namespace.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/cred.h>
  18. #include <linux/idr.h>
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/task_work.h>
  27. #include <linux/sched/task.h>
  28. #include "pnode.h"
  29. #include "internal.h"
  30. /* Maximum number of mounts in a mount namespace */
  31. unsigned int sysctl_mount_max __read_mostly = 100000;
  32. static unsigned int m_hash_mask __read_mostly;
  33. static unsigned int m_hash_shift __read_mostly;
  34. static unsigned int mp_hash_mask __read_mostly;
  35. static unsigned int mp_hash_shift __read_mostly;
  36. static __initdata unsigned long mhash_entries;
  37. static int __init set_mhash_entries(char *str)
  38. {
  39. if (!str)
  40. return 0;
  41. mhash_entries = simple_strtoul(str, &str, 0);
  42. return 1;
  43. }
  44. __setup("mhash_entries=", set_mhash_entries);
  45. static __initdata unsigned long mphash_entries;
  46. static int __init set_mphash_entries(char *str)
  47. {
  48. if (!str)
  49. return 0;
  50. mphash_entries = simple_strtoul(str, &str, 0);
  51. return 1;
  52. }
  53. __setup("mphash_entries=", set_mphash_entries);
  54. static u64 event;
  55. static DEFINE_IDA(mnt_id_ida);
  56. static DEFINE_IDA(mnt_group_ida);
  57. static struct hlist_head *mount_hashtable __read_mostly;
  58. static struct hlist_head *mountpoint_hashtable __read_mostly;
  59. static struct kmem_cache *mnt_cache __read_mostly;
  60. static DECLARE_RWSEM(namespace_sem);
  61. /* /sys/fs */
  62. struct kobject *fs_kobj;
  63. EXPORT_SYMBOL_GPL(fs_kobj);
  64. /*
  65. * vfsmount lock may be taken for read to prevent changes to the
  66. * vfsmount hash, ie. during mountpoint lookups or walking back
  67. * up the tree.
  68. *
  69. * It should be taken for write in all cases where the vfsmount
  70. * tree or hash is modified or when a vfsmount structure is modified.
  71. */
  72. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  73. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  74. {
  75. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  76. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  77. tmp = tmp + (tmp >> m_hash_shift);
  78. return &mount_hashtable[tmp & m_hash_mask];
  79. }
  80. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  81. {
  82. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  83. tmp = tmp + (tmp >> mp_hash_shift);
  84. return &mountpoint_hashtable[tmp & mp_hash_mask];
  85. }
  86. static int mnt_alloc_id(struct mount *mnt)
  87. {
  88. int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
  89. if (res < 0)
  90. return res;
  91. mnt->mnt_id = res;
  92. return 0;
  93. }
  94. static void mnt_free_id(struct mount *mnt)
  95. {
  96. ida_free(&mnt_id_ida, mnt->mnt_id);
  97. }
  98. /*
  99. * Allocate a new peer group ID
  100. */
  101. static int mnt_alloc_group_id(struct mount *mnt)
  102. {
  103. int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
  104. if (res < 0)
  105. return res;
  106. mnt->mnt_group_id = res;
  107. return 0;
  108. }
  109. /*
  110. * Release a peer group ID
  111. */
  112. void mnt_release_group_id(struct mount *mnt)
  113. {
  114. ida_free(&mnt_group_ida, mnt->mnt_group_id);
  115. mnt->mnt_group_id = 0;
  116. }
  117. /*
  118. * vfsmount lock must be held for read
  119. */
  120. static inline void mnt_add_count(struct mount *mnt, int n)
  121. {
  122. #ifdef CONFIG_SMP
  123. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  124. #else
  125. preempt_disable();
  126. mnt->mnt_count += n;
  127. preempt_enable();
  128. #endif
  129. }
  130. /*
  131. * vfsmount lock must be held for write
  132. */
  133. unsigned int mnt_get_count(struct mount *mnt)
  134. {
  135. #ifdef CONFIG_SMP
  136. unsigned int count = 0;
  137. int cpu;
  138. for_each_possible_cpu(cpu) {
  139. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  140. }
  141. return count;
  142. #else
  143. return mnt->mnt_count;
  144. #endif
  145. }
  146. static void drop_mountpoint(struct fs_pin *p)
  147. {
  148. struct mount *m = container_of(p, struct mount, mnt_umount);
  149. dput(m->mnt_ex_mountpoint);
  150. pin_remove(p);
  151. mntput(&m->mnt);
  152. }
  153. static struct mount *alloc_vfsmnt(const char *name)
  154. {
  155. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  156. if (mnt) {
  157. int err;
  158. err = mnt_alloc_id(mnt);
  159. if (err)
  160. goto out_free_cache;
  161. if (name) {
  162. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  163. if (!mnt->mnt_devname)
  164. goto out_free_id;
  165. }
  166. #ifdef CONFIG_SMP
  167. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  168. if (!mnt->mnt_pcp)
  169. goto out_free_devname;
  170. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  171. #else
  172. mnt->mnt_count = 1;
  173. mnt->mnt_writers = 0;
  174. #endif
  175. INIT_HLIST_NODE(&mnt->mnt_hash);
  176. INIT_LIST_HEAD(&mnt->mnt_child);
  177. INIT_LIST_HEAD(&mnt->mnt_mounts);
  178. INIT_LIST_HEAD(&mnt->mnt_list);
  179. INIT_LIST_HEAD(&mnt->mnt_expire);
  180. INIT_LIST_HEAD(&mnt->mnt_share);
  181. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  182. INIT_LIST_HEAD(&mnt->mnt_slave);
  183. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  184. INIT_LIST_HEAD(&mnt->mnt_umounting);
  185. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  186. }
  187. return mnt;
  188. #ifdef CONFIG_SMP
  189. out_free_devname:
  190. kfree_const(mnt->mnt_devname);
  191. #endif
  192. out_free_id:
  193. mnt_free_id(mnt);
  194. out_free_cache:
  195. kmem_cache_free(mnt_cache, mnt);
  196. return NULL;
  197. }
  198. /*
  199. * Most r/o checks on a fs are for operations that take
  200. * discrete amounts of time, like a write() or unlink().
  201. * We must keep track of when those operations start
  202. * (for permission checks) and when they end, so that
  203. * we can determine when writes are able to occur to
  204. * a filesystem.
  205. */
  206. /*
  207. * __mnt_is_readonly: check whether a mount is read-only
  208. * @mnt: the mount to check for its write status
  209. *
  210. * This shouldn't be used directly ouside of the VFS.
  211. * It does not guarantee that the filesystem will stay
  212. * r/w, just that it is right *now*. This can not and
  213. * should not be used in place of IS_RDONLY(inode).
  214. * mnt_want/drop_write() will _keep_ the filesystem
  215. * r/w.
  216. */
  217. int __mnt_is_readonly(struct vfsmount *mnt)
  218. {
  219. if (mnt->mnt_flags & MNT_READONLY)
  220. return 1;
  221. if (sb_rdonly(mnt->mnt_sb))
  222. return 1;
  223. return 0;
  224. }
  225. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  226. static inline void mnt_inc_writers(struct mount *mnt)
  227. {
  228. #ifdef CONFIG_SMP
  229. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  230. #else
  231. mnt->mnt_writers++;
  232. #endif
  233. }
  234. static inline void mnt_dec_writers(struct mount *mnt)
  235. {
  236. #ifdef CONFIG_SMP
  237. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  238. #else
  239. mnt->mnt_writers--;
  240. #endif
  241. }
  242. static unsigned int mnt_get_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. unsigned int count = 0;
  246. int cpu;
  247. for_each_possible_cpu(cpu) {
  248. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  249. }
  250. return count;
  251. #else
  252. return mnt->mnt_writers;
  253. #endif
  254. }
  255. static int mnt_is_readonly(struct vfsmount *mnt)
  256. {
  257. if (mnt->mnt_sb->s_readonly_remount)
  258. return 1;
  259. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  260. smp_rmb();
  261. return __mnt_is_readonly(mnt);
  262. }
  263. /*
  264. * Most r/o & frozen checks on a fs are for operations that take discrete
  265. * amounts of time, like a write() or unlink(). We must keep track of when
  266. * those operations start (for permission checks) and when they end, so that we
  267. * can determine when writes are able to occur to a filesystem.
  268. */
  269. /**
  270. * __mnt_want_write - get write access to a mount without freeze protection
  271. * @m: the mount on which to take a write
  272. *
  273. * This tells the low-level filesystem that a write is about to be performed to
  274. * it, and makes sure that writes are allowed (mnt it read-write) before
  275. * returning success. This operation does not protect against filesystem being
  276. * frozen. When the write operation is finished, __mnt_drop_write() must be
  277. * called. This is effectively a refcount.
