12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724 |
- /* Generic associative array implementation.
- *
- * See Documentation/core-api/assoc_array.rst for information.
- *
- * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells (dhowells@redhat.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
- * as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
- */
- //#define DEBUG
- #include <linux/rcupdate.h>
- #include <linux/slab.h>
- #include <linux/err.h>
- #include <linux/assoc_array_priv.h>
- /*
- * Iterate over an associative array. The caller must hold the RCU read lock
- * or better.
- */
- static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
- const struct assoc_array_ptr *stop,
- int (*iterator)(const void *leaf,
- void *iterator_data),
- void *iterator_data)
- {
- const struct assoc_array_shortcut *shortcut;
- const struct assoc_array_node *node;
- const struct assoc_array_ptr *cursor, *ptr, *parent;
- unsigned long has_meta;
- int slot, ret;
- cursor = root;
- begin_node:
- if (assoc_array_ptr_is_shortcut(cursor)) {
- /* Descend through a shortcut */
- shortcut = assoc_array_ptr_to_shortcut(cursor);
- cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
- }
- node = assoc_array_ptr_to_node(cursor);
- slot = 0;
- /* We perform two passes of each node.
- *
- * The first pass does all the leaves in this node. This means we
- * don't miss any leaves if the node is split up by insertion whilst
- * we're iterating over the branches rooted here (we may, however, see
- * some leaves twice).
- */
- has_meta = 0;
- for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
- has_meta |= (unsigned long)ptr;
- if (ptr && assoc_array_ptr_is_leaf(ptr)) {
- /* We need a barrier between the read of the pointer,
- * which is supplied by the above READ_ONCE().
- */
- /* Invoke the callback */
- ret = iterator(assoc_array_ptr_to_leaf(ptr),
- iterator_data);
- if (ret)
- return ret;
- }
- }
- /* The second pass attends to all the metadata pointers. If we follow
- * one of these we may find that we don't come back here, but rather go
- * back to a replacement node with the leaves in a different layout.
- *
- * We are guaranteed to make progress, however, as the slot number for
- * a particular portion of the key space cannot change - and we
- * continue at the back pointer + 1.
- */
- if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
- goto finished_node;
- slot = 0;
- continue_node:
- node = assoc_array_ptr_to_node(cursor);
- for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
- if (assoc_array_ptr_is_meta(ptr)) {
- cursor = ptr;
- goto begin_node;
- }
- }
- finished_node:
- /* Move up to the parent (may need to skip back over a shortcut) */
- parent = READ_ONCE(node->back_pointer); /* Address dependency. */
- slot = node->parent_slot;
- if (parent == stop)
- return 0;
- if (assoc_array_ptr_is_shortcut(parent)) {
- shortcut = assoc_array_ptr_to_shortcut(parent);
- cursor = parent;
- parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
- slot = shortcut->parent_slot;
- if (parent == stop)
- return 0;
- }
- /* Ascend to next slot in parent node */
- cursor = parent;
- slot++;
- goto continue_node;
- }
- /**
- * assoc_array_iterate - Pass all objects in the array to a callback
- * @array: The array to iterate over.
- * @iterator: The callback function.
- * @iterator_data: Private data for the callback function.
- *
- * Iterate over all the objects in an associative array. Each one will be
- * presented to the iterator function.
- *
- * If the array is being modified concurrently with the iteration then it is
- * possible that some objects in the array will be passed to the iterator
- * callback more than once - though every object should be passed at least
- * once. If this is undesirable then the caller must lock against modification
- * for the duration of this function.
- *
- * The function will return 0 if no objects were in the array or else it will
- * return the result of the last iterator function called. Iteration stops
- * immediately if any call to the iteration function results in a non-zero
- * return.
- *
- * The caller should hold the RCU read lock or better if concurrent
- * modification is possible.
- */
- int assoc_array_iterate(const struct assoc_array *array,
- int (*iterator)(const void *object,
- void *iterator_data),
- void *iterator_data)
- {
- struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
- if (!root)
- return 0;
- return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
- }
- enum assoc_array_walk_status {
- assoc_array_walk_tree_empty,
- assoc_array_walk_found_terminal_node,
- assoc_array_walk_found_wrong_shortcut,
- };
- struct assoc_array_walk_result {
- struct {
- struct assoc_array_node *node; /* Node in which leaf might be found */
- int level;
- int slot;
- } terminal_node;
- struct {
- struct assoc_array_shortcut *shortcut;
- int level;
- int sc_level;
- unsigned long sc_segments;
- unsigned long dissimilarity;
- } wrong_shortcut;
- };
- /*
- * Navigate through the internal tree looking for the closest node to the key.
- */
- static enum assoc_array_walk_status
- assoc_array_walk(const struct assoc_array *array,
- const struct assoc_array_ops *ops,
- const void *index_key,
- struct assoc_array_walk_result *result)
- {
- struct assoc_array_shortcut *shortcut;
- struct assoc_array_node *node;
- struct assoc_array_ptr *cursor, *ptr;
- unsigned long sc_segments, dissimilarity;
- unsigned long segments;
- int level, sc_level, next_sc_level;
- int slot;
- pr_devel("-->%s()\n", __func__);
- cursor = READ_ONCE(array->root); /* Address dependency. */
- if (!cursor)
- return assoc_array_walk_tree_empty;
- level = 0;
- /* Use segments from the key for the new leaf to navigate through the
- * internal tree, skipping through nodes and shortcuts that are on
- * route to the destination. Eventually we'll come to a slot that is
- * either empty or contains a leaf at which point we've found a node in
- * which the leaf we're looking for might be found or into which it
- * should be inserted.
- */
- jumped:
- segments = ops->get_key_chunk(index_key, level);
- pr_devel("segments[%d]: %lx\n", level, segments);
- if (assoc_array_ptr_is_shortcut(cursor))
- goto follow_shortcut;
- consider_node:
- node = assoc_array_ptr_to_node(cursor);
- slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
- slot &= ASSOC_ARRAY_FAN_MASK;
- ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
- pr_devel("consider slot %x [ix=%d type=%lu]\n",
- slot, level, (unsigned long)ptr & 3);
- if (!assoc_array_ptr_is_meta(ptr)) {
- /* The node doesn't have a node/shortcut pointer in the slot
- * corresponding to the index key that we have to follow.
