123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Scheduler topology setup/handling methods
- */
- #include "sched.h"
- DEFINE_MUTEX(sched_domains_mutex);
- /* Protected by sched_domains_mutex: */
- cpumask_var_t sched_domains_tmpmask;
- cpumask_var_t sched_domains_tmpmask2;
- #ifdef CONFIG_SCHED_DEBUG
- static int __init sched_debug_setup(char *str)
- {
- sched_debug_enabled = true;
- return 0;
- }
- early_param("sched_debug", sched_debug_setup);
- static inline bool sched_debug(void)
- {
- return sched_debug_enabled;
- }
- static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
- struct cpumask *groupmask)
- {
- struct sched_group *group = sd->groups;
- cpumask_clear(groupmask);
- printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
- if (!(sd->flags & SD_LOAD_BALANCE)) {
- printk("does not load-balance\n");
- if (sd->parent)
- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
- return -1;
- }
- printk(KERN_CONT "span=%*pbl level=%s\n",
- cpumask_pr_args(sched_domain_span(sd)), sd->name);
- if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
- printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
- }
- if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
- printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
- }
- printk(KERN_DEBUG "%*s groups:", level + 1, "");
- do {
- if (!group) {
- printk("\n");
- printk(KERN_ERR "ERROR: group is NULL\n");
- break;
- }
- if (!cpumask_weight(sched_group_span(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: empty group\n");
- break;
- }
- if (!(sd->flags & SD_OVERLAP) &&
- cpumask_intersects(groupmask, sched_group_span(group))) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: repeated CPUs\n");
- break;
- }
- cpumask_or(groupmask, groupmask, sched_group_span(group));
- printk(KERN_CONT " %d:{ span=%*pbl",
- group->sgc->id,
- cpumask_pr_args(sched_group_span(group)));
- if ((sd->flags & SD_OVERLAP) &&
- !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
- printk(KERN_CONT " mask=%*pbl",
- cpumask_pr_args(group_balance_mask(group)));
- }
- if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
- printk(KERN_CONT " cap=%lu", group->sgc->capacity);
- if (group == sd->groups && sd->child &&
- !cpumask_equal(sched_domain_span(sd->child),
- sched_group_span(group))) {
- printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
- }
- printk(KERN_CONT " }");
- group = group->next;
- if (group != sd->groups)
- printk(KERN_CONT ",");
- } while (group != sd->groups);
- printk(KERN_CONT "\n");
- if (!cpumask_equal(sched_domain_span(sd), groupmask))
- printk(KERN_ERR "ERROR: groups don't span domain->span\n");
- if (sd->parent &&
- !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
- printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
- return 0;
- }
- static void sched_domain_debug(struct sched_domain *sd, int cpu)
- {
- int level = 0;
- if (!sched_debug_enabled)
- return;
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
- printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
- for (;;) {
- if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
- break;
- level++;
- sd = sd->parent;
- if (!sd)
- break;
- }
- }
- #else /* !CONFIG_SCHED_DEBUG */
- # define sched_debug_enabled 0
- # define sched_domain_debug(sd, cpu) do { } while (0)
- static inline bool sched_debug(void)
- {
- return false;
- }
- #endif /* CONFIG_SCHED_DEBUG */
- static int sd_degenerate(struct sched_domain *sd)
- {
- if (cpumask_weight(sched_domain_span(sd)) == 1)
- return 1;
- /* Following flags need at least 2 groups */
- if (sd->flags & (SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUCAPACITY |
- SD_ASYM_CPUCAPACITY |
- SD_SHARE_PKG_RESOURCES |
- SD_SHARE_POWERDOMAIN)) {
- if (sd->groups != sd->groups->next)
- return 0;
- }
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_AFFINE))
- return 0;
- return 1;
- }
- static int
- sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
- {
- unsigned long cflags = sd->flags, pflags = parent->flags;
- if (sd_degenerate(parent))
- return 1;
- if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
- return 0;
- /* Flags needing groups don't count if only 1 group in parent */
- if (parent->groups == parent->groups->next) {
- pflags &= ~(SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_ASYM_CPUCAPACITY |
- SD_SHARE_CPUCAPACITY |
- SD_SHARE_PKG_RESOURCES |
- SD_PREFER_SIBLING |
- SD_SHARE_POWERDOMAIN);
- if (nr_node_ids == 1)
- pflags &= ~SD_SERIALIZE;
- }
- if (~cflags & pflags)
- return 0;
- return 1;
- }
- static void free_rootdomain(struct rcu_head *rcu)
- {
- struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
- cpupri_cleanup(&rd->cpupri);
- cpudl_cleanup(&rd->cpudl);
- free_cpumask_var(rd->dlo_mask);
- free_cpumask_var(rd->rto_mask);
- free_cpumask_var(rd->online);
- free_cpumask_var(rd->span);
- kfree(rd);
- }
- void rq_attach_root(struct rq *rq, struct root_domain *rd)
- {
- struct root_domain *old_rd = NULL;
- unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- old_rd = rq->rd;
- if (cpumask_test_cpu(rq->cpu, old_rd->online))
- set_rq_offline(rq);
- cpumask_clear_cpu(rq->cpu, old_rd->span);
- /*
- * If we dont want to free the old_rd yet then
- * set old_rd to NULL to skip the freeing later
- * in this function:
- */
- if (!atomic_dec_and_test(&old_rd->refcount))
- old_rd = NULL;
- }
- atomic_inc(&rd->refcount);
- rq->rd = rd;
- cpumask_set_cpu(rq->cpu, rd->span);
- if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
- set_rq_online(rq);
- raw_spin_unlock_irqrestore(&rq->lock, flags);
- if (old_rd)
- call_rcu_sched(&old_rd->rcu, free_rootdomain);
- }
- void sched_get_rd(struct root_domain *rd)
- {
- atomic_inc(&rd->refcount);
- }
- void sched_put_rd(struct root_domain *rd)
- {
- if (!atomic_dec_and_test(&rd->refcount))
- return;
- call_rcu_sched(&rd->rcu, free_rootdomain);
- }
- static int init_rootdomain(struct root_domain *rd)
- {
- if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
- goto out;
- if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
- goto free_span;
- if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
- goto free_online;
- if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
- goto free_dlo_mask;
- #ifdef HAVE_RT_PUSH_IPI
- rd->rto_cpu = -1;
- raw_spin_lock_init(&rd->rto_lock);
- init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
- #endif
- init_dl_bw(&rd->dl_bw);
- if (cpudl_init(&rd->cpudl) != 0)
- goto free_rto_mask;
- if (cpupri_init(&rd->cpupri) != 0)
- goto free_cpudl;
- return 0;
- free_cpudl:
- cpudl_cleanup(&rd->cpudl);
- free_rto_mask:
- free_cpumask_var(rd->rto_mask);
- free_dlo_mask:
- free_cpumask_var(rd->dlo_mask);
- free_online:
- free_cpumask_var(rd->online);
- free_span:
- free_cpumask_var(rd->span);
- out:
- return -ENOMEM;
- }
- /*
- * By default the system creates a single root-domain with all CPUs as
- * members (mimicking the global state we have today).
