123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- /*
- * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
- * cleaned up code to current version of sparse and added the slicing-by-8
- * algorithm to the closely similar existing slicing-by-4 algorithm.
- *
- * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
- * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
- * Code was from the public domain, copyright abandoned. Code was
- * subsequently included in the kernel, thus was re-licensed under the
- * GNU GPL v2.
- *
- * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
- * Same crc32 function was used in 5 other places in the kernel.
- * I made one version, and deleted the others.
- * There are various incantations of crc32(). Some use a seed of 0 or ~0.
- * Some xor at the end with ~0. The generic crc32() function takes
- * seed as an argument, and doesn't xor at the end. Then individual
- * users can do whatever they need.
- * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
- * fs/jffs2 uses seed 0, doesn't xor with ~0.
- * fs/partitions/efi.c uses seed ~0, xor's with ~0.
- *
- * This source code is licensed under the GNU General Public License,
- * Version 2. See the file COPYING for more details.
- */
- /* see: Documentation/crc32.txt for a description of algorithms */
- #include <linux/crc32.h>
- #include <linux/crc32poly.h>
- #include <linux/module.h>
- #include <linux/types.h>
- #include <linux/sched.h>
- #include "crc32defs.h"
- #if CRC_LE_BITS > 8
- # define tole(x) ((__force u32) cpu_to_le32(x))
- #else
- # define tole(x) (x)
- #endif
- #if CRC_BE_BITS > 8
- # define tobe(x) ((__force u32) cpu_to_be32(x))
- #else
- # define tobe(x) (x)
- #endif
- #include "crc32table.h"
- MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
- MODULE_DESCRIPTION("Various CRC32 calculations");
- MODULE_LICENSE("GPL");
- #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
- /* implements slicing-by-4 or slicing-by-8 algorithm */
- static inline u32 __pure
- crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
- {
- # ifdef __LITTLE_ENDIAN
- # define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
- # define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
- t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
- # define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
- t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
- # else
- # define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
- # define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
- t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
- # define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
- t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
- # endif
- const u32 *b;
- size_t rem_len;
- # ifdef CONFIG_X86
- size_t i;
- # endif
- const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
- # if CRC_LE_BITS != 32
- const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
- # endif
- u32 q;
- /* Align it */
- if (unlikely((long)buf & 3 && len)) {
- do {
- DO_CRC(*buf++);
- } while ((--len) && ((long)buf)&3);
- }
- # if CRC_LE_BITS == 32
- rem_len = len & 3;
- len = len >> 2;
- # else
- rem_len = len & 7;
- len = len >> 3;
- # endif
- b = (const u32 *)buf;
- # ifdef CONFIG_X86
- --b;
- for (i = 0; i < len; i++) {
- # else
- for (--b; len; --len) {
- # endif
- q = crc ^ *++b; /* use pre increment for speed */
- # if CRC_LE_BITS == 32
- crc = DO_CRC4;
- # else
- crc = DO_CRC8;
- q = *++b;
- crc ^= DO_CRC4;
- # endif
- }
- len = rem_len;
- /* And the last few bytes */
- if (len) {
- u8 *p = (u8 *)(b + 1) - 1;
- # ifdef CONFIG_X86
- for (i = 0; i < len; i++)
- DO_CRC(*++p); /* use pre increment for speed */
- # else
- do {
- DO_CRC(*++p); /* use pre increment for speed */
- } while (--len);
- # endif
- }
- return crc;
- #undef DO_CRC
- #undef DO_CRC4
- #undef DO_CRC8
- }
- #endif
- /**
- * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
- * CRC32/CRC32C
- * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
- * uses, or the previous crc32/crc32c value if computing incrementally.
- * @p: pointer to buffer over which CRC32/CRC32C is run
- * @len: length of buffer @p
- * @tab: little-endian Ethernet table
- * @polynomial: CRC32/CRC32c LE polynomial
- */
- static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
- size_t len, const u32 (*tab)[256],
- u32 polynomial)
- {
- #if CRC_LE_BITS == 1
- int i;
- while (len--) {
- crc ^= *p++;
- for (i = 0; i < 8; i++)
- crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
- }
- # elif CRC_LE_BITS == 2
- while (len--) {
- crc ^= *p++;
- crc = (crc >> 2) ^ tab[0][crc & 3];
- crc = (crc >> 2) ^ tab[0][crc & 3];
- crc = (crc >> 2) ^ tab[0][crc & 3];
- crc = (crc >> 2) ^ tab[0][crc & 3];
- }
- # elif CRC_LE_BITS == 4
- while (len--) {
- crc ^= *p++;
- crc = (crc >> 4) ^ tab[0][crc & 15];
- crc = (crc >> 4) ^ tab[0][crc & 15];
- }
- # elif CRC_LE_BITS == 8
- /* aka Sarwate algorithm */
- while (len--) {
- crc ^= *p++;
- crc = (crc >> 8) ^ tab[0][crc & 255];
- }
- # else
- crc = (__force u32) __cpu_to_le32(crc);
- crc = crc32_body(crc, p, len, tab);
- crc = __le32_to_cpu((__force __le32)crc);
- #endif
- return crc;
- }
- #if CRC_LE_BITS == 1
- u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
- {
- return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
- }
- u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
- {
- return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
- }
- #else
- u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
- {
- return crc32_le_generic(crc, p, len,
- (const u32 (*)[256])crc32table_le, CRC32_POLY_LE);
- }
- u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
- {
- return crc32_le_generic(crc, p, len,
- (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
- }
- #endif
- EXPORT_SYMBOL(crc32_le);
- EXPORT_SYMBOL(__crc32c_le);
- u32 crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
- u32 __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
- /*
- * This multiplies the polynomials x and y modulo the given modulus.
