sha256.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. /*
  2. * SHA-256, as specified in
  3. * http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
  4. *
  5. * SHA-256 code by Jean-Luc Cooke <jlcooke@certainkey.com>.
  6. *
  7. * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
  8. * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
  9. * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  10. * Copyright (c) 2014 Red Hat Inc.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms of the GNU General Public License as published by the Free
  14. * Software Foundation; either version 2 of the License, or (at your option)
  15. * any later version.
  16. */
  17. #include <linux/bitops.h>
  18. #include <linux/sha256.h>
  19. #include <linux/string.h>
  20. #include <asm/byteorder.h>
  21. static inline u32 Ch(u32 x, u32 y, u32 z)
  22. {
  23. return z ^ (x & (y ^ z));
  24. }
  25. static inline u32 Maj(u32 x, u32 y, u32 z)
  26. {
  27. return (x & y) | (z & (x | y));
  28. }
  29. #define e0(x) (ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22))
  30. #define e1(x) (ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25))
  31. #define s0(x) (ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3))
  32. #define s1(x) (ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10))
  33. static inline void LOAD_OP(int I, u32 *W, const u8 *input)
  34. {
  35. W[I] = __be32_to_cpu(((__be32 *)(input))[I]);
  36. }
  37. static inline void BLEND_OP(int I, u32 *W)
  38. {
  39. W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16];
  40. }
  41. static void sha256_transform(u32 *state, const u8 *input)
  42. {
  43. u32 a, b, c, d, e, f, g, h, t1, t2;
  44. u32 W[64];
  45. int i;
  46. /* load the input */
  47. for (i = 0; i < 16; i++)
  48. LOAD_OP(i, W, input);
  49. /* now blend */
  50. for (i = 16; i < 64; i++)
  51. BLEND_OP(i, W);
  52. /* load the state into our registers */
  53. a = state[0]; b = state[1]; c = state[2]; d = state[3];
  54. e = state[4]; f = state[5]; g = state[6]; h = state[7];
  55. /* now iterate */
  56. t1 = h + e1(e) + Ch(e, f, g) + 0x428a2f98 + W[0];
  57. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
  58. t1 = g + e1(d) + Ch(d, e, f) + 0x71374491 + W[1];
  59. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
  60. t1 = f + e1(c) + Ch(c, d, e) + 0xb5c0fbcf + W[2];
  61. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
  62. t1 = e + e1(b) + Ch(b, c, d) + 0xe9b5dba5 + W[3];
  63. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
  64. t1 = d + e1(a) + Ch(a, b, c) + 0x3956c25b + W[4];
  65. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
  66. t1 = c + e1(h) + Ch(h, a, b) + 0x59f111f1 + W[5];
  67. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
  68. t1 = b + e1(g) + Ch(g, h, a) + 0x923f82a4 + W[6];
  69. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
  70. t1 = a + e1(f) + Ch(f, g, h) + 0xab1c5ed5 + W[7];
  71. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
  72. t1 = h + e1(e) + Ch(e, f, g) + 0xd807aa98 + W[8];
  73. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
  74. t1 = g + e1(d) + Ch(d, e, f) + 0x12835b01 + W[9];
  75. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
  76. t1 = f + e1(c) + Ch(c, d, e) + 0x243185be + W[10];
  77. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
  78. t1 = e + e1(b) + Ch(b, c, d) + 0x550c7dc3 + W[11];
  79. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
  80. t1 = d + e1(a) + Ch(a, b, c) + 0x72be5d74 + W[12];
  81. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
  82. t1 = c + e1(h) + Ch(h, a, b) + 0x80deb1fe + W[13];
  83. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
  84. t1 = b + e1(g) + Ch(g, h, a) + 0x9bdc06a7 + W[14];
  85. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
  86. t1 = a + e1(f) + Ch(f, g, h) + 0xc19bf174 + W[15];