- */
- struct root_domain def_root_domain;
- void init_defrootdomain(void)
- {
- init_rootdomain(&def_root_domain);
- atomic_set(&def_root_domain.refcount, 1);
- }
- static struct root_domain *alloc_rootdomain(void)
- {
- struct root_domain *rd;
- rd = kzalloc(sizeof(*rd), GFP_KERNEL);
- if (!rd)
- return NULL;
- if (init_rootdomain(rd) != 0) {
- kfree(rd);
- return NULL;
- }
- return rd;
- }
- static void free_sched_groups(struct sched_group *sg, int free_sgc)
- {
- struct sched_group *tmp, *first;
- if (!sg)
- return;
- first = sg;
- do {
- tmp = sg->next;
- if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
- kfree(sg->sgc);
- if (atomic_dec_and_test(&sg->ref))
- kfree(sg);
- sg = tmp;
- } while (sg != first);
- }
- static void destroy_sched_domain(struct sched_domain *sd)
- {
- /*
- * A normal sched domain may have multiple group references, an
- * overlapping domain, having private groups, only one. Iterate,
- * dropping group/capacity references, freeing where none remain.
- */
- free_sched_groups(sd->groups, 1);
- if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
- kfree(sd->shared);
- kfree(sd);
- }
- static void destroy_sched_domains_rcu(struct rcu_head *rcu)
- {
- struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
- while (sd) {
- struct sched_domain *parent = sd->parent;
- destroy_sched_domain(sd);
- sd = parent;
- }
- }
- static void destroy_sched_domains(struct sched_domain *sd)
- {
- if (sd)
- call_rcu(&sd->rcu, destroy_sched_domains_rcu);
- }
- /*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
- *
- * Also keep a unique ID per domain (we use the first CPU number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two CPUs are in the same cache domain, see cpus_share_cache().
- */
- DEFINE_PER_CPU(struct sched_domain *, sd_llc);
- DEFINE_PER_CPU(int, sd_llc_size);
- DEFINE_PER_CPU(int, sd_llc_id);
- DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
- DEFINE_PER_CPU(struct sched_domain *, sd_numa);
- DEFINE_PER_CPU(struct sched_domain *, sd_asym);
- static void update_top_cache_domain(int cpu)
- {
- struct sched_domain_shared *sds = NULL;
- struct sched_domain *sd;
- int id = cpu;
- int size = 1;
- sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
- if (sd) {
- id = cpumask_first(sched_domain_span(sd));
- size = cpumask_weight(sched_domain_span(sd));
- sds = sd->shared;
- }
- rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
- per_cpu(sd_llc_size, cpu) = size;
- per_cpu(sd_llc_id, cpu) = id;
- rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
- sd = lowest_flag_domain(cpu, SD_NUMA);
- rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
- sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
- rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
- }
- /*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
- static void
- cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; ) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- /*
- * Transfer SD_PREFER_SIBLING down in case of a
- * degenerate parent; the spans match for this
- * so the property transfers.
- */
- if (parent->flags & SD_PREFER_SIBLING)
- tmp->flags |= SD_PREFER_SIBLING;
- destroy_sched_domain(parent);
- } else
- tmp = tmp->parent;
- }
- if (sd && sd_degenerate(sd)) {
- tmp = sd;
- sd = sd->parent;
- destroy_sched_domain(tmp);
- if (sd)
- sd->child = NULL;
- }
- sched_domain_debug(sd, cpu);
- rq_attach_root(rq, rd);
- tmp = rq->sd;
- rcu_assign_pointer(rq->sd, sd);
- dirty_sched_domain_sysctl(cpu);
- destroy_sched_domains(tmp);
- update_top_cache_domain(cpu);
- }
- struct s_data {
- struct sched_domain * __percpu *sd;
- struct root_domain *rd;
- };
- enum s_alloc {
- sa_rootdomain,
- sa_sd,
- sa_sd_storage,
- sa_none,
- };
- /*
- * Return the canonical balance CPU for this group, this is the first CPU
- * of this group that's also in the balance mask.
- *
- * The balance mask are all those CPUs that could actually end up at this
- * group. See build_balance_mask().
- *
- * Also see should_we_balance().
- */
- int group_balance_cpu(struct sched_group *sg)
- {
- return cpumask_first(group_balance_mask(sg));
- }
- /*
- * NUMA topology (first read the regular topology blurb below)
- *
- * Given a node-distance table, for example:
- *
- * node 0 1 2 3
- * 0: 10 20 30 20
- * 1: 20 10 20 30
- * 2: 30 20 10 20
- * 3: 20 30 20 10
- *
- * which represents a 4 node ring topology like:
- *
- * 0 ----- 1
- * | |
- * | |
- * | |
- * 3 ----- 2
- *
- * We want to construct domains and groups to represent this. The way we go
- * about doing this is to build the domains on 'hops'. For each NUMA level we
- * construct the mask of all nodes reachable in @level hops.
