budget.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Adrian Hunter
  20. * Artem Bityutskiy (Битюцкий Артём)
  21. */
  22. /*
  23. * This file implements the budgeting sub-system which is responsible for UBIFS
  24. * space management.
  25. *
  26. * Factors such as compression, wasted space at the ends of LEBs, space in other
  27. * journal heads, the effect of updates on the index, and so on, make it
  28. * impossible to accurately predict the amount of space needed. Consequently
  29. * approximations are used.
  30. */
  31. #include "ubifs.h"
  32. #include <linux/writeback.h>
  33. #include <linux/math64.h>
  34. /*
  35. * When pessimistic budget calculations say that there is no enough space,
  36. * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
  37. * or committing. The below constant defines maximum number of times UBIFS
  38. * repeats the operations.
  39. */
  40. #define MAX_MKSPC_RETRIES 3
  41. /*
  42. * The below constant defines amount of dirty pages which should be written
  43. * back at when trying to shrink the liability.
  44. */
  45. #define NR_TO_WRITE 16
  46. /**
  47. * shrink_liability - write-back some dirty pages/inodes.
  48. * @c: UBIFS file-system description object
  49. * @nr_to_write: how many dirty pages to write-back
  50. *
  51. * This function shrinks UBIFS liability by means of writing back some amount
  52. * of dirty inodes and their pages.
  53. *
  54. * Note, this function synchronizes even VFS inodes which are locked
  55. * (@i_mutex) by the caller of the budgeting function, because write-back does
  56. * not touch @i_mutex.
  57. */
  58. static void shrink_liability(struct ubifs_info *c, int nr_to_write)
  59. {
  60. down_read(&c->vfs_sb->s_umount);
  61. writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
  62. up_read(&c->vfs_sb->s_umount);
  63. }
  64. /**
  65. * run_gc - run garbage collector.
  66. * @c: UBIFS file-system description object
  67. *
  68. * This function runs garbage collector to make some more free space. Returns
  69. * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
  70. * negative error code in case of failure.
  71. */
  72. static int run_gc(struct ubifs_info *c)
  73. {
  74. int err, lnum;
  75. /* Make some free space by garbage-collecting dirty space */
  76. down_read(&c->commit_sem);
  77. lnum = ubifs_garbage_collect(c, 1);
  78. up_read(&c->commit_sem);
  79. if (lnum < 0)
  80. return lnum;
  81. /* GC freed one LEB, return it to lprops */
  82. dbg_budg("GC freed LEB %d", lnum);
  83. err = ubifs_return_leb(c, lnum);
  84. if (err)
  85. return err;
  86. return 0;
  87. }
  88. /**
  89. * get_liability - calculate current liability.
  90. * @c: UBIFS file-system description object
  91. *
  92. * This function calculates and returns current UBIFS liability, i.e. the
  93. * amount of bytes UBIFS has "promised" to write to the media.
  94. */
  95. static long long get_liability(struct ubifs_info *c)
  96. {
  97. long long liab;
  98. spin_lock(&c->space_lock);
  99. liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
  100. spin_unlock(&c->space_lock);
  101. return liab;
  102. }
  103. /**
  104. * make_free_space - make more free space on the file-system.
  105. * @c: UBIFS file-system description object
  106. *
  107. * This function is called when an operation cannot be budgeted because there
  108. * is supposedly no free space. But in most cases there is some free space:
  109. * o budgeting is pessimistic, so it always budgets more than it is actually
  110. * needed, so shrinking the liability is one way to make free space - the
  111. * cached data will take less space then it was budgeted for;
  112. * o GC may turn some dark space into free space (budgeting treats dark space
  113. * as not available);
  114. * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
  115. *
  116. * So this function tries to do the above. Returns %-EAGAIN if some free space
  117. * was presumably made and the caller has to re-try budgeting the operation.
  118. * Returns %-ENOSPC if it couldn't do more free space, and other negative error
  119. * codes on failures.
  120. */
  121. static int make_free_space(struct ubifs_info *c)
  122. {
  123. int err, retries = 0;
  124. long long liab1, liab2;
  125. do {
  126. liab1 = get_liability(c);
  127. /*
  128. * We probably have some dirty pages or inodes (liability), try
  129. * to write them back.
