pmd_offset(pud, addr);
  98. unsigned long next;
  99. do {
  100. next = pmd_addr_end(addr, end);
  101. if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
  102. pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
  103. continue;
  104. }
  105. if (pmd_none(*pmd)) {
  106. pte_t *p;
  107. if (slab_is_available())
  108. p = pte_alloc_one_kernel(&init_mm, addr);
  109. else
  110. p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
  111. if (!p)
  112. return -ENOMEM;
  113. pmd_populate_kernel(&init_mm, pmd, p);
  114. }
  115. zero_pte_populate(pmd, addr, next);
  116. } while (pmd++, addr = next, addr != end);
  117. return 0;
  118. }
  119. static int __ref zero_pud_populate(p4d_t *p4d, unsigned long addr,
  120. unsigned long end)
  121. {
  122. pud_t *pud = pud_offset(p4d, addr);
  123. unsigned long next;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (IS_ALIGNED(addr, PUD_SIZE) && end - addr >= PUD_SIZE) {
  127. pmd_t *pmd;
  128. pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
  129. pmd = pmd_offset(pud, addr);
  130. pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
  131. continue;
  132. }
  133. if (pud_none(*pud)) {
  134. pmd_t *p;
  135. if (slab_is_available()) {
  136. p = pmd_alloc(&init_mm, pud, addr);
  137. if (!p)
  138. return -ENOMEM;
  139. } else {
  140. pud_populate(&init_mm, pud,
  141. early_alloc(PAGE_SIZE, NUMA_NO_NODE));
  142. }
  143. }
  144. zero_pmd_populate(pud, addr, next);
  145. } while (pud++, addr = next, addr != end);
  146. return 0;
  147. }
  148. static int __ref zero_p4d_populate(pgd_t *pgd, unsigned long addr,
  149. unsigned long end)
  150. {
  151. p4d_t *p4d = p4d_offset(pgd, addr);
  152. unsigned long next;
  153. do {
  154. next = p4d_addr_end(addr, end);
  155. if (IS_ALIGNED(addr, P4D_SIZE) && end - addr >= P4D_SIZE) {
  156. pud_t *pud;
  157. pmd_t *pmd;
  158. p4d_populate(&init_mm, p4d, lm_alias(kasan_zero_pud));
  159. pud = pud_offset(p4d, addr);
  160. pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
  161. pmd = pmd_offset(pud, addr);
  162. pmd_populate_kernel(&init_mm, pmd,
  163. lm_alias(kasan_zero_pte));
  164. continue;
  165. }
  166. if (p4d_none(*p4d)) {
  167. pud_t *p;
  168. if (slab_is_available()) {
  169. p = pud_alloc(&init_mm, p4d, addr);
  170. if (!p)
  171. return -ENOMEM;
  172. } else {
  173. p4d_populate(&init_mm, p4d,
  174. early_alloc(PAGE_SIZE, NUMA_NO_NODE));
  175. }
  176. }
  177. zero_pud_populate(p4d, addr, next);
  178. } while (p4d++, addr = next, addr != end);
  179. return 0;
  180. }
  181. /**
  182. * kasan_populate_zero_shadow - populate shadow memory region with
  183. * kasan_zero_page
  184. * @shadow_start - start of the memory range to populate
  185. * @shadow_end - end of the memory range to populate
  186. */
  187. int __ref kasan_populate_zero_shadow(const void *shadow_start,
  188. const void *shadow_end)
  189. {
  190. unsigned long addr = (unsigned long)shadow_start;
  191. unsigned long end = (unsigned long)shadow_end;
  192. pgd_t *pgd = pgd_offset_k(addr);
  193. unsigned long next;
  194. do {
  195. next = pgd_addr_end(addr, end);
  196. if (IS_ALIGNED(addr, PGDIR_SIZE) && end - addr >= PGDIR_SIZE) {
  197. p4d_t *p4d;
  198. pud_t *pud;
  199. pmd_t *pmd;
  200. /*
  201. * kasan_zero_pud should be populated with pmds
  202. * at this moment.
  203. * [pud,pmd]_populate*() below needed only for
  204. * 3,2 - level page tables where we don't have
  205. * puds,pmds, so pgd_populate(), pud_populate()
  206. * is noops.