- */
- result->terminal_node.node = node;
- result->terminal_node.level = level;
- result->terminal_node.slot = slot;
- pr_devel("<--%s() = terminal_node\n", __func__);
- return assoc_array_walk_found_terminal_node;
- }
- if (assoc_array_ptr_is_node(ptr)) {
- /* There is a pointer to a node in the slot corresponding to
- * this index key segment, so we need to follow it.
- */
- cursor = ptr;
- level += ASSOC_ARRAY_LEVEL_STEP;
- if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
- goto consider_node;
- goto jumped;
- }
- /* There is a shortcut in the slot corresponding to the index key
- * segment. We follow the shortcut if its partial index key matches
- * this leaf's. Otherwise we need to split the shortcut.
- */
- cursor = ptr;
- follow_shortcut:
- shortcut = assoc_array_ptr_to_shortcut(cursor);
- pr_devel("shortcut to %d\n", shortcut->skip_to_level);
- sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
- BUG_ON(sc_level > shortcut->skip_to_level);
- do {
- /* Check the leaf against the shortcut's index key a word at a
- * time, trimming the final word (the shortcut stores the index
- * key completely from the root to the shortcut's target).
- */
- if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
- segments = ops->get_key_chunk(index_key, sc_level);
- sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
- dissimilarity = segments ^ sc_segments;
- if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
- /* Trim segments that are beyond the shortcut */
- int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
- dissimilarity &= ~(ULONG_MAX << shift);
- next_sc_level = shortcut->skip_to_level;
- } else {
- next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
- next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
- }
- if (dissimilarity != 0) {
- /* This shortcut points elsewhere */
- result->wrong_shortcut.shortcut = shortcut;
- result->wrong_shortcut.level = level;
- result->wrong_shortcut.sc_level = sc_level;
- result->wrong_shortcut.sc_segments = sc_segments;
- result->wrong_shortcut.dissimilarity = dissimilarity;
- return assoc_array_walk_found_wrong_shortcut;
- }
- sc_level = next_sc_level;
- } while (sc_level < shortcut->skip_to_level);
- /* The shortcut matches the leaf's index to this point. */
- cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
- if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
- level = sc_level;
- goto jumped;
- } else {
- level = sc_level;
- goto consider_node;
- }
- }
- /**
- * assoc_array_find - Find an object by index key
- * @array: The associative array to search.
- * @ops: The operations to use.
- * @index_key: The key to the object.
- *
- * Find an object in an associative array by walking through the internal tree
- * to the node that should contain the object and then searching the leaves
- * there. NULL is returned if the requested object was not found in the array.
- *
- * The caller must hold the RCU read lock or better.
- */
- void *assoc_array_find(const struct assoc_array *array,
- const struct assoc_array_ops *ops,
- const void *index_key)
- {
- struct assoc_array_walk_result result;
- const struct assoc_array_node *node;
- const struct assoc_array_ptr *ptr;
- const void *leaf;
- int slot;
- if (assoc_array_walk(array, ops, index_key, &result) !=
- assoc_array_walk_found_terminal_node)
- return NULL;
- node = result.terminal_node.node;
- /* If the target key is available to us, it's has to be pointed to by
- * the terminal node.
- */
- for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
- if (ptr && assoc_array_ptr_is_leaf(ptr)) {
- /* We need a barrier between the read of the pointer
- * and dereferencing the pointer - but only if we are
- * actually going to dereference it.
- */
- leaf = assoc_array_ptr_to_leaf(ptr);
- if (ops->compare_object(leaf, index_key))
- return (void *)leaf;
- }
- }
- return NULL;
- }
- /*
- * Destructively iterate over an associative array. The caller must prevent
- * other simultaneous accesses.
- */
- static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
- const struct assoc_array_ops *ops)
- {
- struct assoc_array_shortcut *shortcut;
- struct assoc_array_node *node;
- struct assoc_array_ptr *cursor, *parent = NULL;
- int slot = -1;
- pr_devel("-->%s()\n", __func__);
- cursor = root;
- if (!cursor) {
- pr_devel("empty\n");
- return;
- }
- move_to_meta:
- if (assoc_array_ptr_is_shortcut(cursor)) {
- /* Descend through a shortcut */
- pr_devel("[%d] shortcut\n", slot);
- BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
- shortcut = assoc_array_ptr_to_shortcut(cursor);
- BUG_ON(shortcut->back_pointer != parent);
- BUG_ON(slot != -1 && shortcut->parent_slot != slot);
- parent = cursor;
- cursor = shortcut->next_node;
- slot = -1;
- BUG_ON(!assoc_array_ptr_is_node(cursor));
- }
- pr_devel("[%d] node\n", slot);
- node = assoc_array_ptr_to_node(cursor);
- BUG_ON(node->back_pointer != parent);
- BUG_ON(slot != -1 && node->parent_slot != slot);
- slot = 0;
- continue_node:
- pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
- for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- struct assoc_array_ptr *ptr = node->slots[slot];
- if (!ptr)
- continue;
- if (assoc_array_ptr_is_meta(ptr)) {
- parent = cursor;
- cursor = ptr;
- goto move_to_meta;
- }
- if (ops) {
- pr_devel("[%d] free leaf\n", slot);
- ops->free_object(assoc_array_ptr_to_leaf(ptr));
- }
- }
- parent = node->back_pointer;
- slot = node->parent_slot;
- pr_devel("free node\n");
- kfree(node);
- if (!parent)
- return; /* Done */
- /* Move back up to the parent (may need to free a shortcut on
- * the way up) */
- if (assoc_array_ptr_is_shortcut(parent)) {
- shortcut = assoc_array_ptr_to_shortcut(parent);
- BUG_ON(shortcut->next_node != cursor);
- cursor = parent;
- parent = shortcut->back_pointer;
- slot = shortcut->parent_slot;
- pr_devel("free shortcut\n");
- kfree(shortcut);
- if (!parent)
- return;
- BUG_ON(!assoc_array_ptr_is_node(parent));
- }
- /* Ascend to next slot in parent node */
- pr_devel("ascend to %p[%d]\n", parent, slot);
- cursor = parent;
- node = assoc_array_ptr_to_node(cursor);
- slot++;
- goto continue_node;
- }
- /**
- * assoc_array_destroy - Destroy an associative array
- * @array: The array to destroy.
