clock.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. /*
  2. * sched_clock() for unstable CPU clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What this file implements:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current CPU.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How it is implemented:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include "sched.h"
  56. #include <linux/sched_clock.h>
  57. /*
  58. * Scheduler clock - returns current time in nanosec units.
  59. * This is default implementation.
  60. * Architectures and sub-architectures can override this.
  61. */
  62. unsigned long long __weak sched_clock(void)
  63. {
  64. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  65. * (NSEC_PER_SEC / HZ);
  66. }
  67. EXPORT_SYMBOL_GPL(sched_clock);
  68. static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
  69. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  70. /*
  71. * We must start with !__sched_clock_stable because the unstable -> stable
  72. * transition is accurate, while the stable -> unstable transition is not.
  73. *
  74. * Similarly we start with __sched_clock_stable_early, thereby assuming we
  75. * will become stable, such that there's only a single 1 -> 0 transition.
  76. */
  77. static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
  78. static int __sched_clock_stable_early = 1;
  79. /*
  80. * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
  81. */
  82. __read_mostly u64 __sched_clock_offset;
  83. static __read_mostly u64 __gtod_offset;
  84. struct sched_clock_data {
  85. u64 tick_raw;
  86. u64 tick_gtod;
  87. u64 clock;
  88. };
  89. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  90. static inline struct sched_clock_data *this_scd(void)
  91. {
  92. return this_cpu_ptr(&sched_clock_data);
  93. }
  94. static inline struct sched_clock_data *cpu_sdc(int cpu)
  95. {
  96. return &per_cpu(sched_clock_data, cpu);
  97. }
  98. int sched_clock_stable(void)
  99. {
  100. return static_branch_likely(&__sched_clock_stable);
  101. }
  102. static void __scd_stamp(struct sched_clock_data *scd)
  103. {
  104. scd->tick_gtod = ktime_get_ns();
  105. scd->tick_raw = sched_clock();
  106. }
  107. static void __set_sched_clock_stable(void)
  108. {
  109. struct sched_clock_data *scd;
  110. /*
  111. * Since we're still unstable and the tick is already running, we have
  112. * to disable IRQs in order to get a consistent scd->tick* reading.
  113. */
  114. local_irq_disable();
  115. scd = this_scd();
  116. /*
  117. * Attempt to make the (initial) unstable->stable transition continuous.
  118. */
  119. __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
  120. local_irq_enable();
  121. printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
  122. scd->tick_gtod, __gtod_offset,
  123. scd->tick_raw, __sched_clock_offset);
  124. static_branch_enable(&__sched_clock_stable);
  125. tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
  126. }
  127. /*
  128. * If we ever get here, we're screwed, because we found out -- typically after
  129. * the fact -- that TSC wasn't good. This means all our clocksources (including
  130. * ktime) could have reported wrong values.
  131. *
  132. * What we do here is an attempt to fix up and continue sort of where we left
  133. * off in a coherent manner.
  134. *
  135. * The only way to fully avoid random clock jumps is to boot with:
  136. * "tsc=unstable".
  137. */
  138. static void __sched_clock_work(struct work_struct *work)
  139. {
  140. struct sched_clock_data *scd;
  141. int cpu;
  142. /* take a current timestamp and set 'now' */
  143. preempt_disable();
  144. scd = this_scd();
  145. __scd_stamp(scd);
  146. scd->clock = scd->tick_gtod + __gtod_offset;
  147. preempt_enable();
  148. /* clone to all CPUs */
  149. for_each_possible_cpu(cpu)
  150. per_cpu(sched_clock_data, cpu) = *scd;
  151. printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
  152. printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
  153. scd->tick_gtod, __gtod_offset,
  154. scd->tick_raw, __sched_clock_offset);
  155. static_branch_disable(&__sched_clock_stable);
  156. }
  157. static DECLARE_WORK(sched_clock_work, __sched_clock_work);
  158. static void __clear_sched_clock_stable(void)
  159. {
  160. if (!sched_clock_stable())
  161. return;
  162. tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
  163. schedule_work(&sched_clock_work);
  164. }
  165. void clear_sched_clock_stable(void)
  166. {
  167. __sched_clock_stable_early = 0;
  168. smp_mb(); /* matches sched_clock_init_late() */
  169. if (static_key_count(&sched_clock_running.key) == 2)
  170. __clear_sched_clock_stable();
  171. }
  172. static void __sched_clock_gtod_offset(void)
  173. {
  174. struct sched_clock_data *scd = this_scd();
  175. __scd_stamp(scd);
  176. __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
  177. }
  178. void __init sched_clock_init(void)
  179. {
  180. /*
  181. * Set __gtod_offset such that once we mark sched_clock_running,
  182. * sched_clock_tick() continues where sched_clock() left off.