  87. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  88. t1 = h + e1(e) + Ch(e, f, g) + 0xe49b69c1 + W[16];
  89. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
  90. t1 = g + e1(d) + Ch(d, e, f) + 0xefbe4786 + W[17];
  91. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
  92. t1 = f + e1(c) + Ch(c, d, e) + 0x0fc19dc6 + W[18];
  93. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
  94. t1 = e + e1(b) + Ch(b, c, d) + 0x240ca1cc + W[19];
  95. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
  96. t1 = d + e1(a) + Ch(a, b, c) + 0x2de92c6f + W[20];
  97. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
  98. t1 = c + e1(h) + Ch(h, a, b) + 0x4a7484aa + W[21];
  99. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
  100. t1 = b + e1(g) + Ch(g, h, a) + 0x5cb0a9dc + W[22];
  101. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
  102. t1 = a + e1(f) + Ch(f, g, h) + 0x76f988da + W[23];
  103. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  104. t1 = h + e1(e) + Ch(e, f, g) + 0x983e5152 + W[24];
  105. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
  106. t1 = g + e1(d) + Ch(d, e, f) + 0xa831c66d + W[25];
  107. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
  108. t1 = f + e1(c) + Ch(c, d, e) + 0xb00327c8 + W[26];
  109. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
  110. t1 = e + e1(b) + Ch(b, c, d) + 0xbf597fc7 + W[27];
  111. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
  112. t1 = d + e1(a) + Ch(a, b, c) + 0xc6e00bf3 + W[28];
  113. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
  114. t1 = c + e1(h) + Ch(h, a, b) + 0xd5a79147 + W[29];
  115. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
  116. t1 = b + e1(g) + Ch(g, h, a) + 0x06ca6351 + W[30];
  117. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
  118. t1 = a + e1(f) + Ch(f, g, h) + 0x14292967 + W[31];
  119. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  120. t1 = h + e1(e) + Ch(e, f, g) + 0x27b70a85 + W[32];
  121. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
  122. t1 = g + e1(d) + Ch(d, e, f) + 0x2e1b2138 + W[33];
  123. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
  124. t1 = f + e1(c) + Ch(c, d, e) + 0x4d2c6dfc + W[34];
  125. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
  126. t1 = e + e1(b) + Ch(b, c, d) + 0x53380d13 + W[35];
  127. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
  128. t1 = d + e1(a) + Ch(a, b, c) + 0x650a7354 + W[36];
  129. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
  130. t1 = c + e1(h) + Ch(h, a, b) + 0x766a0abb + W[37];
  131. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
  132. t1 = b + e1(g) + Ch(g, h, a) + 0x81c2c92e + W[38];
  133. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
  134. t1 = a + e1(f) + Ch(f, g, h) + 0x92722c85 + W[39];
  135. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  136. t1 = h + e1(e) + Ch(e, f, g) + 0xa2bfe8a1 + W[40];
  137. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
  138. t1 = g + e1(d) + Ch(d, e, f) + 0xa81a664b + W[41];
  139. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
  140. t1 = f + e1(c) + Ch(c, d, e) + 0xc24b8b70 + W[42];
  141. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
  142. t1 = e + e1(b) + Ch(b, c, d) + 0xc76c51a3 + W[43];
  143. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
  144. t1 = d + e1(a) + Ch(a, b, c) + 0xd192e819 + W[44];
  145. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
  146. t1 = c + e1(h) + Ch(h, a, b) + 0xd6990624 + W[45];
  147. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
  148. t1 = b + e1(g) + Ch(g, h, a) + 0xf40e3585 + W[46];
  149. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
  150. t1 = a + e1(f) + Ch(f, g, h) + 0x106aa070 + W[47];
  151. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  152. t1 = h + e1(e) + Ch(e, f, g) + 0x19a4c116 + W[48];
  153. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