  278. */
  279. int __mnt_want_write(struct vfsmount *m)
  280. {
  281. struct mount *mnt = real_mount(m);
  282. int ret = 0;
  283. preempt_disable();
  284. mnt_inc_writers(mnt);
  285. /*
  286. * The store to mnt_inc_writers must be visible before we pass
  287. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  288. * incremented count after it has set MNT_WRITE_HOLD.
  289. */
  290. smp_mb();
  291. while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  292. cpu_relax();
  293. /*
  294. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  295. * be set to match its requirements. So we must not load that until
  296. * MNT_WRITE_HOLD is cleared.
  297. */
  298. smp_rmb();
  299. if (mnt_is_readonly(m)) {
  300. mnt_dec_writers(mnt);
  301. ret = -EROFS;
  302. }
  303. preempt_enable();
  304. return ret;
  305. }
  306. /**
  307. * mnt_want_write - get write access to a mount
  308. * @m: the mount on which to take a write
  309. *
  310. * This tells the low-level filesystem that a write is about to be performed to
  311. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  312. * is not frozen) before returning success. When the write operation is
  313. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  314. */
  315. int mnt_want_write(struct vfsmount *m)
  316. {
  317. int ret;
  318. sb_start_write(m->mnt_sb);
  319. ret = __mnt_want_write(m);
  320. if (ret)
  321. sb_end_write(m->mnt_sb);
  322. return ret;
  323. }
  324. EXPORT_SYMBOL_GPL(mnt_want_write);
  325. /**
  326. * mnt_clone_write - get write access to a mount
  327. * @mnt: the mount on which to take a write
  328. *
  329. * This is effectively like mnt_want_write, except
  330. * it must only be used to take an extra write reference
  331. * on a mountpoint that we already know has a write reference
  332. * on it. This allows some optimisation.
  333. *
  334. * After finished, mnt_drop_write must be called as usual to
  335. * drop the reference.
  336. */
  337. int mnt_clone_write(struct vfsmount *mnt)
  338. {
  339. /* superblock may be r/o */
  340. if (__mnt_is_readonly(mnt))
  341. return -EROFS;
  342. preempt_disable();
  343. mnt_inc_writers(real_mount(mnt));
  344. preempt_enable();
  345. return 0;
  346. }
  347. EXPORT_SYMBOL_GPL(mnt_clone_write);
  348. /**
  349. * __mnt_want_write_file - get write access to a file's mount
  350. * @file: the file who's mount on which to take a write
  351. *
  352. * This is like __mnt_want_write, but it takes a file and can
  353. * do some optimisations if the file is open for write already
  354. */
  355. int __mnt_want_write_file(struct file *file)
  356. {
  357. if (!(file->f_mode & FMODE_WRITER))
  358. return __mnt_want_write(file->f_path.mnt);
  359. else
  360. return mnt_clone_write(file->f_path.mnt);
  361. }
  362. /**
  363. * mnt_want_write_file - get write access to a file's mount
  364. * @file: the file who's mount on which to take a write
  365. *
  366. * This is like mnt_want_write, but it takes a file and can
  367. * do some optimisations if the file is open for write already
  368. */
  369. int mnt_want_write_file(struct file *file)
  370. {
  371. int ret;
  372. sb_start_write(file_inode(file)->i_sb);
  373. ret = __mnt_want_write_file(file);
  374. if (ret)
  375. sb_end_write(file_inode(file)->i_sb);
  376. return ret;
  377. }
  378. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  379. /**
  380. * __mnt_drop_write - give up write access to a mount
  381. * @mnt: the mount on which to give up write access
  382. *
  383. * Tells the low-level filesystem that we are done
  384. * performing writes to it. Must be matched with
  385. * __mnt_want_write() call above.
  386. */
  387. void __mnt_drop_write(struct vfsmount *mnt)
  388. {
  389. preempt_disable();
  390. mnt_dec_writers(real_mount(mnt));
  391. preempt_enable();
  392. }
  393. EXPORT_SYMBOL_GPL(__mnt_drop_write);
  394. /**
  395. * mnt_drop_write - give up write access to a mount
  396. * @mnt: the mount on which to give up write access
  397. *
  398. * Tells the low-level filesystem that we are done performing writes to it and
  399. * also allows filesystem to be frozen again. Must be matched with
  400. * mnt_want_write() call above.
  401. */
  402. void mnt_drop_write(struct vfsmount *mnt)
  403. {
  404. __mnt_drop_write(mnt);
  405. sb_end_write(mnt->mnt_sb);
  406. }
  407. EXPORT_SYMBOL_GPL(mnt_drop_write);
  408. void __mnt_drop_write_file(struct file *file)
  409. {
  410. __mnt_drop_write(file->f_path.mnt);
  411. }
  412. void mnt_drop_write_file(struct file *file)
  413. {
  414. __mnt_drop_write_file(file);
  415. sb_end_write(file_inode(file)->i_sb);
  416. }
  417. EXPORT_SYMBOL(mnt_drop_write_file);
  418. static int mnt_make_readonly(struct mount *mnt)
  419. {
  420. int ret = 0;
  421. lock_mount_hash();
  422. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  423. /*
  424. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  425. * should be visible before we do.
  426. */
  427. smp_mb();
  428. /*
  429. * With writers on hold, if this value is zero, then there are
  430. * definitely no active writers (although held writers may subsequently
  431. * increment the count, they'll have to wait, and decrement it after
  432. * seeing MNT_READONLY).
  433. *
  434. * It is OK to have counter incremented on one CPU and decremented on
  435. * another: the sum will add up correctly. The danger would be when we
  436. * sum up each counter, if we read a counter before it is incremented,
  437. * but then read another CPU's count which it has been subsequently
  438. * decremented from -- we would see more decrements than we should.
  439. * MNT_WRITE_HOLD protects against this scenario, because
  440. * mnt_want_write first increments count, then smp_mb, then spins on
  441. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  442. * we're counting up here.
  443. */
  444. if (mnt_get_writers(mnt) > 0)
  445. ret = -EBUSY;
  446. else
  447. mnt->mnt.mnt_flags |= MNT_READONLY;
  448. /*
  449. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  450. * that become unheld will see MNT_READONLY.
  451. */
  452. smp_wmb();
  453. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  454. unlock_mount_hash();
  455. return ret;
  456. }
  457. static void __mnt_unmake_readonly(struct mount *mnt)
  458. {
  459. lock_mount_hash();
  460. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  461. unlock_mount_hash();
  462. }
  463. int sb_prepare_remount_readonly(struct super_block *sb)
  464. {
  465. struct mount *mnt;
  466. int err = 0;
  467. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  468. if (atomic_long_read(&sb->s_remove_count))
  469. return -EBUSY;
  470. lock_mount_hash();
  471. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  472. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  473. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  474. smp_mb();
  475. if (mnt_get_writers(mnt) > 0) {
  476. err = -EBUSY;
  477. break;
  478. }
  479. }
  480. }
  481. if (!err && atomic_long_read(&sb->s_remove_count))
  482. err = -EBUSY;
  483. if (!err) {
  484. sb->s_readonly_remount = 1;
  485. smp_wmb();
  486. }
  487. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  488. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  489. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  490. }
  491. unlock_mount_hash();
  492. return err;
  493. }
  494. static void free_vfsmnt(struct mount *mnt)
  495. {
  496. kfree_const(mnt->mnt_devname);
  497. #ifdef CONFIG_SMP
  498. free_percpu(mnt->mnt_pcp);
  499. #endif
  500. kmem_cache_free(mnt_cache, mnt);
  501. }
  502. static void delayed_free_vfsmnt(struct rcu_head *head)
  503. {
  504. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  505. }
  506. /* call under rcu_read_lock */
  507. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  508. {
  509. struct mount *mnt;
  510. if (read_seqretry(&mount_lock, seq))
  511. return 1;
  512. if (bastard == NULL)
  513. return 0;
  514. mnt = real_mount(bastard);
  515. mnt_add_count(mnt, 1);
  516. smp_mb(); // see mntput_no_expire()
  517. if (likely(!read_seqretry(&mount_lock, seq)))
  518. return 0;
  519. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  520. mnt_add_count(mnt, -1);
  521. return 1;
  522. }
  523. lock_mount_hash();
  524. if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
  525. mnt_add_count(mnt, -1);
  526. unlock_mount_hash();
  527. return 1;
  528. }
  529. unlock_mount_hash();
  530. /* caller will mntput() */
  531. return -1;
  532. }
  533. /* call under rcu_read_lock */
  534. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  535. {
  536. int res = __legitimize_mnt(bastard, seq);
  537. if (likely(!res))
  538. return true;
  539. if (unlikely(res < 0)) {
  540. rcu_read_unlock();
  541. mntput(bastard);
  542. rcu_read_lock();
  543. }
  544. return false;
  545. }
  546. /*
  547. * find the first mount at @dentry on vfsmount @mnt.
