pid.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_PID_H
  3. #define _LINUX_PID_H
  4. #include <linux/rculist.h>
  5. enum pid_type
  6. {
  7. PIDTYPE_PID,
  8. PIDTYPE_TGID,
  9. PIDTYPE_PGID,
  10. PIDTYPE_SID,
  11. PIDTYPE_MAX,
  12. };
  13. /*
  14. * What is struct pid?
  15. *
  16. * A struct pid is the kernel's internal notion of a process identifier.
  17. * It refers to individual tasks, process groups, and sessions. While
  18. * there are processes attached to it the struct pid lives in a hash
  19. * table, so it and then the processes that it refers to can be found
  20. * quickly from the numeric pid value. The attached processes may be
  21. * quickly accessed by following pointers from struct pid.
  22. *
  23. * Storing pid_t values in the kernel and referring to them later has a
  24. * problem. The process originally with that pid may have exited and the
  25. * pid allocator wrapped, and another process could have come along
  26. * and been assigned that pid.
  27. *
  28. * Referring to user space processes by holding a reference to struct
  29. * task_struct has a problem. When the user space process exits
  30. * the now useless task_struct is still kept. A task_struct plus a
  31. * stack consumes around 10K of low kernel memory. More precisely
  32. * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
  33. * a struct pid is about 64 bytes.
  34. *
  35. * Holding a reference to struct pid solves both of these problems.
  36. * It is small so holding a reference does not consume a lot of
  37. * resources, and since a new struct pid is allocated when the numeric pid
  38. * value is reused (when pids wrap around) we don't mistakenly refer to new
  39. * processes.
  40. */
  41. /*
  42. * struct upid is used to get the id of the struct pid, as it is
  43. * seen in particular namespace. Later the struct pid is found with
  44. * find_pid_ns() using the int nr and struct pid_namespace *ns.
  45. */
  46. struct upid {
  47. int nr;
  48. struct pid_namespace *ns;
  49. };
  50. struct pid
  51. {
  52. atomic_t count;
  53. unsigned int level;
  54. /* lists of tasks that use this pid */
  55. struct hlist_head tasks[PIDTYPE_MAX];
  56. struct rcu_head rcu;
  57. struct upid numbers[1];
  58. };
  59. extern struct pid init_struct_pid;
  60. static inline struct pid *get_pid(struct pid *pid)
  61. {
  62. if (pid)
  63. atomic_inc(&pid->count);
  64. return pid;
  65. }
  66. extern void put_pid(struct pid *pid);
  67. extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
  68. extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
  69. extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
  70. /*
  71. * these helpers must be called with the tasklist_lock write-held.
  72. */
  73. extern void attach_pid(struct task_struct *task, enum pid_type);
  74. extern void detach_pid(struct task_struct *task, enum pid_type);
  75. extern void change_pid(struct task_struct *task, enum pid_type,
  76. struct pid *pid);
  77. extern void transfer_pid(struct task_struct *old, struct task_struct *new,
  78. enum pid_type);
  79. struct pid_namespace;
  80. extern struct pid_namespace init_pid_ns;
  81. /*
  82. * look up a PID in the hash table. Must be called with the tasklist_lock
  83. * or rcu_read_lock() held.
  84. *
  85. * find_pid_ns() finds the pid in the namespace specified
  86. * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
  87. *
  88. * see also find_task_by_vpid() set in include/linux/sched.h
  89. */
  90. extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
  91. extern struct pid *find_vpid(int nr);
  92. /*
  93. * Lookup a PID in the hash table, and return with it's count elevated.
  94. */
  95. extern struct pid *find_get_pid(int nr);
  96. extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
  97. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last);
  98. extern struct pid *alloc_pid(struct pid_namespace *ns);
  99. extern void free_pid(struct pid *pid);
  100. extern void disable_pid_allocation(struct pid_namespace *ns);
  101. /*
  102. * ns_of_pid() returns the pid namespace in which the specified pid was
  103. * allocated.
  104. *
  105. * NOTE:
  106. * ns_of_pid() is expected to be called for a process (task) that has
  107. * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
  108. * is expected to be non-NULL. If @pid is NULL, caller should handle
  109. * the resulting NULL pid-ns.
  110. */
  111. static inline struct pid_namespace *ns_of_pid(struct pid *pid)
  112. {
  113. struct pid_namespace *ns = NULL;
  114. if (pid)
  115. ns = pid->numbers[pid->level].ns;
  116. return ns;
  117. }
  118. /*
  119. * is_child_reaper returns true if the pid is the init process
  120. * of the current namespace. As this one could be checked before
  121. * pid_ns->child_reaper is assigned in copy_process, we check
  122. * with the pid number.
  123. */
  124. static inline bool is_child_reaper(struct pid *pid)
  125. {
  126. return pid->numbers[pid->level].nr == 1;
  127. }
  128. /*
  129. * the helpers to get the pid's id seen from different namespaces
  130. *
  131. * pid_nr() : global id, i.e. the id seen from the init namespace;
  132. * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
  133. * current.
  134. * pid_nr_ns() : id seen from the ns specified.
  135. *
  136. * see also task_xid_nr() etc in include/linux/sched.h
  137. */
  138. static inline pid_t pid_nr(struct pid *pid)
  139. {
  140. pid_t nr = 0;
  141. if (pid)
  142. nr = pid->numbers[0].nr;
  143. return nr;
  144. }
  145. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
  146. pid_t pid_vnr(struct pid *pid);
  147. #define do_each_pid_task(pid, type, task) \
  148. do { \
  149. if ((pid) != NULL) \
  150. hlist_for_each_entry_rcu((task), \
  151. &(pid)->tasks[type], pid_links[type]) {
  152. /*
  153. * Both old and new leaders may be attached to
  154. * the same pid in the middle of de_thread().
  155. */
  156. #define while_each_pid_task(pid, type, task) \
  157. if (type == PIDTYPE_PID) \
  158. break; \
  159. } \
  160. } while (0)
  161. #define do_each_pid_thread(pid, type, task) \
  162. do_each_pid_task(pid, type, task) { \
  163. struct task_struct *tg___ = task; \
  164. for_each_thread(tg___, task) {
  165. #define while_each_pid_thread(pid, type, task) \
  166. } \
  167. task = tg___; \
  168. } while_each_pid_task(pid, type, task)
  169. #endif /* _LINUX_PID_H */