  207. *
  208. * The ifndef is required to avoid build breakage.
  209. *
  210. * With 5level-fixup.h, pgd_populate() is not nop and
  211. * we reference kasan_zero_p4d. It's not defined
  212. * unless 5-level paging enabled.
  213. *
  214. * The ifndef can be dropped once all KASAN-enabled
  215. * architectures will switch to pgtable-nop4d.h.
  216. */
  217. #ifndef __ARCH_HAS_5LEVEL_HACK
  218. pgd_populate(&init_mm, pgd, lm_alias(kasan_zero_p4d));
  219. #endif
  220. p4d = p4d_offset(pgd, addr);
  221. p4d_populate(&init_mm, p4d, lm_alias(kasan_zero_pud));
  222. pud = pud_offset(p4d, addr);
  223. pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
  224. pmd = pmd_offset(pud, addr);
  225. pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
  226. continue;
  227. }
  228. if (pgd_none(*pgd)) {
  229. p4d_t *p;
  230. if (slab_is_available()) {
  231. p = p4d_alloc(&init_mm, pgd, addr);
  232. if (!p)
  233. return -ENOMEM;
  234. } else {
  235. pgd_populate(&init_mm, pgd,
  236. early_alloc(PAGE_SIZE, NUMA_NO_NODE));
  237. }
  238. }
  239. zero_p4d_populate(pgd, addr, next);
  240. } while (pgd++, addr = next, addr != end);
  241. return 0;
  242. }
  243. static void kasan_free_pte(pte_t *pte_start, pmd_t *pmd)
  244. {
  245. pte_t *pte;
  246. int i;
  247. for (i = 0; i < PTRS_PER_PTE; i++) {
  248. pte = pte_start + i;
  249. if (!pte_none(*pte))
  250. return;
  251. }
  252. pte_free_kernel(&init_mm, (pte_t *)page_to_virt(pmd_page(*pmd)));
  253. pmd_clear(pmd);
  254. }
  255. static void kasan_free_pmd(pmd_t *pmd_start, pud_t *pud)
  256. {
  257. pmd_t *pmd;
  258. int i;
  259. for (i = 0; i < PTRS_PER_PMD; i++) {
  260. pmd = pmd_start + i;
  261. if (!pmd_none(*pmd))
  262. return;
  263. }
  264. pmd_free(&init_mm, (pmd_t *)page_to_virt(pud_page(*pud)));
  265. pud_clear(pud);
  266. }
  267. static void kasan_free_pud(pud_t *pud_start, p4d_t *p4d)
  268. {
  269. pud_t *pud;
  270. int i;
  271. for (i = 0; i < PTRS_PER_PUD; i++) {
  272. pud = pud_start + i;
  273. if (!pud_none(*pud))
  274. return;
  275. }
  276. pud_free(&init_mm, (pud_t *)page_to_virt(p4d_page(*p4d)));
  277. p4d_clear(p4d);
  278. }
  279. static void kasan_free_p4d(p4d_t *p4d_start, pgd_t *pgd)
  280. {
  281. p4d_t *p4d;
  282. int i;
  283. for (i = 0; i < PTRS_PER_P4D; i++) {
  284. p4d = p4d_start + i;
  285. if (!p4d_none(*p4d))
  286. return;
  287. }
  288. p4d_free(&init_mm, (p4d_t *)page_to_virt(pgd_page(*pgd)));
  289. pgd_clear(pgd);
  290. }
  291. static void kasan_remove_pte_table(pte_t *pte, unsigned long addr,
  292. unsigned long end)
  293. {
  294. unsigned long next;
  295. for (; addr < end; addr = next, pte++) {
  296. next = (addr + PAGE_SIZE) & PAGE_MASK;
  297. if (next > end)
  298. next = end;
  299. if (!pte_present(*pte))
  300. continue;
  301. if (WARN_ON(!kasan_zero_page_entry(*pte)))
  302. continue;
  303. pte_clear(&init_mm, addr, pte);
  304. }
  305. }
  306. static void kasan_remove_pmd_table(pmd_t *pmd, unsigned long addr,
  307. unsigned long end)
  308. {
  309. unsigned long next;
  310. for (; addr < end; addr = next, pmd++) {
  311. pte_t *pte;
  312. next = pmd_addr_end(addr, end);