  548. * call under rcu_read_lock()
  549. */
  550. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  551. {
  552. struct hlist_head *head = m_hash(mnt, dentry);
  553. struct mount *p;
  554. hlist_for_each_entry_rcu(p, head, mnt_hash)
  555. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  556. return p;
  557. return NULL;
  558. }
  559. /*
  560. * lookup_mnt - Return the first child mount mounted at path
  561. *
  562. * "First" means first mounted chronologically. If you create the
  563. * following mounts:
  564. *
  565. * mount /dev/sda1 /mnt
  566. * mount /dev/sda2 /mnt
  567. * mount /dev/sda3 /mnt
  568. *
  569. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  570. * return successively the root dentry and vfsmount of /dev/sda1, then
  571. * /dev/sda2, then /dev/sda3, then NULL.
  572. *
  573. * lookup_mnt takes a reference to the found vfsmount.
  574. */
  575. struct vfsmount *lookup_mnt(const struct path *path)
  576. {
  577. struct mount *child_mnt;
  578. struct vfsmount *m;
  579. unsigned seq;
  580. rcu_read_lock();
  581. do {
  582. seq = read_seqbegin(&mount_lock);
  583. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  584. m = child_mnt ? &child_mnt->mnt : NULL;
  585. } while (!legitimize_mnt(m, seq));
  586. rcu_read_unlock();
  587. return m;
  588. }
  589. /*
  590. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  591. * current mount namespace.
  592. *
  593. * The common case is dentries are not mountpoints at all and that
  594. * test is handled inline. For the slow case when we are actually
  595. * dealing with a mountpoint of some kind, walk through all of the
  596. * mounts in the current mount namespace and test to see if the dentry
  597. * is a mountpoint.
  598. *
  599. * The mount_hashtable is not usable in the context because we
  600. * need to identify all mounts that may be in the current mount
  601. * namespace not just a mount that happens to have some specified
  602. * parent mount.
  603. */
  604. bool __is_local_mountpoint(struct dentry *dentry)
  605. {
  606. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  607. struct mount *mnt;
  608. bool is_covered = false;
  609. if (!d_mountpoint(dentry))
  610. goto out;
  611. down_read(&namespace_sem);
  612. list_for_each_entry(mnt, &ns->list, mnt_list) {
  613. is_covered = (mnt->mnt_mountpoint == dentry);
  614. if (is_covered)
  615. break;
  616. }
  617. up_read(&namespace_sem);
  618. out:
  619. return is_covered;
  620. }
  621. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  622. {
  623. struct hlist_head *chain = mp_hash(dentry);
  624. struct mountpoint *mp;
  625. hlist_for_each_entry(mp, chain, m_hash) {
  626. if (mp->m_dentry == dentry) {
  627. mp->m_count++;
  628. return mp;
  629. }
  630. }
  631. return NULL;
  632. }
  633. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  634. {
  635. struct mountpoint *mp, *new = NULL;
  636. int ret;
  637. if (d_mountpoint(dentry)) {
  638. /* might be worth a WARN_ON() */
  639. if (d_unlinked(dentry))
  640. return ERR_PTR(-ENOENT);
  641. mountpoint:
  642. read_seqlock_excl(&mount_lock);
  643. mp = lookup_mountpoint(dentry);
  644. read_sequnlock_excl(&mount_lock);
  645. if (mp)
  646. goto done;
  647. }
  648. if (!new)
  649. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  650. if (!new)
  651. return ERR_PTR(-ENOMEM);
  652. /* Exactly one processes may set d_mounted */
  653. ret = d_set_mounted(dentry);
  654. /* Someone else set d_mounted? */
  655. if (ret == -EBUSY)
  656. goto mountpoint;
  657. /* The dentry is not available as a mountpoint? */
  658. mp = ERR_PTR(ret);
  659. if (ret)
  660. goto done;
  661. /* Add the new mountpoint to the hash table */
  662. read_seqlock_excl(&mount_lock);
  663. new->m_dentry = dentry;
  664. new->m_count = 1;
  665. hlist_add_head(&new->m_hash, mp_hash(dentry));
  666. INIT_HLIST_HEAD(&new->m_list);
  667. read_sequnlock_excl(&mount_lock);
  668. mp = new;
  669. new = NULL;
  670. done:
  671. kfree(new);
  672. return mp;
  673. }
  674. static void put_mountpoint(struct mountpoint *mp)
  675. {
  676. if (!--mp->m_count) {
  677. struct dentry *dentry = mp->m_dentry;
  678. BUG_ON(!hlist_empty(&mp->m_list));
  679. spin_lock(&dentry->d_lock);
  680. dentry->d_flags &= ~DCACHE_MOUNTED;
  681. spin_unlock(&dentry->d_lock);
  682. hlist_del(&mp->m_hash);
  683. kfree(mp);
  684. }
  685. }
  686. static inline int check_mnt(struct mount *mnt)
  687. {
  688. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  689. }
  690. /* for aufs, CONFIG_AUFS_BR_FUSE */
  691. int is_current_mnt_ns(struct vfsmount *mnt)
  692. {
  693. return check_mnt(real_mount(mnt));
  694. }
  695. EXPORT_SYMBOL_GPL(is_current_mnt_ns);
  696. /*
  697. * vfsmount lock must be held for write
  698. */
  699. static void touch_mnt_namespace(struct mnt_namespace *ns)
  700. {
  701. if (ns) {
  702. ns->event = ++event;
  703. wake_up_interruptible(&ns->poll);
  704. }
  705. }
  706. /*
  707. * vfsmount lock must be held for write
  708. */
  709. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  710. {
  711. if (ns && ns->event != event) {
  712. ns->event = event;
  713. wake_up_interruptible(&ns->poll);
  714. }
  715. }
  716. /*
  717. * vfsmount lock must be held for write
  718. */
  719. static void unhash_mnt(struct mount *mnt)
  720. {
  721. mnt->mnt_parent = mnt;
  722. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  723. list_del_init(&mnt->mnt_child);
  724. hlist_del_init_rcu(&mnt->mnt_hash);
  725. hlist_del_init(&mnt->mnt_mp_list);
  726. put_mountpoint(mnt->mnt_mp);
  727. mnt->mnt_mp = NULL;
  728. }
  729. /*
  730. * vfsmount lock must be held for write
  731. */
  732. static void detach_mnt(struct mount *mnt, struct path *old_path)
  733. {
  734. old_path->dentry = mnt->mnt_mountpoint;
  735. old_path->mnt = &mnt->mnt_parent->mnt;
  736. unhash_mnt(mnt);
  737. }
  738. /*
  739. * vfsmount lock must be held for write
  740. */
  741. static void umount_mnt(struct mount *mnt)
  742. {
  743. /* old mountpoint will be dropped when we can do that */
  744. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  745. unhash_mnt(mnt);
  746. }
  747. /*
  748. * vfsmount lock must be held for write
  749. */
  750. void mnt_set_mountpoint(struct mount *mnt,
  751. struct mountpoint *mp,
  752. struct mount *child_mnt)
  753. {
  754. mp->m_count++;
  755. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  756. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  757. child_mnt->mnt_parent = mnt;
  758. child_mnt->mnt_mp = mp;
  759. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  760. }
  761. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  762. {
  763. hlist_add_head_rcu(&mnt->mnt_hash,
  764. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  765. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  766. }
  767. /*
  768. * vfsmount lock must be held for write
  769. */
  770. static void attach_mnt(struct mount *mnt,
  771. struct mount *parent,
  772. struct mountpoint *mp)
  773. {
  774. mnt_set_mountpoint(parent, mp, mnt);
  775. __attach_mnt(mnt, parent);
  776. }
  777. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  778. {
  779. struct mountpoint *old_mp = mnt->mnt_mp;
  780. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  781. struct mount *old_parent = mnt->mnt_parent;
  782. list_del_init(&mnt->mnt_child);
  783. hlist_del_init(&mnt->mnt_mp_list);
  784. hlist_del_init_rcu(&mnt->mnt_hash);
  785. attach_mnt(mnt, parent, mp);
  786. put_mountpoint(old_mp);
  787. /*
  788. * Safely avoid even the suggestion this code might sleep or
  789. * lock the mount hash by taking advantage of the knowledge that
  790. * mnt_change_mountpoint will not release the final reference
  791. * to a mountpoint.
  792. *
  793. * During mounting, the mount passed in as the parent mount will
  794. * continue to use the old mountpoint and during unmounting, the
  795. * old mountpoint will continue to exist until namespace_unlock,
  796. * which happens well after mnt_change_mountpoint.