  154. t1 = g + e1(d) + Ch(d, e, f) + 0x1e376c08 + W[49];
  155. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
  156. t1 = f + e1(c) + Ch(c, d, e) + 0x2748774c + W[50];
  157. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
  158. t1 = e + e1(b) + Ch(b, c, d) + 0x34b0bcb5 + W[51];
  159. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
  160. t1 = d + e1(a) + Ch(a, b, c) + 0x391c0cb3 + W[52];
  161. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
  162. t1 = c + e1(h) + Ch(h, a, b) + 0x4ed8aa4a + W[53];
  163. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
  164. t1 = b + e1(g) + Ch(g, h, a) + 0x5b9cca4f + W[54];
  165. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
  166. t1 = a + e1(f) + Ch(f, g, h) + 0x682e6ff3 + W[55];
  167. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  168. t1 = h + e1(e) + Ch(e, f, g) + 0x748f82ee + W[56];
  169. t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
  170. t1 = g + e1(d) + Ch(d, e, f) + 0x78a5636f + W[57];
  171. t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
  172. t1 = f + e1(c) + Ch(c, d, e) + 0x84c87814 + W[58];
  173. t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
  174. t1 = e + e1(b) + Ch(b, c, d) + 0x8cc70208 + W[59];
  175. t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
  176. t1 = d + e1(a) + Ch(a, b, c) + 0x90befffa + W[60];
  177. t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
  178. t1 = c + e1(h) + Ch(h, a, b) + 0xa4506ceb + W[61];
  179. t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
  180. t1 = b + e1(g) + Ch(g, h, a) + 0xbef9a3f7 + W[62];
  181. t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
  182. t1 = a + e1(f) + Ch(f, g, h) + 0xc67178f2 + W[63];
  183. t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
  184. state[0] += a; state[1] += b; state[2] += c; state[3] += d;
  185. state[4] += e; state[5] += f; state[6] += g; state[7] += h;
  186. /* clear any sensitive info... */
  187. a = b = c = d = e = f = g = h = t1 = t2 = 0;
  188. memset(W, 0, 64 * sizeof(u32));
  189. }
  190. int sha256_init(struct sha256_state *sctx)
  191. {
  192. sctx->state[0] = SHA256_H0;
  193. sctx->state[1] = SHA256_H1;
  194. sctx->state[2] = SHA256_H2;
  195. sctx->state[3] = SHA256_H3;
  196. sctx->state[4] = SHA256_H4;
  197. sctx->state[5] = SHA256_H5;
  198. sctx->state[6] = SHA256_H6;
  199. sctx->state[7] = SHA256_H7;
  200. sctx->count = 0;
  201. return 0;
  202. }
  203. int sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len)
  204. {
  205. unsigned int partial, done;
  206. const u8 *src;
  207. partial = sctx->count & 0x3f;
  208. sctx->count += len;
  209. done = 0;
  210. src = data;
  211. if ((partial + len) > 63) {
  212. if (partial) {
  213. done = -partial;
  214. memcpy(sctx->buf + partial, data, done + 64);
  215. src = sctx->buf;
  216. }
  217. do {
  218. sha256_transform(sctx->state, src);
  219. done += 64;
  220. src = data + done;
  221. } while (done + 63 < len);
  222. partial = 0;
  223. }
  224. memcpy(sctx->buf + partial, src, len - done);
  225. return 0;
  226. }
  227. int sha256_final(struct sha256_state *sctx, u8 *out)
  228. {
  229. __be32 *dst = (__be32 *)out;
  230. __be64 bits;
  231. unsigned int index, pad_len;
  232. int i;
  233. static const u8 padding[64] = { 0x80, };
  234. /* Save number of bits */
  235. bits = cpu_to_be64(sctx->count << 3);
  236. /* Pad out to 56 mod 64. */
  237. index = sctx->count & 0x3f;
  238. pad_len = (index < 56) ? (56 - index) : ((64+56) - index);
  239. sha256_update(sctx, padding, pad_len);
  240. /* Append length (before padding) */
  241. sha256_update(sctx, (const u8 *)&bits, sizeof(bits));
  242. /* Store state in digest */
  243. for (i = 0; i < 8; i++)
  244. dst[i] = cpu_to_be32(sctx->state[i]);
  245. /* Zeroize sensitive information. */
  246. memset(sctx, 0, sizeof(*sctx));
  247. return 0;
  248. }