- *
- * For the above NUMA topology that gives 3 levels:
- *
- * NUMA-2 0-3 0-3 0-3 0-3
- * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
- *
- * NUMA-1 0-1,3 0-2 1-3 0,2-3
- * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
- *
- * NUMA-0 0 1 2 3
- *
- *
- * As can be seen; things don't nicely line up as with the regular topology.
- * When we iterate a domain in child domain chunks some nodes can be
- * represented multiple times -- hence the "overlap" naming for this part of
- * the topology.
- *
- * In order to minimize this overlap, we only build enough groups to cover the
- * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
- *
- * Because:
- *
- * - the first group of each domain is its child domain; this
- * gets us the first 0-1,3
- * - the only uncovered node is 2, who's child domain is 1-3.
- *
- * However, because of the overlap, computing a unique CPU for each group is
- * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
- * groups include the CPUs of Node-0, while those CPUs would not in fact ever
- * end up at those groups (they would end up in group: 0-1,3).
- *
- * To correct this we have to introduce the group balance mask. This mask
- * will contain those CPUs in the group that can reach this group given the
- * (child) domain tree.
- *
- * With this we can once again compute balance_cpu and sched_group_capacity
- * relations.
- *
- * XXX include words on how balance_cpu is unique and therefore can be
- * used for sched_group_capacity links.
- *
- *
- * Another 'interesting' topology is:
- *
- * node 0 1 2 3
- * 0: 10 20 20 30
- * 1: 20 10 20 20
- * 2: 20 20 10 20
- * 3: 30 20 20 10
- *
- * Which looks a little like:
- *
- * 0 ----- 1
- * | / |
- * | / |
- * | / |
- * 2 ----- 3
- *
- * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
- * are not.
- *
- * This leads to a few particularly weird cases where the sched_domain's are
- * not of the same number for each CPU. Consider:
- *
- * NUMA-2 0-3 0-3
- * groups: {0-2},{1-3} {1-3},{0-2}
- *
- * NUMA-1 0-2 0-3 0-3 1-3
- *
- * NUMA-0 0 1 2 3
- *
- */
- /*
- * Build the balance mask; it contains only those CPUs that can arrive at this
- * group and should be considered to continue balancing.
- *
- * We do this during the group creation pass, therefore the group information
- * isn't complete yet, however since each group represents a (child) domain we
- * can fully construct this using the sched_domain bits (which are already
- * complete).
- */
- static void
- build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
- {
- const struct cpumask *sg_span = sched_group_span(sg);
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
- cpumask_clear(mask);
- for_each_cpu(i, sg_span) {
- sibling = *per_cpu_ptr(sdd->sd, i);
- /*
- * Can happen in the asymmetric case, where these siblings are
- * unused. The mask will not be empty because those CPUs that
- * do have the top domain _should_ span the domain.
- */
- if (!sibling->child)
- continue;
- /* If we would not end up here, we can't continue from here */
- if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
- continue;
- cpumask_set_cpu(i, mask);
- }
- /* We must not have empty masks here */
- WARN_ON_ONCE(cpumask_empty(mask));
- }
- /*
- * XXX: This creates per-node group entries; since the load-balancer will
- * immediately access remote memory to construct this group's load-balance
- * statistics having the groups node local is of dubious benefit.
- */
- static struct sched_group *
- build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
- {
- struct sched_group *sg;
- struct cpumask *sg_span;
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(cpu));
- if (!sg)
- return NULL;
- sg_span = sched_group_span(sg);
- if (sd->child)
- cpumask_copy(sg_span, sched_domain_span(sd->child));
- else
- cpumask_copy(sg_span, sched_domain_span(sd));
- atomic_inc(&sg->ref);
- return sg;
- }
- static void init_overlap_sched_group(struct sched_domain *sd,
- struct sched_group *sg)
- {
- struct cpumask *mask = sched_domains_tmpmask2;
- struct sd_data *sdd = sd->private;
- struct cpumask *sg_span;
- int cpu;
- build_balance_mask(sd, sg, mask);
- cpu = cpumask_first_and(sched_group_span(sg), mask);
- sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
- if (atomic_inc_return(&sg->sgc->ref) == 1)
- cpumask_copy(group_balance_mask(sg), mask);
- else
- WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
- /*
- * Initialize sgc->capacity such that even if we mess up the
- * domains and no possible iteration will get us here, we won't
- * die on a /0 trap.
- */
- sg_span = sched_group_span(sg);
- sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
- sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
- }
- static int
- build_overlap_sched_groups(struct sched_domain *sd, int cpu)
- {
- struct sched_group *first = NULL, *last = NULL, *sg;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered = sched_domains_tmpmask;
- struct sd_data *sdd = sd->private;
- struct sched_domain *sibling;
- int i;
- cpumask_clear(covered);
- for_each_cpu_wrap(i, span, cpu) {
- struct cpumask *sg_span;
- if (cpumask_test_cpu(i, covered))
- continue;
- sibling = *per_cpu_ptr(sdd->sd, i);
- /*
- * Asymmetric node setups can result in situations where the
- * domain tree is of unequal depth, make sure to skip domains
- * that already cover the entire range.
- *
- * In that case build_sched_domains() will have terminated the
- * iteration early and our sibling sd spans will be empty.
- * Domains should always include the CPU they're built on, so
- * check that.
- */
- if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
- continue;
- sg = build_group_from_child_sched_domain(sibling, cpu);
- if (!sg)
- goto fail;
- sg_span = sched_group_span(sg);
- cpumask_or(covered, covered, sg_span);
- init_overlap_sched_group(sd, sg);
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- last->next = first;
- }
- sd->groups = first;
- return 0;
- fail:
- free_sched_groups(first, 0);
- return -ENOMEM;
- }
- /*
- * Package topology (also see the load-balance blurb in fair.c)
- *
- * The scheduler builds a tree structure to represent a number of important
- * topology features. By default (default_topology[]) these include:
- *
- * - Simultaneous multithreading (SMT)
- * - Multi-Core Cache (MC)
- * - Package (DIE)
- *
- * Where the last one more or less denotes everything up to a NUMA node.