  797. */
  798. spin_lock(&old_mountpoint->d_lock);
  799. old_mountpoint->d_lockref.count--;
  800. spin_unlock(&old_mountpoint->d_lock);
  801. mnt_add_count(old_parent, -1);
  802. }
  803. /*
  804. * vfsmount lock must be held for write
  805. */
  806. static void commit_tree(struct mount *mnt)
  807. {
  808. struct mount *parent = mnt->mnt_parent;
  809. struct mount *m;
  810. LIST_HEAD(head);
  811. struct mnt_namespace *n = parent->mnt_ns;
  812. BUG_ON(parent == mnt);
  813. list_add_tail(&head, &mnt->mnt_list);
  814. list_for_each_entry(m, &head, mnt_list)
  815. m->mnt_ns = n;
  816. list_splice(&head, n->list.prev);
  817. n->mounts += n->pending_mounts;
  818. n->pending_mounts = 0;
  819. __attach_mnt(mnt, parent);
  820. touch_mnt_namespace(n);
  821. }
  822. static struct mount *next_mnt(struct mount *p, struct mount *root)
  823. {
  824. struct list_head *next = p->mnt_mounts.next;
  825. if (next == &p->mnt_mounts) {
  826. while (1) {
  827. if (p == root)
  828. return NULL;
  829. next = p->mnt_child.next;
  830. if (next != &p->mnt_parent->mnt_mounts)
  831. break;
  832. p = p->mnt_parent;
  833. }
  834. }
  835. return list_entry(next, struct mount, mnt_child);
  836. }
  837. static struct mount *skip_mnt_tree(struct mount *p)
  838. {
  839. struct list_head *prev = p->mnt_mounts.prev;
  840. while (prev != &p->mnt_mounts) {
  841. p = list_entry(prev, struct mount, mnt_child);
  842. prev = p->mnt_mounts.prev;
  843. }
  844. return p;
  845. }
  846. struct vfsmount *
  847. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  848. {
  849. struct mount *mnt;
  850. struct dentry *root;
  851. if (!type)
  852. return ERR_PTR(-ENODEV);
  853. mnt = alloc_vfsmnt(name);
  854. if (!mnt)
  855. return ERR_PTR(-ENOMEM);
  856. if (flags & SB_KERNMOUNT)
  857. mnt->mnt.mnt_flags = MNT_INTERNAL;
  858. root = mount_fs(type, flags, name, data);
  859. if (IS_ERR(root)) {
  860. mnt_free_id(mnt);
  861. free_vfsmnt(mnt);
  862. return ERR_CAST(root);
  863. }
  864. mnt->mnt.mnt_root = root;
  865. mnt->mnt.mnt_sb = root->d_sb;
  866. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  867. mnt->mnt_parent = mnt;
  868. lock_mount_hash();
  869. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  870. unlock_mount_hash();
  871. return &mnt->mnt;
  872. }
  873. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  874. struct vfsmount *
  875. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  876. const char *name, void *data)
  877. {
  878. /* Until it is worked out how to pass the user namespace
  879. * through from the parent mount to the submount don't support
  880. * unprivileged mounts with submounts.
  881. */
  882. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  883. return ERR_PTR(-EPERM);
  884. return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
  885. }
  886. EXPORT_SYMBOL_GPL(vfs_submount);
  887. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  888. int flag)
  889. {
  890. struct super_block *sb = old->mnt.mnt_sb;
  891. struct mount *mnt;
  892. int err;
  893. mnt = alloc_vfsmnt(old->mnt_devname);
  894. if (!mnt)
  895. return ERR_PTR(-ENOMEM);
  896. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  897. mnt->mnt_group_id = 0; /* not a peer of original */
  898. else
  899. mnt->mnt_group_id = old->mnt_group_id;
  900. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  901. err = mnt_alloc_group_id(mnt);
  902. if (err)
  903. goto out_free;
  904. }
  905. mnt->mnt.mnt_flags = old->mnt.mnt_flags;
  906. mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
  907. /* Don't allow unprivileged users to change mount flags */
  908. if (flag & CL_UNPRIVILEGED) {
  909. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  910. if (mnt->mnt.mnt_flags & MNT_READONLY)
  911. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  912. if (mnt->mnt.mnt_flags & MNT_NODEV)
  913. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  914. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  915. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  916. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  917. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  918. }
  919. /* Don't allow unprivileged users to reveal what is under a mount */
  920. if ((flag & CL_UNPRIVILEGED) &&
  921. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  922. mnt->mnt.mnt_flags |= MNT_LOCKED;
  923. atomic_inc(&sb->s_active);
  924. mnt->mnt.mnt_sb = sb;
  925. mnt->mnt.mnt_root = dget(root);
  926. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  927. mnt->mnt_parent = mnt;
  928. lock_mount_hash();
  929. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  930. unlock_mount_hash();
  931. if ((flag & CL_SLAVE) ||
  932. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  933. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  934. mnt->mnt_master = old;
  935. CLEAR_MNT_SHARED(mnt);
  936. } else if (!(flag & CL_PRIVATE)) {
  937. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  938. list_add(&mnt->mnt_share, &old->mnt_share);
  939. if (IS_MNT_SLAVE(old))
  940. list_add(&mnt->mnt_slave, &old->mnt_slave);
  941. mnt->mnt_master = old->mnt_master;
  942. } else {
  943. CLEAR_MNT_SHARED(mnt);
  944. }
  945. if (flag & CL_MAKE_SHARED)
  946. set_mnt_shared(mnt);
  947. /* stick the duplicate mount on the same expiry list
  948. * as the original if that was on one */
  949. if (flag & CL_EXPIRE) {
  950. if (!list_empty(&old->mnt_expire))
  951. list_add(&mnt->mnt_expire, &old->mnt_expire);
  952. }
  953. return mnt;
  954. out_free:
  955. mnt_free_id(mnt);
  956. free_vfsmnt(mnt);
  957. return ERR_PTR(err);
  958. }
  959. static void cleanup_mnt(struct mount *mnt)
  960. {
  961. /*
  962. * This probably indicates that somebody messed
  963. * up a mnt_want/drop_write() pair. If this
  964. * happens, the filesystem was probably unable
  965. * to make r/w->r/o transitions.
  966. */
  967. /*
  968. * The locking used to deal with mnt_count decrement provides barriers,
  969. * so mnt_get_writers() below is safe.
  970. */
  971. WARN_ON(mnt_get_writers(mnt));
  972. if (unlikely(mnt->mnt_pins.first))
  973. mnt_pin_kill(mnt);
  974. fsnotify_vfsmount_delete(&mnt->mnt);
  975. dput(mnt->mnt.mnt_root);
  976. deactivate_super(mnt->mnt.mnt_sb);
  977. mnt_free_id(mnt);
  978. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  979. }
  980. static void __cleanup_mnt(struct rcu_head *head)
  981. {
  982. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  983. }
  984. static LLIST_HEAD(delayed_mntput_list);
  985. static void delayed_mntput(struct work_struct *unused)
  986. {
  987. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  988. struct mount *m, *t;
  989. llist_for_each_entry_safe(m, t, node, mnt_llist)
  990. cleanup_mnt(m);
  991. }
  992. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  993. static void mntput_no_expire(struct mount *mnt)
  994. {
  995. rcu_read_lock();
  996. if (likely(READ_ONCE(mnt->mnt_ns))) {
  997. /*
  998. * Since we don't do lock_mount_hash() here,
  999. * ->mnt_ns can change under us. However, if it's
  1000. * non-NULL, then there's a reference that won't
  1001. * be dropped until after an RCU delay done after
  1002. * turning ->mnt_ns NULL. So if we observe it
  1003. * non-NULL under rcu_read_lock(), the reference
  1004. * we are dropping is not the final one.
  1005. */
  1006. mnt_add_count(mnt, -1);
  1007. rcu_read_unlock();
  1008. return;
  1009. }
  1010. lock_mount_hash();
  1011. /*
  1012. * make sure that if __legitimize_mnt() has not seen us grab
  1013. * mount_lock, we'll see their refcount increment here.
  1014. */
  1015. smp_mb();
  1016. mnt_add_count(mnt, -1);
  1017. if (mnt_get_count(mnt)) {
  1018. rcu_read_unlock();
  1019. unlock_mount_hash();
  1020. return;
  1021. }
  1022. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1023. rcu_read_unlock();
  1024. unlock_mount_hash();
  1025. return;
  1026. }
  1027. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1028. rcu_read_unlock();
  1029. list_del(&mnt->mnt_instance);
  1030. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1031. struct mount *p, *tmp;
  1032. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1033. umount_mnt(p);
  1034. }
  1035. }
  1036. unlock_mount_hash();
  1037. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1038. struct task_struct *task = current;
  1039. if (likely(!(task->flags & PF_KTHREAD))) {
  1040. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1041. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1042. return;
  1043. }
  1044. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1045. schedule_delayed_work(&delayed_mntput_work, 1);
  1046. return;
  1047. }
  1048. cleanup_mnt(mnt);
  1049. }
  1050. void mntput(struct vfsmount *mnt)
  1051. {
  1052. if (mnt) {
  1053. struct mount *m = real_mount(mnt);
  1054. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1055. if (unlikely(m->mnt_expiry_mark))
  1056. m->mnt_expiry_mark = 0;
  1057. mntput_no_expire(m);
  1058. }
  1059. }
  1060. EXPORT_SYMBOL(mntput);
  1061. struct vfsmount *mntget(struct vfsmount *mnt)
  1062. {
  1063. if (mnt)
  1064. mnt_add_count(real_mount(mnt), 1);
  1065. return mnt;
  1066. }
  1067. EXPORT_SYMBOL(mntget);
  1068. /* path_is_mountpoint() - Check if path is a mount in the current
  1069. * namespace.