- * @ops: The operations to use.
- *
- * Discard all metadata and free all objects in an associative array. The
- * array will be empty and ready to use again upon completion. This function
- * cannot fail.
- *
- * The caller must prevent all other accesses whilst this takes place as no
- * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
- * accesses to continue. On the other hand, no memory allocation is required.
- */
- void assoc_array_destroy(struct assoc_array *array,
- const struct assoc_array_ops *ops)
- {
- assoc_array_destroy_subtree(array->root, ops);
- array->root = NULL;
- }
- /*
- * Handle insertion into an empty tree.
- */
- static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
- {
- struct assoc_array_node *new_n0;
- pr_devel("-->%s()\n", __func__);
- new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
- if (!new_n0)
- return false;
- edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
- edit->leaf_p = &new_n0->slots[0];
- edit->adjust_count_on = new_n0;
- edit->set[0].ptr = &edit->array->root;
- edit->set[0].to = assoc_array_node_to_ptr(new_n0);
- pr_devel("<--%s() = ok [no root]\n", __func__);
- return true;
- }
- /*
- * Handle insertion into a terminal node.
- */
- static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
- const struct assoc_array_ops *ops,
- const void *index_key,
- struct assoc_array_walk_result *result)
- {
- struct assoc_array_shortcut *shortcut, *new_s0;
- struct assoc_array_node *node, *new_n0, *new_n1, *side;
- struct assoc_array_ptr *ptr;
- unsigned long dissimilarity, base_seg, blank;
- size_t keylen;
- bool have_meta;
- int level, diff;
- int slot, next_slot, free_slot, i, j;
- node = result->terminal_node.node;
- level = result->terminal_node.level;
- edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
- pr_devel("-->%s()\n", __func__);
- /* We arrived at a node which doesn't have an onward node or shortcut
- * pointer that we have to follow. This means that (a) the leaf we
- * want must go here (either by insertion or replacement) or (b) we
- * need to split this node and insert in one of the fragments.
- */
- free_slot = -1;
- /* Firstly, we have to check the leaves in this node to see if there's
- * a matching one we should replace in place.
- */
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- ptr = node->slots[i];
- if (!ptr) {
- free_slot = i;
- continue;
- }
- if (assoc_array_ptr_is_leaf(ptr) &&
- ops->compare_object(assoc_array_ptr_to_leaf(ptr),
- index_key)) {
- pr_devel("replace in slot %d\n", i);
- edit->leaf_p = &node->slots[i];
- edit->dead_leaf = node->slots[i];
- pr_devel("<--%s() = ok [replace]\n", __func__);
- return true;
- }
- }
- /* If there is a free slot in this node then we can just insert the
- * leaf here.
- */
- if (free_slot >= 0) {
- pr_devel("insert in free slot %d\n", free_slot);
- edit->leaf_p = &node->slots[free_slot];
- edit->adjust_count_on = node;
- pr_devel("<--%s() = ok [insert]\n", __func__);
- return true;
- }
- /* The node has no spare slots - so we're either going to have to split
- * it or insert another node before it.
- *
- * Whatever, we're going to need at least two new nodes - so allocate
- * those now. We may also need a new shortcut, but we deal with that
- * when we need it.
- */
- new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
- if (!new_n0)
- return false;
- edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
- new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
- if (!new_n1)
- return false;
- edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
- /* We need to find out how similar the leaves are. */
- pr_devel("no spare slots\n");
- have_meta = false;
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- ptr = node->slots[i];
- if (assoc_array_ptr_is_meta(ptr)) {
- edit->segment_cache[i] = 0xff;
- have_meta = true;
- continue;
- }
- base_seg = ops->get_object_key_chunk(
- assoc_array_ptr_to_leaf(ptr), level);
- base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
- edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
- }
- if (have_meta) {
- pr_devel("have meta\n");
- goto split_node;
- }
- /* The node contains only leaves */
- dissimilarity = 0;
- base_seg = edit->segment_cache[0];
- for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
- dissimilarity |= edit->segment_cache[i] ^ base_seg;
- pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
- if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
- /* The old leaves all cluster in the same slot. We will need
- * to insert a shortcut if the new node wants to cluster with them.
- */
- if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
- goto all_leaves_cluster_together;
- /* Otherwise all the old leaves cluster in the same slot, but
- * the new leaf wants to go into a different slot - so we
- * create a new node (n0) to hold the new leaf and a pointer to
- * a new node (n1) holding all the old leaves.
- *
- * This can be done by falling through to the node splitting
- * path.
- */
- pr_devel("present leaves cluster but not new leaf\n");
- }
- split_node:
- pr_devel("split node\n");
- /* We need to split the current node. The node must contain anything
- * from a single leaf (in the one leaf case, this leaf will cluster
- * with the new leaf) and the rest meta-pointers, to all leaves, some
- * of which may cluster.
- *
- * It won't contain the case in which all the current leaves plus the
- * new leaves want to cluster in the same slot.
- *
- * We need to expel at least two leaves out of a set consisting of the
- * leaves in the node and the new leaf. The current meta pointers can
- * just be copied as they shouldn't cluster with any of the leaves.
- *
- * We need a new node (n0) to replace the current one and a new node to
- * take the expelled nodes (n1).
- */
- edit->set[0].to = assoc_array_node_to_ptr(new_n0);
- new_n0->back_pointer = node->back_pointer;
- new_n0->parent_slot = node->parent_slot;
- new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
- new_n1->parent_slot = -1; /* Need to calculate this */
- do_split_node:
- pr_devel("do_split_node\n");
- new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
- new_n1->nr_leaves_on_branch = 0;
- /* Begin by finding two matching leaves. There have to be at least two
- * that match - even if there are meta pointers - because any leaf that
- * would match a slot with a meta pointer in it must be somewhere
- * behind that meta pointer and cannot be here. Further, given N
- * remaining leaf slots, we now have N+1 leaves to go in them.