  130. */
  131. dbg_budg("liability %lld, run write-back", liab1);
  132. shrink_liability(c, NR_TO_WRITE);
  133. liab2 = get_liability(c);
  134. if (liab2 < liab1)
  135. return -EAGAIN;
  136. dbg_budg("new liability %lld (not shrunk)", liab2);
  137. /* Liability did not shrink again, try GC */
  138. dbg_budg("Run GC");
  139. err = run_gc(c);
  140. if (!err)
  141. return -EAGAIN;
  142. if (err != -EAGAIN && err != -ENOSPC)
  143. /* Some real error happened */
  144. return err;
  145. dbg_budg("Run commit (retries %d)", retries);
  146. err = ubifs_run_commit(c);
  147. if (err)
  148. return err;
  149. } while (retries++ < MAX_MKSPC_RETRIES);
  150. return -ENOSPC;
  151. }
  152. /**
  153. * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
  154. * @c: UBIFS file-system description object
  155. *
  156. * This function calculates and returns the number of LEBs which should be kept
  157. * for index usage.
  158. */
  159. int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
  160. {
  161. int idx_lebs;
  162. long long idx_size;
  163. idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
  164. /* And make sure we have thrice the index size of space reserved */
  165. idx_size += idx_size << 1;
  166. /*
  167. * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
  168. * pair, nor similarly the two variables for the new index size, so we
  169. * have to do this costly 64-bit division on fast-path.
  170. */
  171. idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
  172. /*
  173. * The index head is not available for the in-the-gaps method, so add an
  174. * extra LEB to compensate.
  175. */
  176. idx_lebs += 1;
  177. if (idx_lebs < MIN_INDEX_LEBS)
  178. idx_lebs = MIN_INDEX_LEBS;
  179. return idx_lebs;
  180. }
  181. /**
  182. * ubifs_calc_available - calculate available FS space.
  183. * @c: UBIFS file-system description object
  184. * @min_idx_lebs: minimum number of LEBs reserved for the index
  185. *
  186. * This function calculates and returns amount of FS space available for use.
  187. */
  188. long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
  189. {
  190. int subtract_lebs;
  191. long long available;
  192. available = c->main_bytes - c->lst.total_used;
  193. /*
  194. * Now 'available' contains theoretically available flash space
  195. * assuming there is no index, so we have to subtract the space which
  196. * is reserved for the index.
  197. */
  198. subtract_lebs = min_idx_lebs;
  199. /* Take into account that GC reserves one LEB for its own needs */
  200. subtract_lebs += 1;
  201. /*
  202. * The GC journal head LEB is not really accessible. And since
  203. * different write types go to different heads, we may count only on
  204. * one head's space.
  205. */
  206. subtract_lebs += c->jhead_cnt - 1;
  207. /* We also reserve one LEB for deletions, which bypass budgeting */
  208. subtract_lebs += 1;
  209. available -= (long long)subtract_lebs * c->leb_size;
  210. /* Subtract the dead space which is not available for use */
  211. available -= c->lst.total_dead;
  212. /*
  213. * Subtract dark space, which might or might not be usable - it depends
  214. * on the data which we have on the media and which will be written. If
  215. * this is a lot of uncompressed or not-compressible data, the dark
  216. * space cannot be used.
  217. */
  218. available -= c->lst.total_dark;
  219. /*
  220. * However, there is more dark space. The index may be bigger than
  221. * @min_idx_lebs. Those extra LEBs are assumed to be available, but
  222. * their dark space is not included in total_dark, so it is subtracted
  223. * here.
  224. */
  225. if (c->lst.idx_lebs > min_idx_lebs) {
  226. subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
  227. available -= subtract_lebs * c->dark_wm;
  228. }
  229. /* The calculations are rough and may end up with a negative number */
  230. return available > 0 ? available : 0;
  231. }
  232. /**
  233. * can_use_rp - check whether the user is allowed to use reserved pool.
  234. * @c: UBIFS file-system description object
  235. *
  236. * UBIFS has so-called "reserved pool" which is flash space reserved
  237. * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
  238. * This function checks whether current user is allowed to use reserved pool.
  239. * Returns %1 current user is allowed to use reserved pool and %0 otherwise.