  1070. *
  1071. * d_mountpoint() can only be used reliably to establish if a dentry is
  1072. * not mounted in any namespace and that common case is handled inline.
  1073. * d_mountpoint() isn't aware of the possibility there may be multiple
  1074. * mounts using a given dentry in a different namespace. This function
  1075. * checks if the passed in path is a mountpoint rather than the dentry
  1076. * alone.
  1077. */
  1078. bool path_is_mountpoint(const struct path *path)
  1079. {
  1080. unsigned seq;
  1081. bool res;
  1082. if (!d_mountpoint(path->dentry))
  1083. return false;
  1084. rcu_read_lock();
  1085. do {
  1086. seq = read_seqbegin(&mount_lock);
  1087. res = __path_is_mountpoint(path);
  1088. } while (read_seqretry(&mount_lock, seq));
  1089. rcu_read_unlock();
  1090. return res;
  1091. }
  1092. EXPORT_SYMBOL(path_is_mountpoint);
  1093. struct vfsmount *mnt_clone_internal(const struct path *path)
  1094. {
  1095. struct mount *p;
  1096. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1097. if (IS_ERR(p))
  1098. return ERR_CAST(p);
  1099. p->mnt.mnt_flags |= MNT_INTERNAL;
  1100. return &p->mnt;
  1101. }
  1102. #ifdef CONFIG_PROC_FS
  1103. /* iterator; we want it to have access to namespace_sem, thus here... */
  1104. static void *m_start(struct seq_file *m, loff_t *pos)
  1105. {
  1106. struct proc_mounts *p = m->private;
  1107. down_read(&namespace_sem);
  1108. if (p->cached_event == p->ns->event) {
  1109. void *v = p->cached_mount;
  1110. if (*pos == p->cached_index)
  1111. return v;
  1112. if (*pos == p->cached_index + 1) {
  1113. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1114. return p->cached_mount = v;
  1115. }
  1116. }
  1117. p->cached_event = p->ns->event;
  1118. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1119. p->cached_index = *pos;
  1120. return p->cached_mount;
  1121. }
  1122. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1123. {
  1124. struct proc_mounts *p = m->private;
  1125. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1126. p->cached_index = *pos;
  1127. return p->cached_mount;
  1128. }
  1129. static void m_stop(struct seq_file *m, void *v)
  1130. {
  1131. up_read(&namespace_sem);
  1132. }
  1133. static int m_show(struct seq_file *m, void *v)
  1134. {
  1135. struct proc_mounts *p = m->private;
  1136. struct mount *r = list_entry(v, struct mount, mnt_list);
  1137. return p->show(m, &r->mnt);
  1138. }
  1139. const struct seq_operations mounts_op = {
  1140. .start = m_start,
  1141. .next = m_next,
  1142. .stop = m_stop,
  1143. .show = m_show,
  1144. };
  1145. #endif /* CONFIG_PROC_FS */
  1146. /**
  1147. * may_umount_tree - check if a mount tree is busy
  1148. * @mnt: root of mount tree
  1149. *
  1150. * This is called to check if a tree of mounts has any
  1151. * open files, pwds, chroots or sub mounts that are
  1152. * busy.
  1153. */
  1154. int may_umount_tree(struct vfsmount *m)
  1155. {
  1156. struct mount *mnt = real_mount(m);
  1157. int actual_refs = 0;
  1158. int minimum_refs = 0;
  1159. struct mount *p;
  1160. BUG_ON(!m);
  1161. /* write lock needed for mnt_get_count */
  1162. lock_mount_hash();
  1163. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1164. actual_refs += mnt_get_count(p);
  1165. minimum_refs += 2;
  1166. }
  1167. unlock_mount_hash();
  1168. if (actual_refs > minimum_refs)
  1169. return 0;
  1170. return 1;
  1171. }
  1172. EXPORT_SYMBOL(may_umount_tree);
  1173. /**
  1174. * may_umount - check if a mount point is busy
  1175. * @mnt: root of mount
  1176. *
  1177. * This is called to check if a mount point has any
  1178. * open files, pwds, chroots or sub mounts. If the
  1179. * mount has sub mounts this will return busy
  1180. * regardless of whether the sub mounts are busy.
  1181. *
  1182. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1183. * give false negatives. The main reason why it's here is that we need
  1184. * a non-destructive way to look for easily umountable filesystems.
  1185. */
  1186. int may_umount(struct vfsmount *mnt)
  1187. {
  1188. int ret = 1;
  1189. down_read(&namespace_sem);
  1190. lock_mount_hash();
  1191. if (propagate_mount_busy(real_mount(mnt), 2))
  1192. ret = 0;
  1193. unlock_mount_hash();
  1194. up_read(&namespace_sem);
  1195. return ret;
  1196. }
  1197. EXPORT_SYMBOL(may_umount);
  1198. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1199. static void namespace_unlock(void)
  1200. {
  1201. struct hlist_head head;
  1202. hlist_move_list(&unmounted, &head);
  1203. up_write(&namespace_sem);
  1204. if (likely(hlist_empty(&head)))
  1205. return;
  1206. synchronize_rcu();
  1207. group_pin_kill(&head);
  1208. }
  1209. static inline void namespace_lock(void)
  1210. {
  1211. down_write(&namespace_sem);
  1212. }
  1213. enum umount_tree_flags {
  1214. UMOUNT_SYNC = 1,
  1215. UMOUNT_PROPAGATE = 2,
  1216. UMOUNT_CONNECTED = 4,
  1217. };
  1218. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1219. {
  1220. /* Leaving mounts connected is only valid for lazy umounts */
  1221. if (how & UMOUNT_SYNC)
  1222. return true;
  1223. /* A mount without a parent has nothing to be connected to */
  1224. if (!mnt_has_parent(mnt))
  1225. return true;
  1226. /* Because the reference counting rules change when mounts are
  1227. * unmounted and connected, umounted mounts may not be
  1228. * connected to mounted mounts.
  1229. */
  1230. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1231. return true;
  1232. /* Has it been requested that the mount remain connected? */
  1233. if (how & UMOUNT_CONNECTED)
  1234. return false;
  1235. /* Is the mount locked such that it needs to remain connected? */
  1236. if (IS_MNT_LOCKED(mnt))
  1237. return false;
  1238. /* By default disconnect the mount */
  1239. return true;
  1240. }
  1241. /*
  1242. * mount_lock must be held
  1243. * namespace_sem must be held for write
  1244. */
  1245. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1246. {
  1247. LIST_HEAD(tmp_list);
  1248. struct mount *p;
  1249. if (how & UMOUNT_PROPAGATE)
  1250. propagate_mount_unlock(mnt);
  1251. /* Gather the mounts to umount */
  1252. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1253. p->mnt.mnt_flags |= MNT_UMOUNT;
  1254. list_move(&p->mnt_list, &tmp_list);
  1255. }
  1256. /* Hide the mounts from mnt_mounts */
  1257. list_for_each_entry(p, &tmp_list, mnt_list) {
  1258. list_del_init(&p->mnt_child);
  1259. }
  1260. /* Add propogated mounts to the tmp_list */
  1261. if (how & UMOUNT_PROPAGATE)
  1262. propagate_umount(&tmp_list);
  1263. while (!list_empty(&tmp_list)) {
  1264. struct mnt_namespace *ns;
  1265. bool disconnect;
  1266. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1267. list_del_init(&p->mnt_expire);
  1268. list_del_init(&p->mnt_list);
  1269. ns = p->mnt_ns;
  1270. if (ns) {
  1271. ns->mounts--;
  1272. __touch_mnt_namespace(ns);
  1273. }
  1274. p->mnt_ns = NULL;
  1275. if (how & UMOUNT_SYNC)
  1276. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1277. disconnect = disconnect_mount(p, how);
  1278. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1279. disconnect ? &unmounted : NULL);
  1280. if (mnt_has_parent(p)) {
  1281. mnt_add_count(p->mnt_parent, -1);
  1282. if (!disconnect) {
  1283. /* Don't forget about p */
  1284. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1285. } else {
  1286. umount_mnt(p);
  1287. }
  1288. }
  1289. change_mnt_propagation(p, MS_PRIVATE);
  1290. }
  1291. }
  1292. static void shrink_submounts(struct mount *mnt);
  1293. static int do_umount(struct mount *mnt, int flags)
  1294. {
  1295. struct super_block *sb = mnt->mnt.mnt_sb;
  1296. int retval;
  1297. retval = security_sb_umount(&mnt->mnt, flags);
  1298. if (retval)
  1299. return retval;
  1300. /*
  1301. * Allow userspace to request a mountpoint be expired rather than
  1302. * unmounting unconditionally. Unmount only happens if:
  1303. * (1) the mark is already set (the mark is cleared by mntput())
  1304. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1305. */
  1306. if (flags & MNT_EXPIRE) {
  1307. if (&mnt->mnt == current->fs->root.mnt ||
  1308. flags & (MNT_FORCE | MNT_DETACH))
  1309. return -EINVAL;
  1310. /*
  1311. * probably don't strictly need the lock here if we examined
  1312. * all race cases, but it's a slowpath.