- */
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- slot = edit->segment_cache[i];
- if (slot != 0xff)
- for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
- if (edit->segment_cache[j] == slot)
- goto found_slot_for_multiple_occupancy;
- }
- found_slot_for_multiple_occupancy:
- pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
- BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
- BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
- BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
- new_n1->parent_slot = slot;
- /* Metadata pointers cannot change slot */
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
- if (assoc_array_ptr_is_meta(node->slots[i]))
- new_n0->slots[i] = node->slots[i];
- else
- new_n0->slots[i] = NULL;
- BUG_ON(new_n0->slots[slot] != NULL);
- new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
- /* Filter the leaf pointers between the new nodes */
- free_slot = -1;
- next_slot = 0;
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- if (assoc_array_ptr_is_meta(node->slots[i]))
- continue;
- if (edit->segment_cache[i] == slot) {
- new_n1->slots[next_slot++] = node->slots[i];
- new_n1->nr_leaves_on_branch++;
- } else {
- do {
- free_slot++;
- } while (new_n0->slots[free_slot] != NULL);
- new_n0->slots[free_slot] = node->slots[i];
- }
- }
- pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
- if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
- do {
- free_slot++;
- } while (new_n0->slots[free_slot] != NULL);
- edit->leaf_p = &new_n0->slots[free_slot];
- edit->adjust_count_on = new_n0;
- } else {
- edit->leaf_p = &new_n1->slots[next_slot++];
- edit->adjust_count_on = new_n1;
- }
- BUG_ON(next_slot <= 1);
- edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- if (edit->segment_cache[i] == 0xff) {
- ptr = node->slots[i];
- BUG_ON(assoc_array_ptr_is_leaf(ptr));
- if (assoc_array_ptr_is_node(ptr)) {
- side = assoc_array_ptr_to_node(ptr);
- edit->set_backpointers[i] = &side->back_pointer;
- } else {
- shortcut = assoc_array_ptr_to_shortcut(ptr);
- edit->set_backpointers[i] = &shortcut->back_pointer;
- }
- }
- }
- ptr = node->back_pointer;
- if (!ptr)
- edit->set[0].ptr = &edit->array->root;
- else if (assoc_array_ptr_is_node(ptr))
- edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
- else
- edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
- edit->excised_meta[0] = assoc_array_node_to_ptr(node);
- pr_devel("<--%s() = ok [split node]\n", __func__);
- return true;
- all_leaves_cluster_together:
- /* All the leaves, new and old, want to cluster together in this node
- * in the same slot, so we have to replace this node with a shortcut to
- * skip over the identical parts of the key and then place a pair of
- * nodes, one inside the other, at the end of the shortcut and
- * distribute the keys between them.
- *
- * Firstly we need to work out where the leaves start diverging as a
- * bit position into their keys so that we know how big the shortcut
- * needs to be.
- *
- * We only need to make a single pass of N of the N+1 leaves because if
- * any keys differ between themselves at bit X then at least one of
- * them must also differ with the base key at bit X or before.
- */
- pr_devel("all leaves cluster together\n");
- diff = INT_MAX;
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
- index_key);
- if (x < diff) {
- BUG_ON(x < 0);
- diff = x;
- }
- }
- BUG_ON(diff == INT_MAX);
- BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
- keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
- keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
- if (!new_s0)
- return false;
- edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
- edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
- new_s0->back_pointer = node->back_pointer;
- new_s0->parent_slot = node->parent_slot;
- new_s0->next_node = assoc_array_node_to_ptr(new_n0);
- new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
- new_n0->parent_slot = 0;
- new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
- new_n1->parent_slot = -1; /* Need to calculate this */
- new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
- pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
- BUG_ON(level <= 0);
- for (i = 0; i < keylen; i++)
- new_s0->index_key[i] =
- ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
- if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) {
- blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
- pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
- new_s0->index_key[keylen - 1] &= ~blank;
- }
- /* This now reduces to a node splitting exercise for which we'll need
- * to regenerate the disparity table.
- */
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- ptr = node->slots[i];
- base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
- level);
- base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
- edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
- }
- base_seg = ops->get_key_chunk(index_key, level);
- base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
- edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
- goto do_split_node;
- }
- /*
- * Handle insertion into the middle of a shortcut.
- */
- static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
- const struct assoc_array_ops *ops,
- struct assoc_array_walk_result *result)
- {
- struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
- struct assoc_array_node *node, *new_n0, *side;
- unsigned long sc_segments, dissimilarity, blank;
- size_t keylen;
- int level, sc_level, diff;
- int sc_slot;
- shortcut = result->wrong_shortcut.shortcut;
- level = result->wrong_shortcut.level;
- sc_level = result->wrong_shortcut.sc_level;
- sc_segments = result->wrong_shortcut.sc_segments;
- dissimilarity = result->wrong_shortcut.dissimilarity;
- pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
- __func__, level, dissimilarity, sc_level);
- /* We need to split a shortcut and insert a node between the two
- * pieces. Zero-length pieces will be dispensed with entirely.
- *
- * First of all, we need to find out in which level the first
- * difference was.
- */
- diff = __ffs(dissimilarity);
- diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
- diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
- pr_devel("diff=%d\n", diff);
- if (!shortcut->back_pointer) {
- edit->set[0].ptr = &edit->array->root;
- } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
- node = assoc_array_ptr_to_node(shortcut->back_pointer);
- edit->set[0].ptr = &node->slots[shortcut->parent_slot];
- } else {
- BUG();
- }
- edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
- /* Create a new node now since we're going to need it anyway */
- new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
- if (!new_n0)
- return false;
- edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
- edit->adjust_count_on = new_n0;
- /* Insert a new shortcut before the new node if this segment isn't of
- * zero length - otherwise we just connect the new node directly to the
- * parent.
- */
- level += ASSOC_ARRAY_LEVEL_STEP;
- if (diff > level) {
- pr_devel("pre-shortcut %d...%d\n", level, diff);
- keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
- keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
- if (!new_s0)
- return false;
- edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
- edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
- new_s0->back_pointer = shortcut->back_pointer;
- new_s0->parent_slot = shortcut->parent_slot;
- new_s0->next_node = assoc_array_node_to_ptr(new_n0);
- new_s0->skip_to_level = diff;
- new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
- new_n0->parent_slot = 0;
- memcpy(new_s0->index_key, shortcut->index_key,
- keylen * sizeof(unsigned long));
- blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
- pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
- new_s0->index_key[keylen - 1] &= ~blank;
- } else {
- pr_devel("no pre-shortcut\n");
- edit->set[0].to = assoc_array_node_to_ptr(new_n0);
- new_n0->back_pointer = shortcut->back_pointer;
- new_n0->parent_slot = shortcut->parent_slot;
- }
- side = assoc_array_ptr_to_node(shortcut->next_node);
- new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
- /* We need to know which slot in the new node is going to take a
- * metadata pointer.