- *
- * The tree consists of 3 primary data structures:
- *
- * sched_domain -> sched_group -> sched_group_capacity
- * ^ ^ ^ ^
- * `-' `-'
- *
- * The sched_domains are per-CPU and have a two way link (parent & child) and
- * denote the ever growing mask of CPUs belonging to that level of topology.
- *
- * Each sched_domain has a circular (double) linked list of sched_group's, each
- * denoting the domains of the level below (or individual CPUs in case of the
- * first domain level). The sched_group linked by a sched_domain includes the
- * CPU of that sched_domain [*].
- *
- * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
- *
- * CPU 0 1 2 3 4 5 6 7
- *
- * DIE [ ]
- * MC [ ] [ ]
- * SMT [ ] [ ] [ ] [ ]
- *
- * - or -
- *
- * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
- * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
- * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
- *
- * CPU 0 1 2 3 4 5 6 7
- *
- * One way to think about it is: sched_domain moves you up and down among these
- * topology levels, while sched_group moves you sideways through it, at child
- * domain granularity.
- *
- * sched_group_capacity ensures each unique sched_group has shared storage.
- *
- * There are two related construction problems, both require a CPU that
- * uniquely identify each group (for a given domain):
- *
- * - The first is the balance_cpu (see should_we_balance() and the
- * load-balance blub in fair.c); for each group we only want 1 CPU to
- * continue balancing at a higher domain.
- *
- * - The second is the sched_group_capacity; we want all identical groups
- * to share a single sched_group_capacity.
- *
- * Since these topologies are exclusive by construction. That is, its
- * impossible for an SMT thread to belong to multiple cores, and cores to
- * be part of multiple caches. There is a very clear and unique location
- * for each CPU in the hierarchy.
- *
- * Therefore computing a unique CPU for each group is trivial (the iteration
- * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
- * group), we can simply pick the first CPU in each group.
- *
- *
- * [*] in other words, the first group of each domain is its child domain.
- */
- static struct sched_group *get_group(int cpu, struct sd_data *sdd)
- {
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- struct sched_domain *child = sd->child;
- struct sched_group *sg;
- if (child)
- cpu = cpumask_first(sched_domain_span(child));
- sg = *per_cpu_ptr(sdd->sg, cpu);
- sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
- /* For claim_allocations: */
- atomic_inc(&sg->ref);
- atomic_inc(&sg->sgc->ref);
- if (child) {
- cpumask_copy(sched_group_span(sg), sched_domain_span(child));
- cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
- } else {
- cpumask_set_cpu(cpu, sched_group_span(sg));
- cpumask_set_cpu(cpu, group_balance_mask(sg));
- }
- sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
- sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
- return sg;
- }
- /*
- * build_sched_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_capacity to 0.
- *
- * Assumes the sched_domain tree is fully constructed
- */
- static int
- build_sched_groups(struct sched_domain *sd, int cpu)
- {
- struct sched_group *first = NULL, *last = NULL;
- struct sd_data *sdd = sd->private;
- const struct cpumask *span = sched_domain_span(sd);
- struct cpumask *covered;
- int i;
- lockdep_assert_held(&sched_domains_mutex);
- covered = sched_domains_tmpmask;
- cpumask_clear(covered);
- for_each_cpu_wrap(i, span, cpu) {
- struct sched_group *sg;
- if (cpumask_test_cpu(i, covered))
- continue;
- sg = get_group(i, sdd);
- cpumask_or(covered, covered, sched_group_span(sg));
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- }
- last->next = first;
- sd->groups = first;
- return 0;
- }
- /*
- * Initialize sched groups cpu_capacity.
- *
- * cpu_capacity indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_capacity for all the groups in a sched domain will be same
- * unless there are asymmetries in the topology. If there are asymmetries,
- * group having more cpu_capacity will pickup more load compared to the
- * group having less cpu_capacity.
- */
- static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
- {
- struct sched_group *sg = sd->groups;
- WARN_ON(!sg);
- do {
- int cpu, max_cpu = -1;
- sg->group_weight = cpumask_weight(sched_group_span(sg));
- if (!(sd->flags & SD_ASYM_PACKING))
- goto next;
- for_each_cpu(cpu, sched_group_span(sg)) {
- if (max_cpu < 0)
- max_cpu = cpu;
- else if (sched_asym_prefer(cpu, max_cpu))
- max_cpu = cpu;
- }
- sg->asym_prefer_cpu = max_cpu;
- next:
- sg = sg->next;
- } while (sg != sd->groups);
- if (cpu != group_balance_cpu(sg))
- return;
- update_group_capacity(sd, cpu);
- }
- /*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
- static int default_relax_domain_level = -1;
- int sched_domain_level_max;
- static int __init setup_relax_domain_level(char *str)
- {
- if (kstrtoint(str, 0, &default_relax_domain_level))
- pr_warn("Unable to set relax_domain_level\n");
- return 1;
- }
- __setup("relax_domain_level=", setup_relax_domain_level);
- static void set_domain_attribute(struct sched_domain *sd,
- struct sched_domain_attr *attr)
- {
- int request;
- if (!attr || attr->relax_domain_level < 0) {
- if (default_relax_domain_level < 0)
- return;
- else
- request = default_relax_domain_level;
- } else
- request = attr->relax_domain_level;
- if (request < sd->level) {
- /* Turn off idle balance on this domain: */
- sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- } else {
- /* Turn on idle balance on this domain: */
- sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
- }
- }
- static void __sdt_free(const struct cpumask *cpu_map);
- static int __sdt_alloc(const struct cpumask *cpu_map);
- static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
- const struct cpumask *cpu_map)
- {
- switch (what) {
- case sa_rootdomain:
- if (!atomic_read(&d->rd->refcount))
- free_rootdomain(&d->rd->rcu);
- /* Fall through */
- case sa_sd:
- free_percpu(d->sd);
- /* Fall through */
- case sa_sd_storage:
- __sdt_free(cpu_map);
- /* Fall through */
- case sa_none:
- break;
- }
- }
- static enum s_alloc
- __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
- {
- memset(d, 0, sizeof(*d));
- if (__sdt_alloc(cpu_map))
- return sa_sd_storage;
- d->sd = alloc_percpu(struct sched_domain *);
- if (!d->sd)
- return sa_sd_storage;
- d->rd = alloc_rootdomain();
- if (!d->rd)
- return sa_sd;
- return sa_rootdomain;
- }
- /*
- * NULL the sd_data elements we've used to build the sched_domain and
- * sched_group structure so that the subsequent __free_domain_allocs()
- * will not free the data we're using.