  1313. */
  1314. lock_mount_hash();
  1315. if (mnt_get_count(mnt) != 2) {
  1316. unlock_mount_hash();
  1317. return -EBUSY;
  1318. }
  1319. unlock_mount_hash();
  1320. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1321. return -EAGAIN;
  1322. }
  1323. /*
  1324. * If we may have to abort operations to get out of this
  1325. * mount, and they will themselves hold resources we must
  1326. * allow the fs to do things. In the Unix tradition of
  1327. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1328. * might fail to complete on the first run through as other tasks
  1329. * must return, and the like. Thats for the mount program to worry
  1330. * about for the moment.
  1331. */
  1332. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1333. sb->s_op->umount_begin(sb);
  1334. }
  1335. /*
  1336. * No sense to grab the lock for this test, but test itself looks
  1337. * somewhat bogus. Suggestions for better replacement?
  1338. * Ho-hum... In principle, we might treat that as umount + switch
  1339. * to rootfs. GC would eventually take care of the old vfsmount.
  1340. * Actually it makes sense, especially if rootfs would contain a
  1341. * /reboot - static binary that would close all descriptors and
  1342. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1343. */
  1344. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1345. /*
  1346. * Special case for "unmounting" root ...
  1347. * we just try to remount it readonly.
  1348. */
  1349. if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
  1350. return -EPERM;
  1351. down_write(&sb->s_umount);
  1352. if (!sb_rdonly(sb))
  1353. retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
  1354. up_write(&sb->s_umount);
  1355. return retval;
  1356. }
  1357. namespace_lock();
  1358. lock_mount_hash();
  1359. /* Recheck MNT_LOCKED with the locks held */
  1360. retval = -EINVAL;
  1361. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1362. goto out;
  1363. event++;
  1364. if (flags & MNT_DETACH) {
  1365. if (!list_empty(&mnt->mnt_list))
  1366. umount_tree(mnt, UMOUNT_PROPAGATE);
  1367. retval = 0;
  1368. } else {
  1369. shrink_submounts(mnt);
  1370. retval = -EBUSY;
  1371. if (!propagate_mount_busy(mnt, 2)) {
  1372. if (!list_empty(&mnt->mnt_list))
  1373. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1374. retval = 0;
  1375. }
  1376. }
  1377. out:
  1378. unlock_mount_hash();
  1379. namespace_unlock();
  1380. return retval;
  1381. }
  1382. /*
  1383. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1384. *
  1385. * During unlink, rmdir, and d_drop it is possible to loose the path
  1386. * to an existing mountpoint, and wind up leaking the mount.
  1387. * detach_mounts allows lazily unmounting those mounts instead of
  1388. * leaking them.
  1389. *
  1390. * The caller may hold dentry->d_inode->i_mutex.
  1391. */
  1392. void __detach_mounts(struct dentry *dentry)
  1393. {
  1394. struct mountpoint *mp;
  1395. struct mount *mnt;
  1396. namespace_lock();
  1397. lock_mount_hash();
  1398. mp = lookup_mountpoint(dentry);
  1399. if (IS_ERR_OR_NULL(mp))
  1400. goto out_unlock;
  1401. event++;
  1402. while (!hlist_empty(&mp->m_list)) {
  1403. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1404. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1405. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1406. umount_mnt(mnt);
  1407. }
  1408. else umount_tree(mnt, UMOUNT_CONNECTED);
  1409. }
  1410. put_mountpoint(mp);
  1411. out_unlock:
  1412. unlock_mount_hash();
  1413. namespace_unlock();
  1414. }
  1415. /*
  1416. * Is the caller allowed to modify his namespace?
  1417. */
  1418. static inline bool may_mount(void)
  1419. {
  1420. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1421. }
  1422. static inline bool may_mandlock(void)
  1423. {
  1424. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1425. return false;
  1426. #endif
  1427. return capable(CAP_SYS_ADMIN);
  1428. }
  1429. /*
  1430. * Now umount can handle mount points as well as block devices.
  1431. * This is important for filesystems which use unnamed block devices.
  1432. *
  1433. * We now support a flag for forced unmount like the other 'big iron'
  1434. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1435. */
  1436. int ksys_umount(char __user *name, int flags)
  1437. {
  1438. struct path path;
  1439. struct mount *mnt;
  1440. int retval;
  1441. int lookup_flags = 0;
  1442. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1443. return -EINVAL;
  1444. if (!may_mount())
  1445. return -EPERM;
  1446. if (!(flags & UMOUNT_NOFOLLOW))
  1447. lookup_flags |= LOOKUP_FOLLOW;
  1448. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1449. if (retval)
  1450. goto out;
  1451. mnt = real_mount(path.mnt);
  1452. retval = -EINVAL;
  1453. if (path.dentry != path.mnt->mnt_root)
  1454. goto dput_and_out;
  1455. if (!check_mnt(mnt))
  1456. goto dput_and_out;
  1457. if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
  1458. goto dput_and_out;
  1459. retval = -EPERM;
  1460. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1461. goto dput_and_out;
  1462. retval = do_umount(mnt, flags);
  1463. dput_and_out:
  1464. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1465. dput(path.dentry);
  1466. mntput_no_expire(mnt);
  1467. out:
  1468. return retval;
  1469. }
  1470. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1471. {
  1472. return ksys_umount(name, flags);
  1473. }
  1474. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1475. /*
  1476. * The 2.0 compatible umount. No flags.
  1477. */
  1478. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1479. {
  1480. return ksys_umount(name, 0);
  1481. }
  1482. #endif
  1483. static bool is_mnt_ns_file(struct dentry *dentry)
  1484. {
  1485. /* Is this a proxy for a mount namespace? */
  1486. return dentry->d_op == &ns_dentry_operations &&
  1487. dentry->d_fsdata == &mntns_operations;
  1488. }
  1489. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1490. {
  1491. return container_of(ns, struct mnt_namespace, ns);
  1492. }
  1493. static bool mnt_ns_loop(struct dentry *dentry)
  1494. {
  1495. /* Could bind mounting the mount namespace inode cause a
  1496. * mount namespace loop?
  1497. */
  1498. struct mnt_namespace *mnt_ns;
  1499. if (!is_mnt_ns_file(dentry))
  1500. return false;
  1501. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1502. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1503. }
  1504. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1505. int flag)
  1506. {
  1507. struct mount *res, *p, *q, *r, *parent;
  1508. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1509. return ERR_PTR(-EINVAL);
  1510. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1511. return ERR_PTR(-EINVAL);
  1512. res = q = clone_mnt(mnt, dentry, flag);
  1513. if (IS_ERR(q))
  1514. return q;
  1515. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1516. p = mnt;
  1517. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1518. struct mount *s;
  1519. if (!is_subdir(r->mnt_mountpoint, dentry))
  1520. continue;
  1521. for (s = r; s; s = next_mnt(s, r)) {
  1522. if (!(flag & CL_COPY_UNBINDABLE) &&
  1523. IS_MNT_UNBINDABLE(s)) {
  1524. if (s->mnt.mnt_flags & MNT_LOCKED) {
  1525. /* Both unbindable and locked. */
  1526. q = ERR_PTR(-EPERM);
  1527. goto out;
  1528. } else {
  1529. s = skip_mnt_tree(s);
  1530. continue;
  1531. }
  1532. }
  1533. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1534. is_mnt_ns_file(s->mnt.mnt_root)) {
  1535. s = skip_mnt_tree(s);
  1536. continue;
  1537. }
  1538. while (p != s->mnt_parent) {
  1539. p = p->mnt_parent;
  1540. q = q->mnt_parent;
  1541. }
  1542. p = s;
  1543. parent = q;
  1544. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1545. if (IS_ERR(q))
  1546. goto out;
  1547. lock_mount_hash();
  1548. list_add_tail(&q->mnt_list, &res->mnt_list);
  1549. attach_mnt(q, parent, p->mnt_mp);
  1550. unlock_mount_hash();
  1551. }
  1552. }
  1553. return res;
  1554. out:
  1555. if (res) {
  1556. lock_mount_hash();
  1557. umount_tree(res, UMOUNT_SYNC);
  1558. unlock_mount_hash();
  1559. }
  1560. return q;
  1561. }
  1562. /* Caller should check returned pointer for errors */
  1563. struct vfsmount *collect_mounts(const struct path *path)
  1564. {
  1565. struct mount *tree;
  1566. namespace_lock();
  1567. if (!check_mnt(real_mount(path->mnt)))
  1568. tree = ERR_PTR(-EINVAL);
  1569. else
  1570. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1571. CL_COPY_ALL | CL_PRIVATE);
  1572. namespace_unlock();
  1573. if (IS_ERR(tree))
  1574. return ERR_CAST(tree);
  1575. return &tree->mnt;
  1576. }
  1577. void drop_collected_mounts(struct vfsmount *mnt)
  1578. {
  1579. namespace_lock();
  1580. lock_mount_hash();
  1581. umount_tree(real_mount(mnt), 0);
  1582. unlock_mount_hash();
  1583. namespace_unlock();
  1584. }
  1585. /**
  1586. * clone_private_mount - create a private clone of a path
  1587. *
  1588. * This creates a new vfsmount, which will be the clone of @path. The new will
  1589. * not be attached anywhere in the namespace and will be private (i.e. changes
  1590. * to the originating mount won't be propagated into this).