  240. */
  241. static int can_use_rp(struct ubifs_info *c)
  242. {
  243. if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
  244. (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
  245. return 1;
  246. return 0;
  247. }
  248. /**
  249. * do_budget_space - reserve flash space for index and data growth.
  250. * @c: UBIFS file-system description object
  251. *
  252. * This function makes sure UBIFS has enough free LEBs for index growth and
  253. * data.
  254. *
  255. * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
  256. * would take if it was consolidated and written to the flash. This guarantees
  257. * that the "in-the-gaps" commit method always succeeds and UBIFS will always
  258. * be able to commit dirty index. So this function basically adds amount of
  259. * budgeted index space to the size of the current index, multiplies this by 3,
  260. * and makes sure this does not exceed the amount of free LEBs.
  261. *
  262. * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
  263. * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
  264. * be large, because UBIFS does not do any index consolidation as long as
  265. * there is free space. IOW, the index may take a lot of LEBs, but the LEBs
  266. * will contain a lot of dirt.
  267. * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
  268. * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
  269. *
  270. * This function returns zero in case of success, and %-ENOSPC in case of
  271. * failure.
  272. */
  273. static int do_budget_space(struct ubifs_info *c)
  274. {
  275. long long outstanding, available;
  276. int lebs, rsvd_idx_lebs, min_idx_lebs;
  277. /* First budget index space */
  278. min_idx_lebs = ubifs_calc_min_idx_lebs(c);
  279. /* Now 'min_idx_lebs' contains number of LEBs to reserve */
  280. if (min_idx_lebs > c->lst.idx_lebs)
  281. rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
  282. else
  283. rsvd_idx_lebs = 0;
  284. /*
  285. * The number of LEBs that are available to be used by the index is:
  286. *
  287. * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
  288. * @c->lst.taken_empty_lebs
  289. *
  290. * @c->lst.empty_lebs are available because they are empty.
  291. * @c->freeable_cnt are available because they contain only free and
  292. * dirty space, @c->idx_gc_cnt are available because they are index
  293. * LEBs that have been garbage collected and are awaiting the commit
  294. * before they can be used. And the in-the-gaps method will grab these
  295. * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
  296. * already been allocated for some purpose.
  297. *
  298. * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
  299. * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
  300. * are taken until after the commit).
  301. *
  302. * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
  303. * because of the way we serialize LEB allocations and budgeting. See a
  304. * comment in 'ubifs_find_free_space()'.
  305. */
  306. lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
  307. c->lst.taken_empty_lebs;
  308. if (unlikely(rsvd_idx_lebs > lebs)) {
  309. dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
  310. min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
  311. return -ENOSPC;
  312. }
  313. available = ubifs_calc_available(c, min_idx_lebs);
  314. outstanding = c->bi.data_growth + c->bi.dd_growth;
  315. if (unlikely(available < outstanding)) {
  316. dbg_budg("out of data space: available %lld, outstanding %lld",
  317. available, outstanding);
  318. return -ENOSPC;
  319. }
  320. if (available - outstanding <= c->rp_size && !can_use_rp(c))
  321. return -ENOSPC;
  322. c->bi.min_idx_lebs = min_idx_lebs;
  323. return 0;
  324. }
  325. /**
  326. * calc_idx_growth - calculate approximate index growth from budgeting request.
  327. * @c: UBIFS file-system description object
  328. * @req: budgeting request
  329. *
  330. * For now we assume each new node adds one znode. But this is rather poor
  331. * approximation, though.
  332. */
  333. static int calc_idx_growth(const struct ubifs_info *c,
  334. const struct ubifs_budget_req *req)
  335. {
  336. int znodes;
  337. znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
  338. req->new_dent;
  339. return znodes * c->max_idx_node_sz;
  340. }
  341. /**
  342. * calc_data_growth - calculate approximate amount of new data from budgeting
  343. * request.
  344. * @c: UBIFS file-system description object
  345. * @req: budgeting request
  346. */
  347. static int calc_data_growth(const struct ubifs_info *c,
  348. const struct ubifs_budget_req *req)
  349. {
  350. int data_growth;
  351. data_growth = req->new_ino ? c->bi.inode_budget : 0;
  352. if (req->new_page)
  353. data_growth += c->bi.page_budget;
  354. if (req->new_dent)
  355. data_growth += c->bi.dent_budget;
  356. data_growth += req->new_ino_d;
  357. return data_growth;
  358. }
  359. /**
  360. * calc_dd_growth - calculate approximate amount of data which makes other data
  361. * dirty from budgeting request.
