log2.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. /* Integer base 2 logarithm calculation
  2. *
  3. * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #ifndef _LINUX_LOG2_H
  12. #define _LINUX_LOG2_H
  13. #include <linux/types.h>
  14. #include <linux/bitops.h>
  15. /*
  16. * non-constant log of base 2 calculators
  17. * - the arch may override these in asm/bitops.h if they can be implemented
  18. * more efficiently than using fls() and fls64()
  19. * - the arch is not required to handle n==0 if implementing the fallback
  20. */
  21. #ifndef CONFIG_ARCH_HAS_ILOG2_U32
  22. static inline __attribute__((const))
  23. int __ilog2_u32(u32 n)
  24. {
  25. return fls(n) - 1;
  26. }
  27. #endif
  28. #ifndef CONFIG_ARCH_HAS_ILOG2_U64
  29. static inline __attribute__((const))
  30. int __ilog2_u64(u64 n)
  31. {
  32. return fls64(n) - 1;
  33. }
  34. #endif
  35. /**
  36. * is_power_of_2() - check if a value is a power of two
  37. * @n: the value to check
  38. *
  39. * Determine whether some value is a power of two, where zero is
  40. * *not* considered a power of two.
  41. * Return: true if @n is a power of 2, otherwise false.
  42. */
  43. static inline __attribute__((const))
  44. bool is_power_of_2(unsigned long n)
  45. {
  46. return (n != 0 && ((n & (n - 1)) == 0));
  47. }
  48. /**
  49. * __roundup_pow_of_two() - round up to nearest power of two
  50. * @n: value to round up
  51. */
  52. static inline __attribute__((const))
  53. unsigned long __roundup_pow_of_two(unsigned long n)
  54. {
  55. return 1UL << fls_long(n - 1);
  56. }
  57. /**
  58. * __rounddown_pow_of_two() - round down to nearest power of two
  59. * @n: value to round down
  60. */
  61. static inline __attribute__((const))
  62. unsigned long __rounddown_pow_of_two(unsigned long n)
  63. {
  64. return 1UL << (fls_long(n) - 1);
  65. }
  66. /**
  67. * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value
  68. * @n: parameter
  69. *
  70. * Use this where sparse expects a true constant expression, e.g. for array
  71. * indices.
  72. */
  73. #define const_ilog2(n) \
  74. ( \
  75. __builtin_constant_p(n) ? ( \
  76. (n) < 2 ? 0 : \
  77. (n) & (1ULL << 63) ? 63 : \
  78. (n) & (1ULL << 62) ? 62 : \
  79. (n) & (1ULL << 61) ? 61 : \
  80. (n) & (1ULL << 60) ? 60 : \
  81. (n) & (1ULL << 59) ? 59 : \
  82. (n) & (1ULL << 58) ? 58 : \
  83. (n) & (1ULL << 57) ? 57 : \
  84. (n) & (1ULL << 56) ? 56 : \
  85. (n) & (1ULL << 55) ? 55 : \
  86. (n) & (1ULL << 54) ? 54 : \
  87. (n) & (1ULL << 53) ? 53 : \
  88. (n) & (1ULL << 52) ? 52 : \
  89. (n) & (1ULL << 51) ? 51 : \
  90. (n) & (1ULL << 50) ? 50 : \
  91. (n) & (1ULL << 49) ? 49 : \
  92. (n) & (1ULL << 48) ? 48 : \
  93. (n) & (1ULL << 47) ? 47 : \
  94. (n) & (1ULL << 46) ? 46 : \
  95. (n) & (1ULL << 45) ? 45 : \
  96. (n) & (1ULL << 44) ? 44 : \
  97. (n) & (1ULL << 43) ? 43 : \
  98. (n) & (1ULL << 42) ? 42 : \
  99. (n) & (1ULL << 41) ? 41 : \
  100. (n) & (1ULL << 40) ? 40 : \
  101. (n) & (1ULL << 39) ? 39 : \
  102. (n) & (1ULL << 38) ? 38 : \
  103. (n) & (1ULL << 37) ? 37 : \
  104. (n) & (1ULL << 36) ? 36 : \
  105. (n) & (1ULL << 35) ? 35 : \
  106. (n) & (1ULL << 34) ? 34 : \
  107. (n) & (1ULL << 33) ? 33 : \
  108. (n) & (1ULL << 32) ? 32 : \
  109. (n) & (1ULL << 31) ? 31 : \