- */
- sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
- sc_slot &= ASSOC_ARRAY_FAN_MASK;
- pr_devel("new slot %lx >> %d -> %d\n",
- sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
- /* Determine whether we need to follow the new node with a replacement
- * for the current shortcut. We could in theory reuse the current
- * shortcut if its parent slot number doesn't change - but that's a
- * 1-in-16 chance so not worth expending the code upon.
- */
- level = diff + ASSOC_ARRAY_LEVEL_STEP;
- if (level < shortcut->skip_to_level) {
- pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
- keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
- keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
- if (!new_s1)
- return false;
- edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
- new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
- new_s1->parent_slot = sc_slot;
- new_s1->next_node = shortcut->next_node;
- new_s1->skip_to_level = shortcut->skip_to_level;
- new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
- memcpy(new_s1->index_key, shortcut->index_key,
- keylen * sizeof(unsigned long));
- edit->set[1].ptr = &side->back_pointer;
- edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
- } else {
- pr_devel("no post-shortcut\n");
- /* We don't have to replace the pointed-to node as long as we
- * use memory barriers to make sure the parent slot number is
- * changed before the back pointer (the parent slot number is
- * irrelevant to the old parent shortcut).
- */
- new_n0->slots[sc_slot] = shortcut->next_node;
- edit->set_parent_slot[0].p = &side->parent_slot;
- edit->set_parent_slot[0].to = sc_slot;
- edit->set[1].ptr = &side->back_pointer;
- edit->set[1].to = assoc_array_node_to_ptr(new_n0);
- }
- /* Install the new leaf in a spare slot in the new node. */
- if (sc_slot == 0)
- edit->leaf_p = &new_n0->slots[1];
- else
- edit->leaf_p = &new_n0->slots[0];
- pr_devel("<--%s() = ok [split shortcut]\n", __func__);
- return edit;
- }
- /**
- * assoc_array_insert - Script insertion of an object into an associative array
- * @array: The array to insert into.
- * @ops: The operations to use.
- * @index_key: The key to insert at.
- * @object: The object to insert.
- *
- * Precalculate and preallocate a script for the insertion or replacement of an
- * object in an associative array. This results in an edit script that can
- * either be applied or cancelled.
- *
- * The function returns a pointer to an edit script or -ENOMEM.
- *
- * The caller should lock against other modifications and must continue to hold
- * the lock until assoc_array_apply_edit() has been called.
- *
- * Accesses to the tree may take place concurrently with this function,
- * provided they hold the RCU read lock.
- */
- struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
- const struct assoc_array_ops *ops,
- const void *index_key,
- void *object)
- {
- struct assoc_array_walk_result result;
- struct assoc_array_edit *edit;
- pr_devel("-->%s()\n", __func__);
- /* The leaf pointer we're given must not have the bottom bit set as we
- * use those for type-marking the pointer. NULL pointers are also not
- * allowed as they indicate an empty slot but we have to allow them
- * here as they can be updated later.
- */
- BUG_ON(assoc_array_ptr_is_meta(object));
- edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
- if (!edit)
- return ERR_PTR(-ENOMEM);
- edit->array = array;
- edit->ops = ops;
- edit->leaf = assoc_array_leaf_to_ptr(object);
- edit->adjust_count_by = 1;
- switch (assoc_array_walk(array, ops, index_key, &result)) {
- case assoc_array_walk_tree_empty:
- /* Allocate a root node if there isn't one yet */
- if (!assoc_array_insert_in_empty_tree(edit))
- goto enomem;
- return edit;
- case assoc_array_walk_found_terminal_node:
- /* We found a node that doesn't have a node/shortcut pointer in
- * the slot corresponding to the index key that we have to
- * follow.
- */
- if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
- &result))
- goto enomem;
- return edit;
- case assoc_array_walk_found_wrong_shortcut:
- /* We found a shortcut that didn't match our key in a slot we
- * needed to follow.
- */
- if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
- goto enomem;
- return edit;
- }
- enomem:
- /* Clean up after an out of memory error */
- pr_devel("enomem\n");
- assoc_array_cancel_edit(edit);
- return ERR_PTR(-ENOMEM);
- }
- /**
- * assoc_array_insert_set_object - Set the new object pointer in an edit script
- * @edit: The edit script to modify.
- * @object: The object pointer to set.
- *
- * Change the object to be inserted in an edit script. The object pointed to
- * by the old object is not freed. This must be done prior to applying the
- * script.
- */
- void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
- {
- BUG_ON(!object);
- edit->leaf = assoc_array_leaf_to_ptr(object);
- }
- struct assoc_array_delete_collapse_context {
- struct assoc_array_node *node;
- const void *skip_leaf;
- int slot;
- };
- /*
- * Subtree collapse to node iterator.
- */
- static int assoc_array_delete_collapse_iterator(const void *leaf,
- void *iterator_data)
- {
- struct assoc_array_delete_collapse_context *collapse = iterator_data;
- if (leaf == collapse->skip_leaf)
- return 0;
- BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
- collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
- return 0;
- }
- /**
- * assoc_array_delete - Script deletion of an object from an associative array
- * @array: The array to search.
- * @ops: The operations to use.
- * @index_key: The key to the object.
- *
- * Precalculate and preallocate a script for the deletion of an object from an
- * associative array. This results in an edit script that can either be
- * applied or cancelled.
- *
- * The function returns a pointer to an edit script if the object was found,
- * NULL if the object was not found or -ENOMEM.
- *
- * The caller should lock against other modifications and must continue to hold
- * the lock until assoc_array_apply_edit() has been called.
- *
- * Accesses to the tree may take place concurrently with this function,
- * provided they hold the RCU read lock.