- */
- static void claim_allocations(int cpu, struct sched_domain *sd)
- {
- struct sd_data *sdd = sd->private;
- WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
- *per_cpu_ptr(sdd->sd, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
- *per_cpu_ptr(sdd->sds, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
- *per_cpu_ptr(sdd->sg, cpu) = NULL;
- if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
- *per_cpu_ptr(sdd->sgc, cpu) = NULL;
- }
- #ifdef CONFIG_NUMA
- enum numa_topology_type sched_numa_topology_type;
- static int sched_domains_numa_levels;
- static int sched_domains_curr_level;
- int sched_max_numa_distance;
- static int *sched_domains_numa_distance;
- static struct cpumask ***sched_domains_numa_masks;
- #endif
- /*
- * SD_flags allowed in topology descriptions.
- *
- * These flags are purely descriptive of the topology and do not prescribe
- * behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
- *
- * SD_SHARE_CPUCAPACITY - describes SMT topologies
- * SD_SHARE_PKG_RESOURCES - describes shared caches
- * SD_NUMA - describes NUMA topologies
- * SD_SHARE_POWERDOMAIN - describes shared power domain
- * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
- *
- * Odd one out, which beside describing the topology has a quirk also
- * prescribes the desired behaviour that goes along with it:
- *
- * SD_ASYM_PACKING - describes SMT quirks
- */
- #define TOPOLOGY_SD_FLAGS \
- (SD_SHARE_CPUCAPACITY | \
- SD_SHARE_PKG_RESOURCES | \
- SD_NUMA | \
- SD_ASYM_PACKING | \
- SD_ASYM_CPUCAPACITY | \
- SD_SHARE_POWERDOMAIN)
- static struct sched_domain *
- sd_init(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map,
- struct sched_domain *child, int cpu)
- {
- struct sd_data *sdd = &tl->data;
- struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
- int sd_id, sd_weight, sd_flags = 0;
- #ifdef CONFIG_NUMA
- /*
- * Ugly hack to pass state to sd_numa_mask()...
- */
- sched_domains_curr_level = tl->numa_level;
- #endif
- sd_weight = cpumask_weight(tl->mask(cpu));
- if (tl->sd_flags)
- sd_flags = (*tl->sd_flags)();
- if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
- "wrong sd_flags in topology description\n"))
- sd_flags &= ~TOPOLOGY_SD_FLAGS;
- *sd = (struct sched_domain){
- .min_interval = sd_weight,
- .max_interval = 2*sd_weight,
- .busy_factor = 32,
- .imbalance_pct = 125,
- .cache_nice_tries = 0,
- .busy_idx = 0,
- .idle_idx = 0,
- .newidle_idx = 0,
- .wake_idx = 0,
- .forkexec_idx = 0,
- .flags = 1*SD_LOAD_BALANCE
- | 1*SD_BALANCE_NEWIDLE
- | 1*SD_BALANCE_EXEC
- | 1*SD_BALANCE_FORK
- | 0*SD_BALANCE_WAKE
- | 1*SD_WAKE_AFFINE
- | 0*SD_SHARE_CPUCAPACITY
- | 0*SD_SHARE_PKG_RESOURCES
- | 0*SD_SERIALIZE
- | 0*SD_PREFER_SIBLING
- | 0*SD_NUMA
- | sd_flags
- ,
- .last_balance = jiffies,
- .balance_interval = sd_weight,
- .smt_gain = 0,
- .max_newidle_lb_cost = 0,
- .next_decay_max_lb_cost = jiffies,
- .child = child,
- #ifdef CONFIG_SCHED_DEBUG
- .name = tl->name,
- #endif
- };
- cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
- sd_id = cpumask_first(sched_domain_span(sd));
- /*
- * Convert topological properties into behaviour.
- */
- if (sd->flags & SD_ASYM_CPUCAPACITY) {
- struct sched_domain *t = sd;
- for_each_lower_domain(t)
- t->flags |= SD_BALANCE_WAKE;
- }
- if (sd->flags & SD_SHARE_CPUCAPACITY) {
- sd->flags |= SD_PREFER_SIBLING;
- sd->imbalance_pct = 110;
- sd->smt_gain = 1178; /* ~15% */
- } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->flags |= SD_PREFER_SIBLING;
- sd->imbalance_pct = 117;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
- #ifdef CONFIG_NUMA
- } else if (sd->flags & SD_NUMA) {
- sd->cache_nice_tries = 2;
- sd->busy_idx = 3;
- sd->idle_idx = 2;
- sd->flags |= SD_SERIALIZE;
- if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
- sd->flags &= ~(SD_BALANCE_EXEC |
- SD_BALANCE_FORK |
- SD_WAKE_AFFINE);
- }
- #endif
- } else {
- sd->flags |= SD_PREFER_SIBLING;
- sd->cache_nice_tries = 1;
- sd->busy_idx = 2;
- sd->idle_idx = 1;
- }
- /*
- * For all levels sharing cache; connect a sched_domain_shared
- * instance.
- */
- if (sd->flags & SD_SHARE_PKG_RESOURCES) {
- sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
- atomic_inc(&sd->shared->ref);
- atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
- }
- sd->private = sdd;
- return sd;
- }
- /*
- * Topology list, bottom-up.
