123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- /*
- * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
- */
- #include <linux/string.h>
- #include <linux/time.h>
- #include <linux/uuid.h>
- #include "reiserfs.h"
- /* find where objectid map starts */
- #define objectid_map(s,rs) (old_format_only (s) ? \
- (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\
- (__le32 *)((rs) + 1))
- #ifdef CONFIG_REISERFS_CHECK
- static void check_objectid_map(struct super_block *s, __le32 * map)
- {
- if (le32_to_cpu(map[0]) != 1)
- reiserfs_panic(s, "vs-15010", "map corrupted: %lx",
- (long unsigned int)le32_to_cpu(map[0]));
- /* FIXME: add something else here */
- }
- #else
- static void check_objectid_map(struct super_block *s, __le32 * map)
- {;
- }
- #endif
- /*
- * When we allocate objectids we allocate the first unused objectid.
- * Each sequence of objectids in use (the odd sequences) is followed
- * by a sequence of objectids not in use (the even sequences). We
- * only need to record the last objectid in each of these sequences
- * (both the odd and even sequences) in order to fully define the
- * boundaries of the sequences. A consequence of allocating the first
- * objectid not in use is that under most conditions this scheme is
- * extremely compact. The exception is immediately after a sequence
- * of operations which deletes a large number of objects of
- * non-sequential objectids, and even then it will become compact
- * again as soon as more objects are created. Note that many
- * interesting optimizations of layout could result from complicating
- * objectid assignment, but we have deferred making them for now.
- */
- /* get unique object identifier */
- __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th)
- {
- struct super_block *s = th->t_super;
- struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
- __le32 *map = objectid_map(s, rs);
- __u32 unused_objectid;
- BUG_ON(!th->t_trans_id);
- check_objectid_map(s, map);
- reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
- /* comment needed -Hans */
- unused_objectid = le32_to_cpu(map[1]);
- if (unused_objectid == U32_MAX) {
- reiserfs_warning(s, "reiserfs-15100", "no more object ids");
- reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s));
- return 0;
- }
- /*
- * This incrementation allocates the first unused objectid. That
- * is to say, the first entry on the objectid map is the first
- * unused objectid, and by incrementing it we use it. See below
- * where we check to see if we eliminated a sequence of unused
- * objectids....
- */
- map[1] = cpu_to_le32(unused_objectid + 1);
- /*
- * Now we check to see if we eliminated the last remaining member of
- * the first even sequence (and can eliminate the sequence by
- * eliminating its last objectid from oids), and can collapse the
- * first two odd sequences into one sequence. If so, then the net
- * result is to eliminate a pair of objectids from oids. We do this
- * by shifting the entire map to the left.
- */
- if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) {
- memmove(map + 1, map + 3,
- (sb_oid_cursize(rs) - 3) * sizeof(__u32));
- set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
- }
- journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
- return unused_objectid;
- }
- /* makes object identifier unused */
- void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
- __u32 objectid_to_release)
- {
- struct super_block *s = th->t_super;
- struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s);
- __le32 *map = objectid_map(s, rs);
- int i = 0;
- BUG_ON(!th->t_trans_id);
- /*return; */
- check_objectid_map(s, map);
- reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1);
- journal_mark_dirty(th, SB_BUFFER_WITH_SB(s));
- /*
- * start at the beginning of the objectid map (i = 0) and go to
- * the end of it (i = disk_sb->s_oid_cursize). Linear search is
- * what we use, though it is possible that binary search would be
- * more efficient after performing lots of deletions (which is
- * when oids is large.) We only check even i's.
- */
- while (i < sb_oid_cursize(rs)) {
- if (objectid_to_release == le32_to_cpu(map[i])) {
- /* This incrementation unallocates the objectid. */
- le32_add_cpu(&map[i], 1);
- /*
- * Did we unallocate the last member of an
- * odd sequence, and can shrink oids?
- */
- if (map[i] == map[i + 1]) {
- /* shrink objectid map */
- memmove(map + i, map + i + 2,
- (sb_oid_cursize(rs) - i -
- 2) * sizeof(__u32));
- set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2);
- RFALSE(sb_oid_cursize(rs) < 2 ||
- sb_oid_cursize(rs) > sb_oid_maxsize(rs),
- "vs-15005: objectid map corrupted cur_size == %d (max == %d)",
- sb_oid_cursize(rs), sb_oid_maxsize(rs));
- }
- return;
- }
- if (objectid_to_release > le32_to_cpu(map[i]) &&
- objectid_to_release < le32_to_cpu(map[i + 1])) {
- /* size of objectid map is not changed */
- if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) {
- le32_add_cpu(&map[i + 1], -1);
- return;
- }
- /*
- * JDM comparing two little-endian values for
- * equality -- safe
- */
- /*
- * objectid map must be expanded, but
- * there is no space
- */
- if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) {
- PROC_INFO_INC(s, leaked_oid);
- return;
- }
- /* expand the objectid map */
- memmove(map + i + 3, map + i + 1,
- (sb_oid_cursize(rs) - i - 1) * sizeof(__u32));
- map[i + 1] = cpu_to_le32(objectid_to_release);
- map[i + 2] = cpu_to_le32(objectid_to_release + 1);
- set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2);
- return;
- }
- i += 2;
- }
- reiserfs_error(s, "vs-15011", "tried to free free object id (%lu)",
- (long unsigned)objectid_to_release);
- }
- int reiserfs_convert_objectid_map_v1(struct super_block *s)
- {
- struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s);
- int cur_size = sb_oid_cursize(disk_sb);
- int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2;
- int old_max = sb_oid_maxsize(disk_sb);
- struct reiserfs_super_block_v1 *disk_sb_v1;
- __le32 *objectid_map, *new_objectid_map;
- int i;
- disk_sb_v1 =
- (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data);
- objectid_map = (__le32 *) (disk_sb_v1 + 1);
- new_objectid_map = (__le32 *) (disk_sb + 1);
- if (cur_size > new_size) {
- /*
- * mark everyone used that was listed as free at
- * the end of the objectid map
- */
- objectid_map[new_size - 1] = objectid_map[cur_size - 1];
- set_sb_oid_cursize(disk_sb, new_size);
- }
- /* move the smaller objectid map past the end of the new super */
- for (i = new_size - 1; i >= 0; i--) {
- objectid_map[i + (old_max - new_size)] = objectid_map[i];
- }
- /* set the max size so we don't overflow later */
- set_sb_oid_maxsize(disk_sb, new_size);
- /* Zero out label and generate random UUID */
- memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label));
- generate_random_uuid(disk_sb->s_uuid);
- /* finally, zero out the unused chunk of the new super */
- memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused));
- return 0;
- }
|