- */
- struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
- const struct assoc_array_ops *ops,
- const void *index_key)
- {
- struct assoc_array_delete_collapse_context collapse;
- struct assoc_array_walk_result result;
- struct assoc_array_node *node, *new_n0;
- struct assoc_array_edit *edit;
- struct assoc_array_ptr *ptr;
- bool has_meta;
- int slot, i;
- pr_devel("-->%s()\n", __func__);
- edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
- if (!edit)
- return ERR_PTR(-ENOMEM);
- edit->array = array;
- edit->ops = ops;
- edit->adjust_count_by = -1;
- switch (assoc_array_walk(array, ops, index_key, &result)) {
- case assoc_array_walk_found_terminal_node:
- /* We found a node that should contain the leaf we've been
- * asked to remove - *if* it's in the tree.
- */
- pr_devel("terminal_node\n");
- node = result.terminal_node.node;
- for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- ptr = node->slots[slot];
- if (ptr &&
- assoc_array_ptr_is_leaf(ptr) &&
- ops->compare_object(assoc_array_ptr_to_leaf(ptr),
- index_key))
- goto found_leaf;
- }
- case assoc_array_walk_tree_empty:
- case assoc_array_walk_found_wrong_shortcut:
- default:
- assoc_array_cancel_edit(edit);
- pr_devel("not found\n");
- return NULL;
- }
- found_leaf:
- BUG_ON(array->nr_leaves_on_tree <= 0);
- /* In the simplest form of deletion we just clear the slot and release
- * the leaf after a suitable interval.
- */
- edit->dead_leaf = node->slots[slot];
- edit->set[0].ptr = &node->slots[slot];
- edit->set[0].to = NULL;
- edit->adjust_count_on = node;
- /* If that concludes erasure of the last leaf, then delete the entire
- * internal array.
- */
- if (array->nr_leaves_on_tree == 1) {
- edit->set[1].ptr = &array->root;
- edit->set[1].to = NULL;
- edit->adjust_count_on = NULL;
- edit->excised_subtree = array->root;
- pr_devel("all gone\n");
- return edit;
- }
- /* However, we'd also like to clear up some metadata blocks if we
- * possibly can.
- *
- * We go for a simple algorithm of: if this node has FAN_OUT or fewer
- * leaves in it, then attempt to collapse it - and attempt to
- * recursively collapse up the tree.
- *
- * We could also try and collapse in partially filled subtrees to take
- * up space in this node.
- */
- if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
- struct assoc_array_node *parent, *grandparent;
- struct assoc_array_ptr *ptr;
- /* First of all, we need to know if this node has metadata so
- * that we don't try collapsing if all the leaves are already
- * here.
- */
- has_meta = false;
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- ptr = node->slots[i];
- if (assoc_array_ptr_is_meta(ptr)) {
- has_meta = true;
- break;
- }
- }
- pr_devel("leaves: %ld [m=%d]\n",
- node->nr_leaves_on_branch - 1, has_meta);
- /* Look further up the tree to see if we can collapse this node
- * into a more proximal node too.
- */
- parent = node;
- collapse_up:
- pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
- ptr = parent->back_pointer;
- if (!ptr)
- goto do_collapse;
- if (assoc_array_ptr_is_shortcut(ptr)) {
- struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
- ptr = s->back_pointer;
- if (!ptr)
- goto do_collapse;
- }
- grandparent = assoc_array_ptr_to_node(ptr);
- if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
- parent = grandparent;
- goto collapse_up;
- }
- do_collapse:
- /* There's no point collapsing if the original node has no meta
- * pointers to discard and if we didn't merge into one of that
- * node's ancestry.
- */
- if (has_meta || parent != node) {
- node = parent;
- /* Create a new node to collapse into */
- new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
- if (!new_n0)
- goto enomem;
- edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
- new_n0->back_pointer = node->back_pointer;
- new_n0->parent_slot = node->parent_slot;
- new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
- edit->adjust_count_on = new_n0;
- collapse.node = new_n0;
- collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
- collapse.slot = 0;
- assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
- node->back_pointer,
- assoc_array_delete_collapse_iterator,
- &collapse);
- pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
- BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
- if (!node->back_pointer) {
- edit->set[1].ptr = &array->root;
- } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
- BUG();
- } else if (assoc_array_ptr_is_node(node->back_pointer)) {
- struct assoc_array_node *p =
- assoc_array_ptr_to_node(node->back_pointer);
- edit->set[1].ptr = &p->slots[node->parent_slot];
- } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
- struct assoc_array_shortcut *s =
- assoc_array_ptr_to_shortcut(node->back_pointer);
- edit->set[1].ptr = &s->next_node;
- }
- edit->set[1].to = assoc_array_node_to_ptr(new_n0);
- edit->excised_subtree = assoc_array_node_to_ptr(node);
- }
- }
- return edit;
- enomem:
- /* Clean up after an out of memory error */
- pr_devel("enomem\n");
- assoc_array_cancel_edit(edit);
- return ERR_PTR(-ENOMEM);
- }
- /**
- * assoc_array_clear - Script deletion of all objects from an associative array
- * @array: The array to clear.
- * @ops: The operations to use.
- *
- * Precalculate and preallocate a script for the deletion of all the objects
- * from an associative array. This results in an edit script that can either
- * be applied or cancelled.
- *
- * The function returns a pointer to an edit script if there are objects to be
- * deleted, NULL if there are no objects in the array or -ENOMEM.
- *
- * The caller should lock against other modifications and must continue to hold
- * the lock until assoc_array_apply_edit() has been called.
- *
- * Accesses to the tree may take place concurrently with this function,
- * provided they hold the RCU read lock.
- */
- struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
- const struct assoc_array_ops *ops)
- {
- struct assoc_array_edit *edit;
- pr_devel("-->%s()\n", __func__);
- if (!array->root)
- return NULL;
- edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
- if (!edit)
- return ERR_PTR(-ENOMEM);
- edit->array = array;
- edit->ops = ops;
- edit->set[1].ptr = &array->root;
- edit->set[1].to = NULL;
- edit->excised_subtree = array->root;
- edit->ops_for_excised_subtree = ops;
- pr_devel("all gone\n");
- return edit;
- }
- /*
- * Handle the deferred destruction after an applied edit.