- */
- static struct sched_domain_topology_level default_topology[] = {
- #ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
- #endif
- #ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
- #endif
- { cpu_cpu_mask, SD_INIT_NAME(DIE) },
- { NULL, },
- };
- static struct sched_domain_topology_level *sched_domain_topology =
- default_topology;
- #define for_each_sd_topology(tl) \
- for (tl = sched_domain_topology; tl->mask; tl++)
- void set_sched_topology(struct sched_domain_topology_level *tl)
- {
- if (WARN_ON_ONCE(sched_smp_initialized))
- return;
- sched_domain_topology = tl;
- }
- #ifdef CONFIG_NUMA
- static const struct cpumask *sd_numa_mask(int cpu)
- {
- return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
- }
- static void sched_numa_warn(const char *str)
- {
- static int done = false;
- int i,j;
- if (done)
- return;
- done = true;
- printk(KERN_WARNING "ERROR: %s\n\n", str);
- for (i = 0; i < nr_node_ids; i++) {
- printk(KERN_WARNING " ");
- for (j = 0; j < nr_node_ids; j++)
- printk(KERN_CONT "%02d ", node_distance(i,j));
- printk(KERN_CONT "\n");
- }
- printk(KERN_WARNING "\n");
- }
- bool find_numa_distance(int distance)
- {
- int i;
- if (distance == node_distance(0, 0))
- return true;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- if (sched_domains_numa_distance[i] == distance)
- return true;
- }
- return false;
- }
- /*
- * A system can have three types of NUMA topology:
- * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
- * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
- * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
- *
- * The difference between a glueless mesh topology and a backplane
- * topology lies in whether communication between not directly
- * connected nodes goes through intermediary nodes (where programs
- * could run), or through backplane controllers. This affects
- * placement of programs.
- *
- * The type of topology can be discerned with the following tests:
- * - If the maximum distance between any nodes is 1 hop, the system
- * is directly connected.
- * - If for two nodes A and B, located N > 1 hops away from each other,
- * there is an intermediary node C, which is < N hops away from both
- * nodes A and B, the system is a glueless mesh.
- */
- static void init_numa_topology_type(void)
- {
- int a, b, c, n;
- n = sched_max_numa_distance;
- if (sched_domains_numa_levels <= 2) {
- sched_numa_topology_type = NUMA_DIRECT;
- return;
- }
- for_each_online_node(a) {
- for_each_online_node(b) {
- /* Find two nodes furthest removed from each other. */
- if (node_distance(a, b) < n)
- continue;
- /* Is there an intermediary node between a and b? */
- for_each_online_node(c) {
- if (node_distance(a, c) < n &&
- node_distance(b, c) < n) {
- sched_numa_topology_type =
- NUMA_GLUELESS_MESH;
- return;
- }
- }
- sched_numa_topology_type = NUMA_BACKPLANE;
- return;
- }
- }
- }
- void sched_init_numa(void)
- {
- int next_distance, curr_distance = node_distance(0, 0);
- struct sched_domain_topology_level *tl;
- int level = 0;
- int i, j, k;
- sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
- if (!sched_domains_numa_distance)
- return;
- /* Includes NUMA identity node at level 0. */
- sched_domains_numa_distance[level++] = curr_distance;
- sched_domains_numa_levels = level;
- /*
- * O(nr_nodes^2) deduplicating selection sort -- in order to find the
- * unique distances in the node_distance() table.
- *
- * Assumes node_distance(0,j) includes all distances in
- * node_distance(i,j) in order to avoid cubic time.
- */
- next_distance = curr_distance;
- for (i = 0; i < nr_node_ids; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- for (k = 0; k < nr_node_ids; k++) {
- int distance = node_distance(i, k);
- if (distance > curr_distance &&
- (distance < next_distance ||
- next_distance == curr_distance))
- next_distance = distance;
- /*
- * While not a strong assumption it would be nice to know
- * about cases where if node A is connected to B, B is not
- * equally connected to A.
- */
- if (sched_debug() && node_distance(k, i) != distance)
- sched_numa_warn("Node-distance not symmetric");
- if (sched_debug() && i && !find_numa_distance(distance))
- sched_numa_warn("Node-0 not representative");
- }
- if (next_distance != curr_distance) {
- sched_domains_numa_distance[level++] = next_distance;
- sched_domains_numa_levels = level;
- curr_distance = next_distance;
- } else break;
- }
- /*
- * In case of sched_debug() we verify the above assumption.
- */
- if (!sched_debug())
- break;
- }
- /*
- * 'level' contains the number of unique distances
- *
- * The sched_domains_numa_distance[] array includes the actual distance
- * numbers.
- */
- /*
- * Here, we should temporarily reset sched_domains_numa_levels to 0.
- * If it fails to allocate memory for array sched_domains_numa_masks[][],
- * the array will contain less then 'level' members. This could be
- * dangerous when we use it to iterate array sched_domains_numa_masks[][]
- * in other functions.
- *
- * We reset it to 'level' at the end of this function.
- */
- sched_domains_numa_levels = 0;
- sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
- if (!sched_domains_numa_masks)
- return;
- /*
- * Now for each level, construct a mask per node which contains all
- * CPUs of nodes that are that many hops away from us.
- */
- for (i = 0; i < level; i++) {
- sched_domains_numa_masks[i] =
- kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
- if (!sched_domains_numa_masks[i])
- return;
- for (j = 0; j < nr_node_ids; j++) {
- struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
- if (!mask)
- return;
- sched_domains_numa_masks[i][j] = mask;
- for_each_node(k) {
- if (node_distance(j, k) > sched_domains_numa_distance[i])
- continue;
- cpumask_or(mask, mask, cpumask_of_node(k));
- }
- }
- }
- /* Compute default topology size */
- for (i = 0; sched_domain_topology[i].mask; i++);
- tl = kzalloc((i + level + 1) *
- sizeof(struct sched_domain_topology_level), GFP_KERNEL);
- if (!tl)
- return;
- /*
- * Copy the default topology bits..