  362. * @c: UBIFS file-system description object
  363. * @req: budgeting request
  364. */
  365. static int calc_dd_growth(const struct ubifs_info *c,
  366. const struct ubifs_budget_req *req)
  367. {
  368. int dd_growth;
  369. dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
  370. if (req->dirtied_ino)
  371. dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
  372. if (req->mod_dent)
  373. dd_growth += c->bi.dent_budget;
  374. dd_growth += req->dirtied_ino_d;
  375. return dd_growth;
  376. }
  377. /**
  378. * ubifs_budget_space - ensure there is enough space to complete an operation.
  379. * @c: UBIFS file-system description object
  380. * @req: budget request
  381. *
  382. * This function allocates budget for an operation. It uses pessimistic
  383. * approximation of how much flash space the operation needs. The goal of this
  384. * function is to make sure UBIFS always has flash space to flush all dirty
  385. * pages, dirty inodes, and dirty znodes (liability). This function may force
  386. * commit, garbage-collection or write-back. Returns zero in case of success,
  387. * %-ENOSPC if there is no free space and other negative error codes in case of
  388. * failures.
  389. */
  390. int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
  391. {
  392. int err, idx_growth, data_growth, dd_growth, retried = 0;
  393. ubifs_assert(c, req->new_page <= 1);
  394. ubifs_assert(c, req->dirtied_page <= 1);
  395. ubifs_assert(c, req->new_dent <= 1);
  396. ubifs_assert(c, req->mod_dent <= 1);
  397. ubifs_assert(c, req->new_ino <= 1);
  398. ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
  399. ubifs_assert(c, req->dirtied_ino <= 4);
  400. ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
  401. ubifs_assert(c, !(req->new_ino_d & 7));
  402. ubifs_assert(c, !(req->dirtied_ino_d & 7));
  403. data_growth = calc_data_growth(c, req);
  404. dd_growth = calc_dd_growth(c, req);
  405. if (!data_growth && !dd_growth)
  406. return 0;
  407. idx_growth = calc_idx_growth(c, req);
  408. again:
  409. spin_lock(&c->space_lock);
  410. ubifs_assert(c, c->bi.idx_growth >= 0);
  411. ubifs_assert(c, c->bi.data_growth >= 0);
  412. ubifs_assert(c, c->bi.dd_growth >= 0);
  413. if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
  414. dbg_budg("no space");
  415. spin_unlock(&c->space_lock);
  416. return -ENOSPC;
  417. }
  418. c->bi.idx_growth += idx_growth;
  419. c->bi.data_growth += data_growth;
  420. c->bi.dd_growth += dd_growth;
  421. err = do_budget_space(c);
  422. if (likely(!err)) {
  423. req->idx_growth = idx_growth;
  424. req->data_growth = data_growth;
  425. req->dd_growth = dd_growth;
  426. spin_unlock(&c->space_lock);
  427. return 0;
  428. }
  429. /* Restore the old values */
  430. c->bi.idx_growth -= idx_growth;
  431. c->bi.data_growth -= data_growth;
  432. c->bi.dd_growth -= dd_growth;
  433. spin_unlock(&c->space_lock);
  434. if (req->fast) {
  435. dbg_budg("no space for fast budgeting");
  436. return err;
  437. }
  438. err = make_free_space(c);
  439. cond_resched();
  440. if (err == -EAGAIN) {
  441. dbg_budg("try again");
  442. goto again;
  443. } else if (err == -ENOSPC) {
  444. if (!retried) {
  445. retried = 1;
  446. dbg_budg("-ENOSPC, but anyway try once again");
  447. goto again;
  448. }
  449. dbg_budg("FS is full, -ENOSPC");
  450. c->bi.nospace = 1;
  451. if (can_use_rp(c) || c->rp_size == 0)
  452. c->bi.nospace_rp = 1;
  453. smp_wmb();
  454. } else
  455. ubifs_err(c, "cannot budget space, error %d", err);
  456. return err;
  457. }
  458. /**
  459. * ubifs_release_budget - release budgeted free space.