  1591. *
  1592. * Release with mntput().
  1593. */
  1594. struct vfsmount *clone_private_mount(const struct path *path)
  1595. {
  1596. struct mount *old_mnt = real_mount(path->mnt);
  1597. struct mount *new_mnt;
  1598. if (IS_MNT_UNBINDABLE(old_mnt))
  1599. return ERR_PTR(-EINVAL);
  1600. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1601. if (IS_ERR(new_mnt))
  1602. return ERR_CAST(new_mnt);
  1603. return &new_mnt->mnt;
  1604. }
  1605. EXPORT_SYMBOL_GPL(clone_private_mount);
  1606. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1607. struct vfsmount *root)
  1608. {
  1609. struct mount *mnt;
  1610. int res = f(root, arg);
  1611. if (res)
  1612. return res;
  1613. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1614. res = f(&mnt->mnt, arg);
  1615. if (res)
  1616. return res;
  1617. }
  1618. return 0;
  1619. }
  1620. EXPORT_SYMBOL_GPL(iterate_mounts);
  1621. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1622. {
  1623. struct mount *p;
  1624. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1625. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1626. mnt_release_group_id(p);
  1627. }
  1628. }
  1629. static int invent_group_ids(struct mount *mnt, bool recurse)
  1630. {
  1631. struct mount *p;
  1632. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1633. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1634. int err = mnt_alloc_group_id(p);
  1635. if (err) {
  1636. cleanup_group_ids(mnt, p);
  1637. return err;
  1638. }
  1639. }
  1640. }
  1641. return 0;
  1642. }
  1643. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1644. {
  1645. unsigned int max = READ_ONCE(sysctl_mount_max);
  1646. unsigned int mounts = 0, old, pending, sum;
  1647. struct mount *p;
  1648. for (p = mnt; p; p = next_mnt(p, mnt))
  1649. mounts++;
  1650. old = ns->mounts;
  1651. pending = ns->pending_mounts;
  1652. sum = old + pending;
  1653. if ((old > sum) ||
  1654. (pending > sum) ||
  1655. (max < sum) ||
  1656. (mounts > (max - sum)))
  1657. return -ENOSPC;
  1658. ns->pending_mounts = pending + mounts;
  1659. return 0;
  1660. }
  1661. /*
  1662. * @source_mnt : mount tree to be attached
  1663. * @nd : place the mount tree @source_mnt is attached
  1664. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1665. * store the parent mount and mountpoint dentry.
  1666. * (done when source_mnt is moved)
  1667. *
  1668. * NOTE: in the table below explains the semantics when a source mount
  1669. * of a given type is attached to a destination mount of a given type.
  1670. * ---------------------------------------------------------------------------
  1671. * | BIND MOUNT OPERATION |
  1672. * |**************************************************************************
  1673. * | source-->| shared | private | slave | unbindable |
  1674. * | dest | | | | |
  1675. * | | | | | | |
  1676. * | v | | | | |
  1677. * |**************************************************************************
  1678. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1679. * | | | | | |
  1680. * |non-shared| shared (+) | private | slave (*) | invalid |
  1681. * ***************************************************************************
  1682. * A bind operation clones the source mount and mounts the clone on the
  1683. * destination mount.
  1684. *
  1685. * (++) the cloned mount is propagated to all the mounts in the propagation
  1686. * tree of the destination mount and the cloned mount is added to
  1687. * the peer group of the source mount.
  1688. * (+) the cloned mount is created under the destination mount and is marked
  1689. * as shared. The cloned mount is added to the peer group of the source
  1690. * mount.
  1691. * (+++) the mount is propagated to all the mounts in the propagation tree
  1692. * of the destination mount and the cloned mount is made slave
  1693. * of the same master as that of the source mount. The cloned mount
  1694. * is marked as 'shared and slave'.
  1695. * (*) the cloned mount is made a slave of the same master as that of the
  1696. * source mount.
  1697. *
  1698. * ---------------------------------------------------------------------------
  1699. * | MOVE MOUNT OPERATION |
  1700. * |**************************************************************************
  1701. * | source-->| shared | private | slave | unbindable |
  1702. * | dest | | | | |
  1703. * | | | | | | |
  1704. * | v | | | | |
  1705. * |**************************************************************************
  1706. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1707. * | | | | | |
  1708. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1709. * ***************************************************************************
  1710. *
  1711. * (+) the mount is moved to the destination. And is then propagated to
  1712. * all the mounts in the propagation tree of the destination mount.
  1713. * (+*) the mount is moved to the destination.
  1714. * (+++) the mount is moved to the destination and is then propagated to
  1715. * all the mounts belonging to the destination mount's propagation tree.
  1716. * the mount is marked as 'shared and slave'.
  1717. * (*) the mount continues to be a slave at the new location.
  1718. *
  1719. * if the source mount is a tree, the operations explained above is
  1720. * applied to each mount in the tree.
  1721. * Must be called without spinlocks held, since this function can sleep
  1722. * in allocations.
  1723. */
  1724. static int attach_recursive_mnt(struct mount *source_mnt,
  1725. struct mount *dest_mnt,
  1726. struct mountpoint *dest_mp,
  1727. struct path *parent_path)
  1728. {
  1729. HLIST_HEAD(tree_list);
  1730. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1731. struct mountpoint *smp;
  1732. struct mount *child, *p;
  1733. struct hlist_node *n;
  1734. int err;
  1735. /* Preallocate a mountpoint in case the new mounts need
  1736. * to be tucked under other mounts.
  1737. */
  1738. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1739. if (IS_ERR(smp))
  1740. return PTR_ERR(smp);
  1741. /* Is there space to add these mounts to the mount namespace? */
  1742. if (!parent_path) {
  1743. err = count_mounts(ns, source_mnt);
  1744. if (err)
  1745. goto out;
  1746. }
  1747. if (IS_MNT_SHARED(dest_mnt)) {
  1748. err = invent_group_ids(source_mnt, true);
  1749. if (err)
  1750. goto out;
  1751. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1752. lock_mount_hash();
  1753. if (err)
  1754. goto out_cleanup_ids;
  1755. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1756. set_mnt_shared(p);
  1757. } else {
  1758. lock_mount_hash();
  1759. }
  1760. if (parent_path) {
  1761. detach_mnt(source_mnt, parent_path);
  1762. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1763. touch_mnt_namespace(source_mnt->mnt_ns);
  1764. } else {
  1765. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1766. commit_tree(source_mnt);
  1767. }
  1768. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1769. struct mount *q;
  1770. hlist_del_init(&child->mnt_hash);
  1771. q = __lookup_mnt(&child->mnt_parent->mnt,
  1772. child->mnt_mountpoint);
  1773. if (q)
  1774. mnt_change_mountpoint(child, smp, q);
  1775. commit_tree(child);
  1776. }
  1777. put_mountpoint(smp);
  1778. unlock_mount_hash();
  1779. return 0;
  1780. out_cleanup_ids:
  1781. while (!hlist_empty(&tree_list)) {
  1782. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1783. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1784. umount_tree(child, UMOUNT_SYNC);
  1785. }
  1786. unlock_mount_hash();
  1787. cleanup_group_ids(source_mnt, NULL);
  1788. out:
  1789. ns->pending_mounts = 0;
  1790. read_seqlock_excl(&mount_lock);
  1791. put_mountpoint(smp);
  1792. read_sequnlock_excl(&mount_lock);
  1793. return err;
  1794. }
  1795. static struct mountpoint *lock_mount(struct path *path)
  1796. {
  1797. struct vfsmount *mnt;
  1798. struct dentry *dentry = path->dentry;
  1799. retry:
  1800. inode_lock(dentry->d_inode);
  1801. if (unlikely(cant_mount(dentry))) {
  1802. inode_unlock(dentry->d_inode);
  1803. return ERR_PTR(-ENOENT);
  1804. }
  1805. namespace_lock();
  1806. mnt = lookup_mnt(path);
  1807. if (likely(!mnt)) {
  1808. struct mountpoint *mp = get_mountpoint(dentry);
  1809. if (IS_ERR(mp)) {
  1810. namespace_unlock();
  1811. inode_unlock(dentry->d_inode);
  1812. return mp;
  1813. }
  1814. return mp;
  1815. }
  1816. namespace_unlock();
  1817. inode_unlock(path->dentry->d_inode);
  1818. path_put(path);
  1819. path->mnt = mnt;
  1820. dentry = path->dentry = dget(mnt->mnt_root);
  1821. goto retry;
  1822. }
  1823. static void unlock_mount(struct mountpoint *where)
  1824. {
  1825. struct dentry *dentry = where->m_dentry;
  1826. read_seqlock_excl(&mount_lock);
  1827. put_mountpoint(where);
  1828. read_sequnlock_excl(&mount_lock);
  1829. namespace_unlock();
  1830. inode_unlock(dentry->d_inode);
  1831. }
  1832. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1833. {
  1834. if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
  1835. return -EINVAL;
  1836. if (d_is_dir(mp->m_dentry) !=
  1837. d_is_dir(mnt->mnt.mnt_root))
  1838. return -ENOTDIR;
  1839. return attach_recursive_mnt(mnt, p, mp, NULL);
  1840. }
  1841. /*
  1842. * Sanity check the flags to change_mnt_propagation.