  110. (n) & (1ULL << 30) ? 30 : \
  111. (n) & (1ULL << 29) ? 29 : \
  112. (n) & (1ULL << 28) ? 28 : \
  113. (n) & (1ULL << 27) ? 27 : \
  114. (n) & (1ULL << 26) ? 26 : \
  115. (n) & (1ULL << 25) ? 25 : \
  116. (n) & (1ULL << 24) ? 24 : \
  117. (n) & (1ULL << 23) ? 23 : \
  118. (n) & (1ULL << 22) ? 22 : \
  119. (n) & (1ULL << 21) ? 21 : \
  120. (n) & (1ULL << 20) ? 20 : \
  121. (n) & (1ULL << 19) ? 19 : \
  122. (n) & (1ULL << 18) ? 18 : \
  123. (n) & (1ULL << 17) ? 17 : \
  124. (n) & (1ULL << 16) ? 16 : \
  125. (n) & (1ULL << 15) ? 15 : \
  126. (n) & (1ULL << 14) ? 14 : \
  127. (n) & (1ULL << 13) ? 13 : \
  128. (n) & (1ULL << 12) ? 12 : \
  129. (n) & (1ULL << 11) ? 11 : \
  130. (n) & (1ULL << 10) ? 10 : \
  131. (n) & (1ULL << 9) ? 9 : \
  132. (n) & (1ULL << 8) ? 8 : \
  133. (n) & (1ULL << 7) ? 7 : \
  134. (n) & (1ULL << 6) ? 6 : \
  135. (n) & (1ULL << 5) ? 5 : \
  136. (n) & (1ULL << 4) ? 4 : \
  137. (n) & (1ULL << 3) ? 3 : \
  138. (n) & (1ULL << 2) ? 2 : \
  139. 1) : \
  140. -1)
  141. /**
  142. * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value
  143. * @n: parameter
  144. *
  145. * constant-capable log of base 2 calculation
  146. * - this can be used to initialise global variables from constant data, hence
  147. * the massive ternary operator construction
  148. *
  149. * selects the appropriately-sized optimised version depending on sizeof(n)
  150. */
  151. #define ilog2(n) \
  152. ( \
  153. __builtin_constant_p(n) ? \
  154. const_ilog2(n) : \
  155. (sizeof(n) <= 4) ? \
  156. __ilog2_u32(n) : \
  157. __ilog2_u64(n) \
  158. )
  159. /**
  160. * roundup_pow_of_two - round the given value up to nearest power of two
  161. * @n: parameter
  162. *
  163. * round the given value up to the nearest power of two
  164. * - the result is undefined when n == 0
  165. * - this can be used to initialise global variables from constant data
  166. */
  167. #define roundup_pow_of_two(n) \
  168. ( \
  169. __builtin_constant_p(n) ? ( \
  170. (n == 1) ? 1 : \
  171. (1UL << (ilog2((n) - 1) + 1)) \
  172. ) : \
  173. __roundup_pow_of_two(n) \
  174. )
  175. /**
  176. * rounddown_pow_of_two - round the given value down to nearest power of two
  177. * @n: parameter
  178. *
  179. * round the given value down to the nearest power of two
  180. * - the result is undefined when n == 0
  181. * - this can be used to initialise global variables from constant data
  182. */
  183. #define rounddown_pow_of_two(n) \
  184. ( \
  185. __builtin_constant_p(n) ? ( \
  186. (1UL << ilog2(n))) : \
  187. __rounddown_pow_of_two(n) \
  188. )
  189. static inline __attribute_const__
  190. int __order_base_2(unsigned long n)
  191. {
  192. return n > 1 ? ilog2(n - 1) + 1 : 0;
  193. }
  194. /**
  195. * order_base_2 - calculate the (rounded up) base 2 order of the argument
  196. * @n: parameter
  197. *
  198. * The first few values calculated by this routine:
  199. * ob2(0) = 0
  200. * ob2(1) = 0
  201. * ob2(2) = 1
  202. * ob2(3) = 2
  203. * ob2(4) = 2
  204. * ob2(5) = 3
  205. * ... and so on.
  206. */
  207. #define order_base_2(n) \
  208. ( \
  209. __builtin_constant_p(n) ? ( \
  210. ((n) == 0 || (n) == 1) ? 0 : \
  211. ilog2((n) - 1) + 1) : \
  212. __order_base_2(n) \
  213. )
  214. #endif /* _LINUX_LOG2_H */