- * This follows the "little-endian" CRC convention that the lsbit
- * represents the highest power of x, and the msbit represents x^0.
- */
- static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
- {
- u32 product = x & 1 ? y : 0;
- int i;
- for (i = 0; i < 31; i++) {
- product = (product >> 1) ^ (product & 1 ? modulus : 0);
- x >>= 1;
- product ^= x & 1 ? y : 0;
- }
- return product;
- }
- /**
- * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
- * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
- * @len: The number of bytes. @crc is multiplied by x^(8*@len)
- * @polynomial: The modulus used to reduce the result to 32 bits.
- *
- * It's possible to parallelize CRC computations by computing a CRC
- * over separate ranges of a buffer, then summing them.
- * This shifts the given CRC by 8*len bits (i.e. produces the same effect
- * as appending len bytes of zero to the data), in time proportional
- * to log(len).
- */
- static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
- u32 polynomial)
- {
- u32 power = polynomial; /* CRC of x^32 */
- int i;
- /* Shift up to 32 bits in the simple linear way */
- for (i = 0; i < 8 * (int)(len & 3); i++)
- crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
- len >>= 2;
- if (!len)
- return crc;
- for (;;) {
- /* "power" is x^(2^i), modulo the polynomial */
- if (len & 1)
- crc = gf2_multiply(crc, power, polynomial);
- len >>= 1;
- if (!len)
- break;
- /* Square power, advancing to x^(2^(i+1)) */
- power = gf2_multiply(power, power, polynomial);
- }
- return crc;
- }
- u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
- {
- return crc32_generic_shift(crc, len, CRC32_POLY_LE);
- }
- u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
- {
- return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
- }
- EXPORT_SYMBOL(crc32_le_shift);
- EXPORT_SYMBOL(__crc32c_le_shift);
- /**
- * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
- * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
- * other uses, or the previous crc32 value if computing incrementally.
- * @p: pointer to buffer over which CRC32 is run
- * @len: length of buffer @p
- * @tab: big-endian Ethernet table
- * @polynomial: CRC32 BE polynomial
- */
- static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
- size_t len, const u32 (*tab)[256],
- u32 polynomial)
- {
- #if CRC_BE_BITS == 1
- int i;
- while (len--) {
- crc ^= *p++ << 24;
- for (i = 0; i < 8; i++)
- crc =
- (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
- 0);
- }
- # elif CRC_BE_BITS == 2
- while (len--) {
- crc ^= *p++ << 24;
- crc = (crc << 2) ^ tab[0][crc >> 30];
- crc = (crc << 2) ^ tab[0][crc >> 30];
- crc = (crc << 2) ^ tab[0][crc >> 30];
- crc = (crc << 2) ^ tab[0][crc >> 30];
- }
- # elif CRC_BE_BITS == 4
- while (len--) {
- crc ^= *p++ << 24;
- crc = (crc << 4) ^ tab[0][crc >> 28];
- crc = (crc << 4) ^ tab[0][crc >> 28];
- }
- # elif CRC_BE_BITS == 8
- while (len--) {
- crc ^= *p++ << 24;
- crc = (crc << 8) ^ tab[0][crc >> 24];
- }
- # else
- crc = (__force u32) __cpu_to_be32(crc);
- crc = crc32_body(crc, p, len, tab);
- crc = __be32_to_cpu((__force __be32)crc);
- # endif
- return crc;
- }
- #if CRC_LE_BITS == 1
- u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
- {
- return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
- }
- #else
- u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
- {
- return crc32_be_generic(crc, p, len,
- (const u32 (*)[256])crc32table_be, CRC32_POLY_BE);
- }
- #endif
- EXPORT_SYMBOL(crc32_be);
|