direct.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * DMA operations that map physical memory directly without using an IOMMU or
  4. * flushing caches.
  5. */
  6. #include <linux/export.h>
  7. #include <linux/mm.h>
  8. #include <linux/dma-direct.h>
  9. #include <linux/scatterlist.h>
  10. #include <linux/dma-contiguous.h>
  11. #include <linux/pfn.h>
  12. #include <linux/set_memory.h>
  13. #define DIRECT_MAPPING_ERROR 0
  14. /*
  15. * Most architectures use ZONE_DMA for the first 16 Megabytes, but
  16. * some use it for entirely different regions:
  17. */
  18. #ifndef ARCH_ZONE_DMA_BITS
  19. #define ARCH_ZONE_DMA_BITS 24
  20. #endif
  21. /*
  22. * For AMD SEV all DMA must be to unencrypted addresses.
  23. */
  24. static inline bool force_dma_unencrypted(void)
  25. {
  26. return sev_active();
  27. }
  28. static bool
  29. check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
  30. const char *caller)
  31. {
  32. if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
  33. if (!dev->dma_mask) {
  34. dev_err(dev,
  35. "%s: call on device without dma_mask\n",
  36. caller);
  37. return false;
  38. }
  39. if (*dev->dma_mask >= DMA_BIT_MASK(32)) {
  40. dev_err(dev,
  41. "%s: overflow %pad+%zu of device mask %llx\n",
  42. caller, &dma_addr, size, *dev->dma_mask);
  43. }
  44. return false;
  45. }
  46. return true;
  47. }
  48. static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
  49. {
  50. dma_addr_t addr = force_dma_unencrypted() ?
  51. __phys_to_dma(dev, phys) : phys_to_dma(dev, phys);
  52. return addr + size - 1 <= dev->coherent_dma_mask;
  53. }
  54. void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
  55. gfp_t gfp, unsigned long attrs)
  56. {
  57. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  58. int page_order = get_order(size);
  59. struct page *page = NULL;
  60. void *ret;
  61. /* we always manually zero the memory once we are done: */
  62. gfp &= ~__GFP_ZERO;
  63. /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */
  64. if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
  65. gfp |= GFP_DMA;
  66. if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
  67. gfp |= GFP_DMA32;
  68. again:
  69. /* CMA can be used only in the context which permits sleeping */
  70. if (gfpflags_allow_blocking(gfp)) {
  71. page = dma_alloc_from_contiguous(dev, count, page_order,
  72. gfp & __GFP_NOWARN);
  73. if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  74. dma_release_from_contiguous(dev, page, count);
  75. page = NULL;
  76. }
  77. }
  78. if (!page)
  79. page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
  80. if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
  81. __free_pages(page, page_order);
  82. page = NULL;
  83. if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
  84. dev->coherent_dma_mask < DMA_BIT_MASK(64) &&
  85. !(gfp & (GFP_DMA32 | GFP_DMA))) {
  86. gfp |= GFP_DMA32;
  87. goto again;
  88. }
  89. if (IS_ENABLED(CONFIG_ZONE_DMA) &&
  90. dev->coherent_dma_mask < DMA_BIT_MASK(32) &&
  91. !(gfp & GFP_DMA)) {
  92. gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
  93. goto again;
  94. }
  95. }
  96. if (!page)
  97. return NULL;
  98. ret = page_address(page);
  99. if (force_dma_unencrypted()) {
  100. set_memory_decrypted((unsigned long)ret, 1 << page_order);
  101. *dma_handle = __phys_to_dma(dev, page_to_phys(page));
  102. } else {
  103. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  104. }
  105. memset(ret, 0, size);
  106. return ret;
  107. }
  108. /*
  109. * NOTE: this function must never look at the dma_addr argument, because we want
  110. * to be able to use it as a helper for iommu implementations as well.
  111. */
  112. void dma_direct_free(struct device *dev, size_t size, void *cpu_addr,
  113. dma_addr_t dma_addr, unsigned long attrs)
  114. {
  115. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  116. unsigned int page_order = get_order(size);
  117. if (force_dma_unencrypted())
  118. set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
  119. if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
  120. free_pages((unsigned long)cpu_addr, page_order);
  121. }
  122. dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
  123. unsigned long offset, size_t size, enum dma_data_direction dir,
  124. unsigned long attrs)
  125. {
  126. dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset;
  127. if (!check_addr(dev, dma_addr, size, __func__))
  128. return DIRECT_MAPPING_ERROR;
  129. return dma_addr;
  130. }
  131. int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
  132. enum dma_data_direction dir, unsigned long attrs)
  133. {
  134. int i;
  135. struct scatterlist *sg;
  136. for_each_sg(sgl, sg, nents, i) {
  137. BUG_ON(!sg_page(sg));
  138. sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
  139. if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
  140. return 0;
  141. sg_dma_len(sg) = sg->length;
  142. }
  143. return nents;
  144. }
  145. int dma_direct_supported(struct device *dev, u64 mask)
  146. {
  147. #ifdef CONFIG_ZONE_DMA
  148. /*
  149. * This check needs to be against the actual bit mask value, so
  150. * use __phys_to_dma() here so that the SME encryption mask isn't
  151. * part of the check.
  152. */
  153. if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)))
  154. return 0;
  155. #else
  156. /*
  157. * Because 32-bit DMA masks are so common we expect every architecture
  158. * to be able to satisfy them - either by not supporting more physical
  159. * memory, or by providing a ZONE_DMA32. If neither is the case, the
  160. * architecture needs to use an IOMMU instead of the direct mapping.
  161. *
  162. * This check needs to be against the actual bit mask value, so
  163. * use __phys_to_dma() here so that the SME encryption mask isn't
  164. * part of the check.
  165. */
  166. if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32)))
  167. return 0;
  168. #endif
  169. /*
  170. * Upstream PCI/PCIe bridges or SoC interconnects may not carry
  171. * as many DMA address bits as the device itself supports.
  172. */
  173. if (dev->bus_dma_mask && mask > dev->bus_dma_mask)
  174. return 0;
  175. return 1;
  176. }
  177. int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
  178. {
  179. return dma_addr == DIRECT_MAPPING_ERROR;
  180. }
  181. const struct dma_map_ops dma_direct_ops = {
  182. .alloc = dma_direct_alloc,
  183. .free = dma_direct_free,
  184. .map_page = dma_direct_map_page,
  185. .map_sg = dma_direct_map_sg,
  186. .dma_supported = dma_direct_supported,
  187. .mapping_error = dma_direct_mapping_error,
  188. };
  189. EXPORT_SYMBOL(dma_direct_ops);