  460. * @c: UBIFS file-system description object
  461. * @req: budget request
  462. *
  463. * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
  464. * since the index changes (which were budgeted for in @req->idx_growth) will
  465. * only be written to the media on commit, this function moves the index budget
  466. * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
  467. * by the commit operation.
  468. */
  469. void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
  470. {
  471. ubifs_assert(c, req->new_page <= 1);
  472. ubifs_assert(c, req->dirtied_page <= 1);
  473. ubifs_assert(c, req->new_dent <= 1);
  474. ubifs_assert(c, req->mod_dent <= 1);
  475. ubifs_assert(c, req->new_ino <= 1);
  476. ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
  477. ubifs_assert(c, req->dirtied_ino <= 4);
  478. ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
  479. ubifs_assert(c, !(req->new_ino_d & 7));
  480. ubifs_assert(c, !(req->dirtied_ino_d & 7));
  481. if (!req->recalculate) {
  482. ubifs_assert(c, req->idx_growth >= 0);
  483. ubifs_assert(c, req->data_growth >= 0);
  484. ubifs_assert(c, req->dd_growth >= 0);
  485. }
  486. if (req->recalculate) {
  487. req->data_growth = calc_data_growth(c, req);
  488. req->dd_growth = calc_dd_growth(c, req);
  489. req->idx_growth = calc_idx_growth(c, req);
  490. }
  491. if (!req->data_growth && !req->dd_growth)
  492. return;
  493. c->bi.nospace = c->bi.nospace_rp = 0;
  494. smp_wmb();
  495. spin_lock(&c->space_lock);
  496. c->bi.idx_growth -= req->idx_growth;
  497. c->bi.uncommitted_idx += req->idx_growth;
  498. c->bi.data_growth -= req->data_growth;
  499. c->bi.dd_growth -= req->dd_growth;
  500. c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
  501. ubifs_assert(c, c->bi.idx_growth >= 0);
  502. ubifs_assert(c, c->bi.data_growth >= 0);
  503. ubifs_assert(c, c->bi.dd_growth >= 0);
  504. ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
  505. ubifs_assert(c, !(c->bi.idx_growth & 7));
  506. ubifs_assert(c, !(c->bi.data_growth & 7));
  507. ubifs_assert(c, !(c->bi.dd_growth & 7));
  508. spin_unlock(&c->space_lock);
  509. }
  510. /**
  511. * ubifs_convert_page_budget - convert budget of a new page.
  512. * @c: UBIFS file-system description object
  513. *
  514. * This function converts budget which was allocated for a new page of data to
  515. * the budget of changing an existing page of data. The latter is smaller than
  516. * the former, so this function only does simple re-calculation and does not
  517. * involve any write-back.
  518. */
  519. void ubifs_convert_page_budget(struct ubifs_info *c)
  520. {
  521. spin_lock(&c->space_lock);
  522. /* Release the index growth reservation */
  523. c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
  524. /* Release the data growth reservation */
  525. c->bi.data_growth -= c->bi.page_budget;
  526. /* Increase the dirty data growth reservation instead */
  527. c->bi.dd_growth += c->bi.page_budget;
  528. /* And re-calculate the indexing space reservation */
  529. c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
  530. spin_unlock(&c->space_lock);
  531. }
  532. /**
  533. * ubifs_release_dirty_inode_budget - release dirty inode budget.
  534. * @c: UBIFS file-system description object
  535. * @ui: UBIFS inode to release the budget for
  536. *
  537. * This function releases budget corresponding to a dirty inode. It is usually
  538. * called when after the inode has been written to the media and marked as
  539. * clean. It also causes the "no space" flags to be cleared.
  540. */
  541. void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
  542. struct ubifs_inode *ui)
  543. {
  544. struct ubifs_budget_req req;
  545. memset(&req, 0, sizeof(struct ubifs_budget_req));
  546. /* The "no space" flags will be cleared because dd_growth is > 0 */
  547. req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
  548. ubifs_release_budget(c, &req);
  549. }
  550. /**
  551. * ubifs_reported_space - calculate reported free space.