- */
- for (i = 0; sched_domain_topology[i].mask; i++)
- tl[i] = sched_domain_topology[i];
- /*
- * Add the NUMA identity distance, aka single NODE.
- */
- tl[i++] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .numa_level = 0,
- SD_INIT_NAME(NODE)
- };
- /*
- * .. and append 'j' levels of NUMA goodness.
- */
- for (j = 1; j < level; i++, j++) {
- tl[i] = (struct sched_domain_topology_level){
- .mask = sd_numa_mask,
- .sd_flags = cpu_numa_flags,
- .flags = SDTL_OVERLAP,
- .numa_level = j,
- SD_INIT_NAME(NUMA)
- };
- }
- sched_domain_topology = tl;
- sched_domains_numa_levels = level;
- sched_max_numa_distance = sched_domains_numa_distance[level - 1];
- init_numa_topology_type();
- }
- void sched_domains_numa_masks_set(unsigned int cpu)
- {
- int node = cpu_to_node(cpu);
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++) {
- if (node_distance(j, node) <= sched_domains_numa_distance[i])
- cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
- }
- void sched_domains_numa_masks_clear(unsigned int cpu)
- {
- int i, j;
- for (i = 0; i < sched_domains_numa_levels; i++) {
- for (j = 0; j < nr_node_ids; j++)
- cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
- }
- }
- #endif /* CONFIG_NUMA */
- static int __sdt_alloc(const struct cpumask *cpu_map)
- {
- struct sched_domain_topology_level *tl;
- int j;
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
- sdd->sd = alloc_percpu(struct sched_domain *);
- if (!sdd->sd)
- return -ENOMEM;
- sdd->sds = alloc_percpu(struct sched_domain_shared *);
- if (!sdd->sds)
- return -ENOMEM;
- sdd->sg = alloc_percpu(struct sched_group *);
- if (!sdd->sg)
- return -ENOMEM;
- sdd->sgc = alloc_percpu(struct sched_group_capacity *);
- if (!sdd->sgc)
- return -ENOMEM;
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- struct sched_domain_shared *sds;
- struct sched_group *sg;
- struct sched_group_capacity *sgc;
- sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sd)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sd, j) = sd;
- sds = kzalloc_node(sizeof(struct sched_domain_shared),
- GFP_KERNEL, cpu_to_node(j));
- if (!sds)
- return -ENOMEM;
- *per_cpu_ptr(sdd->sds, j) = sds;
- sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sg)
- return -ENOMEM;
- sg->next = sg;
- *per_cpu_ptr(sdd->sg, j) = sg;
- sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
- GFP_KERNEL, cpu_to_node(j));
- if (!sgc)
- return -ENOMEM;
- #ifdef CONFIG_SCHED_DEBUG
- sgc->id = j;
- #endif
- *per_cpu_ptr(sdd->sgc, j) = sgc;
- }
- }
- return 0;
- }
- static void __sdt_free(const struct cpumask *cpu_map)
- {
- struct sched_domain_topology_level *tl;
- int j;
- for_each_sd_topology(tl) {
- struct sd_data *sdd = &tl->data;
- for_each_cpu(j, cpu_map) {
- struct sched_domain *sd;
- if (sdd->sd) {
- sd = *per_cpu_ptr(sdd->sd, j);
- if (sd && (sd->flags & SD_OVERLAP))
- free_sched_groups(sd->groups, 0);
- kfree(*per_cpu_ptr(sdd->sd, j));
- }
- if (sdd->sds)
- kfree(*per_cpu_ptr(sdd->sds, j));
- if (sdd->sg)
- kfree(*per_cpu_ptr(sdd->sg, j));
- if (sdd->sgc)
- kfree(*per_cpu_ptr(sdd->sgc, j));
- }
- free_percpu(sdd->sd);
- sdd->sd = NULL;
- free_percpu(sdd->sds);
- sdd->sds = NULL;
- free_percpu(sdd->sg);
- sdd->sg = NULL;
- free_percpu(sdd->sgc);
- sdd->sgc = NULL;
- }
- }
- static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
- const struct cpumask *cpu_map, struct sched_domain_attr *attr,
- struct sched_domain *child, int cpu)
- {
- struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
- if (child) {
- sd->level = child->level + 1;
- sched_domain_level_max = max(sched_domain_level_max, sd->level);
- child->parent = sd;
- if (!cpumask_subset(sched_domain_span(child),
- sched_domain_span(sd))) {
- pr_err("BUG: arch topology borken\n");
- #ifdef CONFIG_SCHED_DEBUG
- pr_err(" the %s domain not a subset of the %s domain\n",
- child->name, sd->name);
- #endif
- /* Fixup, ensure @sd has at least @child CPUs. */
- cpumask_or(sched_domain_span(sd),
- sched_domain_span(sd),
- sched_domain_span(child));
- }
- }
- set_domain_attribute(sd, attr);
- return sd;
- }
- /*
- * Build sched domains for a given set of CPUs and attach the sched domains
- * to the individual CPUs
- */
- static int
- build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
- {
- enum s_alloc alloc_state;
- struct sched_domain *sd;
- struct s_data d;
- struct rq *rq = NULL;
- int i, ret = -ENOMEM;
- alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
- if (alloc_state != sa_rootdomain)
- goto error;
- /* Set up domains for CPUs specified by the cpu_map: */
- for_each_cpu(i, cpu_map) {
- struct sched_domain_topology_level *tl;
- sd = NULL;
- for_each_sd_topology(tl) {
- sd = build_sched_domain(tl, cpu_map, attr, sd, i);
- if (tl == sched_domain_topology)
- *per_cpu_ptr(d.sd, i) = sd;
- if (tl->flags & SDTL_OVERLAP)
- sd->flags |= SD_OVERLAP;
- if (cpumask_equal(cpu_map, sched_domain_span(sd)))
- break;
- }
- }
- /* Build the groups for the domains */
- for_each_cpu(i, cpu_map) {
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- sd->span_weight = cpumask_weight(sched_domain_span(sd));
- if (sd->flags & SD_OVERLAP) {
- if (build_overlap_sched_groups(sd, i))
- goto error;
- } else {
- if (build_sched_groups(sd, i))
- goto error;
- }
- }
- }
- /* Calculate CPU capacity for physical packages and nodes */
- for (i = nr_cpumask_bits-1; i >= 0; i--) {
- if (!cpumask_test_cpu(i, cpu_map))
- continue;
- for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
- claim_allocations(i, sd);
- init_sched_groups_capacity(i, sd);
- }
- }
- /* Attach the domains */
- rcu_read_lock();
- for_each_cpu(i, cpu_map) {
- rq = cpu_rq(i);
- sd = *per_cpu_ptr(d.sd, i);
- /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
- if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
- WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
- cpu_attach_domain(sd, d.rd, i);
- }
- rcu_read_unlock();
- if (rq && sched_debug_enabled) {
- pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
- cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
- }
- ret = 0;
- error:
- __free_domain_allocs(&d, alloc_state, cpu_map);
- return ret;
- }
- /* Current sched domains: */
- static cpumask_var_t *doms_cur;
- /* Number of sched domains in 'doms_cur': */
- static int ndoms_cur;
- /* Attribues of custom domains in 'doms_cur' */
- static struct sched_domain_attr *dattr_cur;
- /*
- * Special case: If a kmalloc() of a doms_cur partition (array of
- * cpumask) fails, then fallback to a single sched domain,
- * as determined by the single cpumask fallback_doms.