  183. *
  184. * Even if TSC is buggered, we're still UP at this point so it
  185. * can't really be out of sync.
  186. */
  187. local_irq_disable();
  188. __sched_clock_gtod_offset();
  189. local_irq_enable();
  190. static_branch_inc(&sched_clock_running);
  191. }
  192. /*
  193. * We run this as late_initcall() such that it runs after all built-in drivers,
  194. * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
  195. */
  196. static int __init sched_clock_init_late(void)
  197. {
  198. static_branch_inc(&sched_clock_running);
  199. /*
  200. * Ensure that it is impossible to not do a static_key update.
  201. *
  202. * Either {set,clear}_sched_clock_stable() must see sched_clock_running
  203. * and do the update, or we must see their __sched_clock_stable_early
  204. * and do the update, or both.
  205. */
  206. smp_mb(); /* matches {set,clear}_sched_clock_stable() */
  207. if (__sched_clock_stable_early)
  208. __set_sched_clock_stable();
  209. return 0;
  210. }
  211. late_initcall(sched_clock_init_late);
  212. /*
  213. * min, max except they take wrapping into account
  214. */
  215. static inline u64 wrap_min(u64 x, u64 y)
  216. {
  217. return (s64)(x - y) < 0 ? x : y;
  218. }
  219. static inline u64 wrap_max(u64 x, u64 y)
  220. {
  221. return (s64)(x - y) > 0 ? x : y;
  222. }
  223. /*
  224. * update the percpu scd from the raw @now value
  225. *
  226. * - filter out backward motion
  227. * - use the GTOD tick value to create a window to filter crazy TSC values
  228. */
  229. static u64 sched_clock_local(struct sched_clock_data *scd)
  230. {
  231. u64 now, clock, old_clock, min_clock, max_clock, gtod;
  232. s64 delta;
  233. again:
  234. now = sched_clock();
  235. delta = now - scd->tick_raw;
  236. if (unlikely(delta < 0))
  237. delta = 0;
  238. old_clock = scd->clock;
  239. /*
  240. * scd->clock = clamp(scd->tick_gtod + delta,
  241. * max(scd->tick_gtod, scd->clock),
  242. * scd->tick_gtod + TICK_NSEC);
  243. */
  244. gtod = scd->tick_gtod + __gtod_offset;
  245. clock = gtod + delta;
  246. min_clock = wrap_max(gtod, old_clock);
  247. max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
  248. clock = wrap_max(clock, min_clock);
  249. clock = wrap_min(clock, max_clock);
  250. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  251. goto again;
  252. return clock;
  253. }
  254. static u64 sched_clock_remote(struct sched_clock_data *scd)
  255. {
  256. struct sched_clock_data *my_scd = this_scd();
  257. u64 this_clock, remote_clock;
  258. u64 *ptr, old_val, val;
  259. #if BITS_PER_LONG != 64
  260. again:
  261. /*
  262. * Careful here: The local and the remote clock values need to
  263. * be read out atomic as we need to compare the values and
  264. * then update either the local or the remote side. So the
  265. * cmpxchg64 below only protects one readout.
  266. *
  267. * We must reread via sched_clock_local() in the retry case on
  268. * 32-bit kernels as an NMI could use sched_clock_local() via the
  269. * tracer and hit between the readout of
  270. * the low 32-bit and the high 32-bit portion.
  271. */
  272. this_clock = sched_clock_local(my_scd);
  273. /*
  274. * We must enforce atomic readout on 32-bit, otherwise the
  275. * update on the remote CPU can hit inbetween the readout of
  276. * the low 32-bit and the high 32-bit portion.