  552. * @c: the UBIFS file-system description object
  553. * @free: amount of free space
  554. *
  555. * This function calculates amount of free space which will be reported to
  556. * user-space. User-space application tend to expect that if the file-system
  557. * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
  558. * are able to write a file of size N. UBIFS attaches node headers to each data
  559. * node and it has to write indexing nodes as well. This introduces additional
  560. * overhead, and UBIFS has to report slightly less free space to meet the above
  561. * expectations.
  562. *
  563. * This function assumes free space is made up of uncompressed data nodes and
  564. * full index nodes (one per data node, tripled because we always allow enough
  565. * space to write the index thrice).
  566. *
  567. * Note, the calculation is pessimistic, which means that most of the time
  568. * UBIFS reports less space than it actually has.
  569. */
  570. long long ubifs_reported_space(const struct ubifs_info *c, long long free)
  571. {
  572. int divisor, factor, f;
  573. /*
  574. * Reported space size is @free * X, where X is UBIFS block size
  575. * divided by UBIFS block size + all overhead one data block
  576. * introduces. The overhead is the node header + indexing overhead.
  577. *
  578. * Indexing overhead calculations are based on the following formula:
  579. * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
  580. * of data nodes, f - fanout. Because effective UBIFS fanout is twice
  581. * as less than maximum fanout, we assume that each data node
  582. * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
  583. * Note, the multiplier 3 is because UBIFS reserves thrice as more space
  584. * for the index.
  585. */
  586. f = c->fanout > 3 ? c->fanout >> 1 : 2;
  587. factor = UBIFS_BLOCK_SIZE;
  588. divisor = UBIFS_MAX_DATA_NODE_SZ;
  589. divisor += (c->max_idx_node_sz * 3) / (f - 1);
  590. free *= factor;
  591. return div_u64(free, divisor);
  592. }
  593. /**
  594. * ubifs_get_free_space_nolock - return amount of free space.
  595. * @c: UBIFS file-system description object
  596. *
  597. * This function calculates amount of free space to report to user-space.
  598. *
  599. * Because UBIFS may introduce substantial overhead (the index, node headers,
  600. * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
  601. * free flash space it has (well, because not all dirty space is reclaimable,
  602. * UBIFS does not actually know the real amount). If UBIFS did so, it would
  603. * bread user expectations about what free space is. Users seem to accustomed
  604. * to assume that if the file-system reports N bytes of free space, they would
  605. * be able to fit a file of N bytes to the FS. This almost works for
  606. * traditional file-systems, because they have way less overhead than UBIFS.
  607. * So, to keep users happy, UBIFS tries to take the overhead into account.
  608. */
  609. long long ubifs_get_free_space_nolock(struct ubifs_info *c)
  610. {
  611. int rsvd_idx_lebs, lebs;
  612. long long available, outstanding, free;
  613. ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
  614. outstanding = c->bi.data_growth + c->bi.dd_growth;
  615. available = ubifs_calc_available(c, c->bi.min_idx_lebs);
  616. /*
  617. * When reporting free space to user-space, UBIFS guarantees that it is
  618. * possible to write a file of free space size. This means that for
  619. * empty LEBs we may use more precise calculations than
  620. * 'ubifs_calc_available()' is using. Namely, we know that in empty
  621. * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
  622. * Thus, amend the available space.
  623. *
  624. * Note, the calculations below are similar to what we have in
  625. * 'do_budget_space()', so refer there for comments.
  626. */
  627. if (c->bi.min_idx_lebs > c->lst.idx_lebs)
  628. rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
  629. else
  630. rsvd_idx_lebs = 0;
  631. lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
  632. c->lst.taken_empty_lebs;
  633. lebs -= rsvd_idx_lebs;
  634. available += lebs * (c->dark_wm - c->leb_overhead);
  635. if (available > outstanding)
  636. free = ubifs_reported_space(c, available - outstanding);
  637. else
  638. free = 0;
  639. return free;
  640. }
  641. /**
  642. * ubifs_get_free_space - return amount of free space.
  643. * @c: UBIFS file-system description object
  644. *
  645. * This function calculates and returns amount of free space to report to
  646. * user-space.
  647. */
  648. long long ubifs_get_free_space(struct ubifs_info *c)
  649. {
  650. long long free;
  651. spin_lock(&c->space_lock);
  652. free = ubifs_get_free_space_nolock(c);
  653. spin_unlock(&c->space_lock);
  654. return free;
  655. }