  313. if (!pmd_present(*pmd))
  314. continue;
  315. if (kasan_pte_table(*pmd)) {
  316. if (IS_ALIGNED(addr, PMD_SIZE) &&
  317. IS_ALIGNED(next, PMD_SIZE))
  318. pmd_clear(pmd);
  319. continue;
  320. }
  321. pte = pte_offset_kernel(pmd, addr);
  322. kasan_remove_pte_table(pte, addr, next);
  323. kasan_free_pte(pte_offset_kernel(pmd, 0), pmd);
  324. }
  325. }
  326. static void kasan_remove_pud_table(pud_t *pud, unsigned long addr,
  327. unsigned long end)
  328. {
  329. unsigned long next;
  330. for (; addr < end; addr = next, pud++) {
  331. pmd_t *pmd, *pmd_base;
  332. next = pud_addr_end(addr, end);
  333. if (!pud_present(*pud))
  334. continue;
  335. if (kasan_pmd_table(*pud)) {
  336. if (IS_ALIGNED(addr, PUD_SIZE) &&
  337. IS_ALIGNED(next, PUD_SIZE))
  338. pud_clear(pud);
  339. continue;
  340. }
  341. pmd = pmd_offset(pud, addr);
  342. pmd_base = pmd_offset(pud, 0);
  343. kasan_remove_pmd_table(pmd, addr, next);
  344. kasan_free_pmd(pmd_base, pud);
  345. }
  346. }
  347. static void kasan_remove_p4d_table(p4d_t *p4d, unsigned long addr,
  348. unsigned long end)
  349. {
  350. unsigned long next;
  351. for (; addr < end; addr = next, p4d++) {
  352. pud_t *pud;
  353. next = p4d_addr_end(addr, end);
  354. if (!p4d_present(*p4d))
  355. continue;
  356. if (kasan_pud_table(*p4d)) {
  357. if (IS_ALIGNED(addr, P4D_SIZE) &&
  358. IS_ALIGNED(next, P4D_SIZE))
  359. p4d_clear(p4d);
  360. continue;
  361. }
  362. pud = pud_offset(p4d, addr);
  363. kasan_remove_pud_table(pud, addr, next);
  364. kasan_free_pud(pud_offset(p4d, 0), p4d);
  365. }
  366. }
  367. void kasan_remove_zero_shadow(void *start, unsigned long size)
  368. {
  369. unsigned long addr, end, next;
  370. pgd_t *pgd;
  371. addr = (unsigned long)kasan_mem_to_shadow(start);
  372. end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT);
  373. if (WARN_ON((unsigned long)start %
  374. (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
  375. WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
  376. return;
  377. for (; addr < end; addr = next) {
  378. p4d_t *p4d;
  379. next = pgd_addr_end(addr, end);
  380. pgd = pgd_offset_k(addr);
  381. if (!pgd_present(*pgd))
  382. continue;
  383. if (kasan_p4d_table(*pgd)) {
  384. if (IS_ALIGNED(addr, PGDIR_SIZE) &&
  385. IS_ALIGNED(next, PGDIR_SIZE))
  386. pgd_clear(pgd);
  387. continue;
  388. }
  389. p4d = p4d_offset(pgd, addr);
  390. kasan_remove_p4d_table(p4d, addr, next);
  391. kasan_free_p4d(p4d_offset(pgd, 0), pgd);
  392. }
  393. }
  394. int kasan_add_zero_shadow(void *start, unsigned long size)
  395. {
  396. int ret;
  397. void *shadow_start, *shadow_end;
  398. shadow_start = kasan_mem_to_shadow(start);
  399. shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT);
  400. if (WARN_ON((unsigned long)start %
  401. (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
  402. WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
  403. return -EINVAL;
  404. ret = kasan_populate_zero_shadow(shadow_start, shadow_end);
  405. if (ret)
  406. kasan_remove_zero_shadow(shadow_start,
  407. size >> KASAN_SHADOW_SCALE_SHIFT);
  408. return ret;
  409. }