  277. */
  278. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  279. #else
  280. /*
  281. * On 64-bit kernels the read of [my]scd->clock is atomic versus the
  282. * update, so we can avoid the above 32-bit dance.
  283. */
  284. sched_clock_local(my_scd);
  285. again:
  286. this_clock = my_scd->clock;
  287. remote_clock = scd->clock;
  288. #endif
  289. /*
  290. * Use the opportunity that we have both locks
  291. * taken to couple the two clocks: we take the
  292. * larger time as the latest time for both
  293. * runqueues. (this creates monotonic movement)
  294. */
  295. if (likely((s64)(remote_clock - this_clock) < 0)) {
  296. ptr = &scd->clock;
  297. old_val = remote_clock;
  298. val = this_clock;
  299. } else {
  300. /*
  301. * Should be rare, but possible:
  302. */
  303. ptr = &my_scd->clock;
  304. old_val = this_clock;
  305. val = remote_clock;
  306. }
  307. if (cmpxchg64(ptr, old_val, val) != old_val)
  308. goto again;
  309. return val;
  310. }
  311. /*
  312. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  313. *
  314. * See cpu_clock().
  315. */
  316. u64 sched_clock_cpu(int cpu)
  317. {
  318. struct sched_clock_data *scd;
  319. u64 clock;
  320. if (sched_clock_stable())
  321. return sched_clock() + __sched_clock_offset;
  322. if (!static_branch_unlikely(&sched_clock_running))
  323. return sched_clock();
  324. preempt_disable_notrace();
  325. scd = cpu_sdc(cpu);
  326. if (cpu != smp_processor_id())
  327. clock = sched_clock_remote(scd);
  328. else
  329. clock = sched_clock_local(scd);
  330. preempt_enable_notrace();
  331. return clock;
  332. }
  333. EXPORT_SYMBOL_GPL(sched_clock_cpu);
  334. void sched_clock_tick(void)
  335. {
  336. struct sched_clock_data *scd;
  337. if (sched_clock_stable())
  338. return;
  339. if (!static_branch_unlikely(&sched_clock_running))
  340. return;
  341. lockdep_assert_irqs_disabled();
  342. scd = this_scd();
  343. __scd_stamp(scd);
  344. sched_clock_local(scd);
  345. }
  346. void sched_clock_tick_stable(void)
  347. {
  348. if (!sched_clock_stable())
  349. return;
  350. /*
  351. * Called under watchdog_lock.
  352. *
  353. * The watchdog just found this TSC to (still) be stable, so now is a
  354. * good moment to update our __gtod_offset. Because once we find the
  355. * TSC to be unstable, any computation will be computing crap.
  356. */
  357. local_irq_disable();
  358. __sched_clock_gtod_offset();
  359. local_irq_enable();
  360. }
  361. /*
  362. * We are going deep-idle (irqs are disabled):
  363. */
  364. void sched_clock_idle_sleep_event(void)
  365. {
  366. sched_clock_cpu(smp_processor_id());
  367. }
  368. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  369. /*
  370. * We just idled; resync with ktime.
  371. */
  372. void sched_clock_idle_wakeup_event(void)
  373. {
  374. unsigned long flags;
  375. if (sched_clock_stable())
  376. return;
  377. if (unlikely(timekeeping_suspended))
  378. return;
  379. local_irq_save(flags);
  380. sched_clock_tick();
  381. local_irq_restore(flags);
  382. }
  383. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  384. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  385. void __init sched_clock_init(void)
  386. {
  387. static_branch_inc(&sched_clock_running);
  388. local_irq_disable();
  389. generic_sched_clock_init();
  390. local_irq_enable();
  391. }
  392. u64 sched_clock_cpu(int cpu)
  393. {
  394. if (!static_branch_unlikely(&sched_clock_running))
  395. return 0;
  396. return sched_clock();
  397. }
  398. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  399. /*
  400. * Running clock - returns the time that has elapsed while a guest has been
  401. * running.
  402. * On a guest this value should be local_clock minus the time the guest was
  403. * suspended by the hypervisor (for any reason).
  404. * On bare metal this function should return the same as local_clock.
  405. * Architectures and sub-architectures can override this.
  406. */
  407. u64 __weak running_clock(void)
  408. {
  409. return local_clock();
  410. }