- */
- static void assoc_array_rcu_cleanup(struct rcu_head *head)
- {
- struct assoc_array_edit *edit =
- container_of(head, struct assoc_array_edit, rcu);
- int i;
- pr_devel("-->%s()\n", __func__);
- if (edit->dead_leaf)
- edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
- for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
- if (edit->excised_meta[i])
- kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
- if (edit->excised_subtree) {
- BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
- if (assoc_array_ptr_is_node(edit->excised_subtree)) {
- struct assoc_array_node *n =
- assoc_array_ptr_to_node(edit->excised_subtree);
- n->back_pointer = NULL;
- } else {
- struct assoc_array_shortcut *s =
- assoc_array_ptr_to_shortcut(edit->excised_subtree);
- s->back_pointer = NULL;
- }
- assoc_array_destroy_subtree(edit->excised_subtree,
- edit->ops_for_excised_subtree);
- }
- kfree(edit);
- }
- /**
- * assoc_array_apply_edit - Apply an edit script to an associative array
- * @edit: The script to apply.
- *
- * Apply an edit script to an associative array to effect an insertion,
- * deletion or clearance. As the edit script includes preallocated memory,
- * this is guaranteed not to fail.
- *
- * The edit script, dead objects and dead metadata will be scheduled for
- * destruction after an RCU grace period to permit those doing read-only
- * accesses on the array to continue to do so under the RCU read lock whilst
- * the edit is taking place.
- */
- void assoc_array_apply_edit(struct assoc_array_edit *edit)
- {
- struct assoc_array_shortcut *shortcut;
- struct assoc_array_node *node;
- struct assoc_array_ptr *ptr;
- int i;
- pr_devel("-->%s()\n", __func__);
- smp_wmb();
- if (edit->leaf_p)
- *edit->leaf_p = edit->leaf;
- smp_wmb();
- for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
- if (edit->set_parent_slot[i].p)
- *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
- smp_wmb();
- for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
- if (edit->set_backpointers[i])
- *edit->set_backpointers[i] = edit->set_backpointers_to;
- smp_wmb();
- for (i = 0; i < ARRAY_SIZE(edit->set); i++)
- if (edit->set[i].ptr)
- *edit->set[i].ptr = edit->set[i].to;
- if (edit->array->root == NULL) {
- edit->array->nr_leaves_on_tree = 0;
- } else if (edit->adjust_count_on) {
- node = edit->adjust_count_on;
- for (;;) {
- node->nr_leaves_on_branch += edit->adjust_count_by;
- ptr = node->back_pointer;
- if (!ptr)
- break;
- if (assoc_array_ptr_is_shortcut(ptr)) {
- shortcut = assoc_array_ptr_to_shortcut(ptr);
- ptr = shortcut->back_pointer;
- if (!ptr)
- break;
- }
- BUG_ON(!assoc_array_ptr_is_node(ptr));
- node = assoc_array_ptr_to_node(ptr);
- }
- edit->array->nr_leaves_on_tree += edit->adjust_count_by;
- }
- call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
- }
- /**
- * assoc_array_cancel_edit - Discard an edit script.
- * @edit: The script to discard.
- *
- * Free an edit script and all the preallocated data it holds without making
- * any changes to the associative array it was intended for.
- *
- * NOTE! In the case of an insertion script, this does _not_ release the leaf
- * that was to be inserted. That is left to the caller.
- */
- void assoc_array_cancel_edit(struct assoc_array_edit *edit)
- {
- struct assoc_array_ptr *ptr;
- int i;
- pr_devel("-->%s()\n", __func__);
- /* Clean up after an out of memory error */
- for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
- ptr = edit->new_meta[i];
- if (ptr) {
- if (assoc_array_ptr_is_node(ptr))
- kfree(assoc_array_ptr_to_node(ptr));
- else
- kfree(assoc_array_ptr_to_shortcut(ptr));
- }
- }
- kfree(edit);
- }
- /**
- * assoc_array_gc - Garbage collect an associative array.
- * @array: The array to clean.
- * @ops: The operations to use.
- * @iterator: A callback function to pass judgement on each object.
- * @iterator_data: Private data for the callback function.
- *
- * Collect garbage from an associative array and pack down the internal tree to
- * save memory.
- *
- * The iterator function is asked to pass judgement upon each object in the
- * array. If it returns false, the object is discard and if it returns true,
- * the object is kept. If it returns true, it must increment the object's
- * usage count (or whatever it needs to do to retain it) before returning.
- *
- * This function returns 0 if successful or -ENOMEM if out of memory. In the
- * latter case, the array is not changed.
- *
- * The caller should lock against other modifications and must continue to hold
- * the lock until assoc_array_apply_edit() has been called.
- *
- * Accesses to the tree may take place concurrently with this function,
- * provided they hold the RCU read lock.
- */
- int assoc_array_gc(struct assoc_array *array,
- const struct assoc_array_ops *ops,
- bool (*iterator)(void *object, void *iterator_data),
- void *iterator_data)
- {
- struct assoc_array_shortcut *shortcut, *new_s;
- struct assoc_array_node *node, *new_n;
- struct assoc_array_edit *edit;
- struct assoc_array_ptr *cursor, *ptr;
- struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
- unsigned long nr_leaves_on_tree;
- int keylen, slot, nr_free, next_slot, i;
- pr_devel("-->%s()\n", __func__);
- if (!array->root)
- return 0;
- edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
- if (!edit)
- return -ENOMEM;
- edit->array = array;
- edit->ops = ops;
- edit->ops_for_excised_subtree = ops;
- edit->set[0].ptr = &array->root;
- edit->excised_subtree = array->root;
- new_root = new_parent = NULL;
- new_ptr_pp = &new_root;
- cursor = array->root;
- descend:
- /* If this point is a shortcut, then we need to duplicate it and
- * advance the target cursor.