- */
- static cpumask_var_t fallback_doms;
- /*
- * arch_update_cpu_topology lets virtualized architectures update the
- * CPU core maps. It is supposed to return 1 if the topology changed
- * or 0 if it stayed the same.
- */
- int __weak arch_update_cpu_topology(void)
- {
- return 0;
- }
- cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
- {
- int i;
- cpumask_var_t *doms;
- doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
- if (!doms)
- return NULL;
- for (i = 0; i < ndoms; i++) {
- if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
- free_sched_domains(doms, i);
- return NULL;
- }
- }
- return doms;
- }
- void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
- {
- unsigned int i;
- for (i = 0; i < ndoms; i++)
- free_cpumask_var(doms[i]);
- kfree(doms);
- }
- /*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated CPUs, but could be used to
- * exclude other special cases in the future.
- */
- int sched_init_domains(const struct cpumask *cpu_map)
- {
- int err;
- zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
- zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
- zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
- arch_update_cpu_topology();
- ndoms_cur = 1;
- doms_cur = alloc_sched_domains(ndoms_cur);
- if (!doms_cur)
- doms_cur = &fallback_doms;
- cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
- err = build_sched_domains(doms_cur[0], NULL);
- register_sched_domain_sysctl();
- return err;
- }
- /*
- * Detach sched domains from a group of CPUs specified in cpu_map
- * These CPUs will now be attached to the NULL domain
- */
- static void detach_destroy_domains(const struct cpumask *cpu_map)
- {
- int i;
- rcu_read_lock();
- for_each_cpu(i, cpu_map)
- cpu_attach_domain(NULL, &def_root_domain, i);
- rcu_read_unlock();
- }
- /* handle null as "default" */
- static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
- struct sched_domain_attr *new, int idx_new)
- {
- struct sched_domain_attr tmp;
- /* Fast path: */
- if (!new && !cur)
- return 1;
- tmp = SD_ATTR_INIT;
- return !memcmp(cur ? (cur + idx_cur) : &tmp,
- new ? (new + idx_new) : &tmp,
- sizeof(struct sched_domain_attr));
- }
- /*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be allocated using
- * alloc_sched_domains. This routine takes ownership of it and will
- * free_sched_domains it when done with it. If the caller failed the
- * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms', it also forces the domains to be rebuilt.
- *
- * If doms_new == NULL it will be replaced with cpu_online_mask.
- * ndoms_new == 0 is a special case for destroying existing domains,
- * and it will not create the default domain.
- *
- * Call with hotplug lock held
- */
- void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
- struct sched_domain_attr *dattr_new)
- {
- int i, j, n;
- int new_topology;
- mutex_lock(&sched_domains_mutex);
- /* Always unregister in case we don't destroy any domains: */
- unregister_sched_domain_sysctl();
- /* Let the architecture update CPU core mappings: */
- new_topology = arch_update_cpu_topology();
- if (!doms_new) {
- WARN_ON_ONCE(dattr_new);
- n = 0;
- doms_new = alloc_sched_domains(1);
- if (doms_new) {
- n = 1;
- cpumask_and(doms_new[0], cpu_active_mask,
- housekeeping_cpumask(HK_FLAG_DOMAIN));
- }
- } else {
- n = ndoms_new;
- }
- /* Destroy deleted domains: */
- for (i = 0; i < ndoms_cur; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_cur[i], doms_new[j])
- && dattrs_equal(dattr_cur, i, dattr_new, j))
- goto match1;
- }
- /* No match - a current sched domain not in new doms_new[] */
- detach_destroy_domains(doms_cur[i]);
- match1:
- ;
- }
- n = ndoms_cur;
- if (!doms_new) {
- n = 0;
- doms_new = &fallback_doms;
- cpumask_and(doms_new[0], cpu_active_mask,
- housekeeping_cpumask(HK_FLAG_DOMAIN));
- }
- /* Build new domains: */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < n && !new_topology; j++) {
- if (cpumask_equal(doms_new[i], doms_cur[j])
- && dattrs_equal(dattr_new, i, dattr_cur, j))
- goto match2;
- }
- /* No match - add a new doms_new */
- build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
- match2:
- ;
- }
- /* Remember the new sched domains: */
- if (doms_cur != &fallback_doms)
- free_sched_domains(doms_cur, ndoms_cur);
- kfree(dattr_cur);
- doms_cur = doms_new;
- dattr_cur = dattr_new;
- ndoms_cur = ndoms_new;
- register_sched_domain_sysctl();
- mutex_unlock(&sched_domains_mutex);
- }
|