- */
- if (assoc_array_ptr_is_shortcut(cursor)) {
- shortcut = assoc_array_ptr_to_shortcut(cursor);
- keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
- keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
- if (!new_s)
- goto enomem;
- pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
- memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long)));
- new_s->back_pointer = new_parent;
- new_s->parent_slot = shortcut->parent_slot;
- *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
- new_ptr_pp = &new_s->next_node;
- cursor = shortcut->next_node;
- }
- /* Duplicate the node at this position */
- node = assoc_array_ptr_to_node(cursor);
- new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
- if (!new_n)
- goto enomem;
- pr_devel("dup node %p -> %p\n", node, new_n);
- new_n->back_pointer = new_parent;
- new_n->parent_slot = node->parent_slot;
- *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
- new_ptr_pp = NULL;
- slot = 0;
- continue_node:
- /* Filter across any leaves and gc any subtrees */
- for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- ptr = node->slots[slot];
- if (!ptr)
- continue;
- if (assoc_array_ptr_is_leaf(ptr)) {
- if (iterator(assoc_array_ptr_to_leaf(ptr),
- iterator_data))
- /* The iterator will have done any reference
- * counting on the object for us.
- */
- new_n->slots[slot] = ptr;
- continue;
- }
- new_ptr_pp = &new_n->slots[slot];
- cursor = ptr;
- goto descend;
- }
- pr_devel("-- compress node %p --\n", new_n);
- /* Count up the number of empty slots in this node and work out the
- * subtree leaf count.
- */
- new_n->nr_leaves_on_branch = 0;
- nr_free = 0;
- for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- ptr = new_n->slots[slot];
- if (!ptr)
- nr_free++;
- else if (assoc_array_ptr_is_leaf(ptr))
- new_n->nr_leaves_on_branch++;
- }
- pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
- /* See what we can fold in */
- next_slot = 0;
- for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
- struct assoc_array_shortcut *s;
- struct assoc_array_node *child;
- ptr = new_n->slots[slot];
- if (!ptr || assoc_array_ptr_is_leaf(ptr))
- continue;
- s = NULL;
- if (assoc_array_ptr_is_shortcut(ptr)) {
- s = assoc_array_ptr_to_shortcut(ptr);
- ptr = s->next_node;
- }
- child = assoc_array_ptr_to_node(ptr);
- new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
- if (child->nr_leaves_on_branch <= nr_free + 1) {
- /* Fold the child node into this one */
- pr_devel("[%d] fold node %lu/%d [nx %d]\n",
- slot, child->nr_leaves_on_branch, nr_free + 1,
- next_slot);
- /* We would already have reaped an intervening shortcut
- * on the way back up the tree.
- */
- BUG_ON(s);
- new_n->slots[slot] = NULL;
- nr_free++;
- if (slot < next_slot)
- next_slot = slot;
- for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
- struct assoc_array_ptr *p = child->slots[i];
- if (!p)
- continue;
- BUG_ON(assoc_array_ptr_is_meta(p));
- while (new_n->slots[next_slot])
- next_slot++;
- BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
- new_n->slots[next_slot++] = p;
- nr_free--;
- }
- kfree(child);
- } else {
- pr_devel("[%d] retain node %lu/%d [nx %d]\n",
- slot, child->nr_leaves_on_branch, nr_free + 1,
- next_slot);
- }
- }
- pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
- nr_leaves_on_tree = new_n->nr_leaves_on_branch;
- /* Excise this node if it is singly occupied by a shortcut */
- if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
- for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
- if ((ptr = new_n->slots[slot]))
- break;
- if (assoc_array_ptr_is_meta(ptr) &&
- assoc_array_ptr_is_shortcut(ptr)) {
- pr_devel("excise node %p with 1 shortcut\n", new_n);
- new_s = assoc_array_ptr_to_shortcut(ptr);
- new_parent = new_n->back_pointer;
- slot = new_n->parent_slot;
- kfree(new_n);
- if (!new_parent) {
- new_s->back_pointer = NULL;
- new_s->parent_slot = 0;
- new_root = ptr;
- goto gc_complete;
- }
- if (assoc_array_ptr_is_shortcut(new_parent)) {
- /* We can discard any preceding shortcut also */
- struct assoc_array_shortcut *s =
- assoc_array_ptr_to_shortcut(new_parent);
- pr_devel("excise preceding shortcut\n");
- new_parent = new_s->back_pointer = s->back_pointer;
- slot = new_s->parent_slot = s->parent_slot;
- kfree(s);
- if (!new_parent) {
- new_s->back_pointer = NULL;
- new_s->parent_slot = 0;
- new_root = ptr;
- goto gc_complete;
- }
- }
- new_s->back_pointer = new_parent;
- new_s->parent_slot = slot;
- new_n = assoc_array_ptr_to_node(new_parent);
- new_n->slots[slot] = ptr;
- goto ascend_old_tree;
- }
- }
- /* Excise any shortcuts we might encounter that point to nodes that
- * only contain leaves.
- */
- ptr = new_n->back_pointer;
- if (!ptr)
- goto gc_complete;
- if (assoc_array_ptr_is_shortcut(ptr)) {
- new_s = assoc_array_ptr_to_shortcut(ptr);
- new_parent = new_s->back_pointer;
- slot = new_s->parent_slot;
- if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
- struct assoc_array_node *n;
- pr_devel("excise shortcut\n");
- new_n->back_pointer = new_parent;
- new_n->parent_slot = slot;
- kfree(new_s);
- if (!new_parent) {
- new_root = assoc_array_node_to_ptr(new_n);
- goto gc_complete;
- }
- n = assoc_array_ptr_to_node(new_parent);
- n->slots[slot] = assoc_array_node_to_ptr(new_n);
- }
- } else {
- new_parent = ptr;
- }
- new_n = assoc_array_ptr_to_node(new_parent);
- ascend_old_tree:
- ptr = node->back_pointer;
- if (assoc_array_ptr_is_shortcut(ptr)) {
- shortcut = assoc_array_ptr_to_shortcut(ptr);
- slot = shortcut->parent_slot;
- cursor = shortcut->back_pointer;
- if (!cursor)
- goto gc_complete;
- } else {
- slot = node->parent_slot;
- cursor = ptr;
- }
- BUG_ON(!cursor);
- node = assoc_array_ptr_to_node(cursor);
- slot++;
- goto continue_node;
- gc_complete:
- edit->set[0].to = new_root;
- assoc_array_apply_edit(edit);
- array->nr_leaves_on_tree = nr_leaves_on_tree;
- return 0;
- enomem:
- pr_devel("enomem\n");
- assoc_array_destroy_subtree(new_root, edit->ops);
- kfree(edit);
- return -ENOMEM;
- }
|