  1843. */
  1844. static int flags_to_propagation_type(int ms_flags)
  1845. {
  1846. int type = ms_flags & ~(MS_REC | MS_SILENT);
  1847. /* Fail if any non-propagation flags are set */
  1848. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1849. return 0;
  1850. /* Only one propagation flag should be set */
  1851. if (!is_power_of_2(type))
  1852. return 0;
  1853. return type;
  1854. }
  1855. /*
  1856. * recursively change the type of the mountpoint.
  1857. */
  1858. static int do_change_type(struct path *path, int ms_flags)
  1859. {
  1860. struct mount *m;
  1861. struct mount *mnt = real_mount(path->mnt);
  1862. int recurse = ms_flags & MS_REC;
  1863. int type;
  1864. int err = 0;
  1865. if (path->dentry != path->mnt->mnt_root)
  1866. return -EINVAL;
  1867. type = flags_to_propagation_type(ms_flags);
  1868. if (!type)
  1869. return -EINVAL;
  1870. namespace_lock();
  1871. if (type == MS_SHARED) {
  1872. err = invent_group_ids(mnt, recurse);
  1873. if (err)
  1874. goto out_unlock;
  1875. }
  1876. lock_mount_hash();
  1877. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1878. change_mnt_propagation(m, type);
  1879. unlock_mount_hash();
  1880. out_unlock:
  1881. namespace_unlock();
  1882. return err;
  1883. }
  1884. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1885. {
  1886. struct mount *child;
  1887. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1888. if (!is_subdir(child->mnt_mountpoint, dentry))
  1889. continue;
  1890. if (child->mnt.mnt_flags & MNT_LOCKED)
  1891. return true;
  1892. }
  1893. return false;
  1894. }
  1895. /*
  1896. * do loopback mount.
  1897. */
  1898. static int do_loopback(struct path *path, const char *old_name,
  1899. int recurse)
  1900. {
  1901. struct path old_path;
  1902. struct mount *mnt = NULL, *old, *parent;
  1903. struct mountpoint *mp;
  1904. int err;
  1905. if (!old_name || !*old_name)
  1906. return -EINVAL;
  1907. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1908. if (err)
  1909. return err;
  1910. err = -EINVAL;
  1911. if (mnt_ns_loop(old_path.dentry))
  1912. goto out;
  1913. mp = lock_mount(path);
  1914. err = PTR_ERR(mp);
  1915. if (IS_ERR(mp))
  1916. goto out;
  1917. old = real_mount(old_path.mnt);
  1918. parent = real_mount(path->mnt);
  1919. err = -EINVAL;
  1920. if (IS_MNT_UNBINDABLE(old))
  1921. goto out2;
  1922. if (!check_mnt(parent))
  1923. goto out2;
  1924. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1925. goto out2;
  1926. if (!recurse && has_locked_children(old, old_path.dentry))
  1927. goto out2;
  1928. if (recurse)
  1929. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1930. else
  1931. mnt = clone_mnt(old, old_path.dentry, 0);
  1932. if (IS_ERR(mnt)) {
  1933. err = PTR_ERR(mnt);
  1934. goto out2;
  1935. }
  1936. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1937. err = graft_tree(mnt, parent, mp);
  1938. if (err) {
  1939. lock_mount_hash();
  1940. umount_tree(mnt, UMOUNT_SYNC);
  1941. unlock_mount_hash();
  1942. }
  1943. out2:
  1944. unlock_mount(mp);
  1945. out:
  1946. path_put(&old_path);
  1947. return err;
  1948. }
  1949. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1950. {
  1951. int error = 0;
  1952. int readonly_request = 0;
  1953. if (ms_flags & MS_RDONLY)
  1954. readonly_request = 1;
  1955. if (readonly_request == __mnt_is_readonly(mnt))
  1956. return 0;
  1957. if (readonly_request)
  1958. error = mnt_make_readonly(real_mount(mnt));
  1959. else
  1960. __mnt_unmake_readonly(real_mount(mnt));
  1961. return error;
  1962. }
  1963. /*
  1964. * change filesystem flags. dir should be a physical root of filesystem.
  1965. * If you've mounted a non-root directory somewhere and want to do remount
  1966. * on it - tough luck.
  1967. */
  1968. static int do_remount(struct path *path, int ms_flags, int sb_flags,
  1969. int mnt_flags, void *data)
  1970. {
  1971. int err;
  1972. struct super_block *sb = path->mnt->mnt_sb;
  1973. struct mount *mnt = real_mount(path->mnt);
  1974. if (!check_mnt(mnt))
  1975. return -EINVAL;
  1976. if (path->dentry != path->mnt->mnt_root)
  1977. return -EINVAL;
  1978. /* Don't allow changing of locked mnt flags.
  1979. *
  1980. * No locks need to be held here while testing the various
  1981. * MNT_LOCK flags because those flags can never be cleared
  1982. * once they are set.
  1983. */
  1984. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1985. !(mnt_flags & MNT_READONLY)) {
  1986. return -EPERM;
  1987. }
  1988. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1989. !(mnt_flags & MNT_NODEV)) {
  1990. return -EPERM;
  1991. }
  1992. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1993. !(mnt_flags & MNT_NOSUID)) {
  1994. return -EPERM;
  1995. }
  1996. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1997. !(mnt_flags & MNT_NOEXEC)) {
  1998. return -EPERM;
  1999. }
  2000. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2001. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2002. return -EPERM;
  2003. }
  2004. err = security_sb_remount(sb, data);
  2005. if (err)
  2006. return err;
  2007. down_write(&sb->s_umount);
  2008. if (ms_flags & MS_BIND)
  2009. err = change_mount_flags(path->mnt, ms_flags);
  2010. else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
  2011. err = -EPERM;
  2012. else
  2013. err = do_remount_sb(sb, sb_flags, data, 0);
  2014. if (!err) {
  2015. lock_mount_hash();
  2016. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2017. mnt->mnt.mnt_flags = mnt_flags;
  2018. touch_mnt_namespace(mnt->mnt_ns);
  2019. unlock_mount_hash();
  2020. }
  2021. up_write(&sb->s_umount);
  2022. return err;
  2023. }
  2024. static inline int tree_contains_unbindable(struct mount *mnt)
  2025. {
  2026. struct mount *p;
  2027. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2028. if (IS_MNT_UNBINDABLE(p))
  2029. return 1;
  2030. }
  2031. return 0;
  2032. }
  2033. static int do_move_mount(struct path *path, const char *old_name)
  2034. {
  2035. struct path old_path, parent_path;
  2036. struct mount *p;
  2037. struct mount *old;
  2038. struct mountpoint *mp;
  2039. int err;
  2040. if (!old_name || !*old_name)
  2041. return -EINVAL;
  2042. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2043. if (err)
  2044. return err;
  2045. mp = lock_mount(path);
  2046. err = PTR_ERR(mp);
  2047. if (IS_ERR(mp))
  2048. goto out;
  2049. old = real_mount(old_path.mnt);
  2050. p = real_mount(path->mnt);
  2051. err = -EINVAL;
  2052. if (!check_mnt(p) || !check_mnt(old))
  2053. goto out1;
  2054. if (old->mnt.mnt_flags & MNT_LOCKED)
  2055. goto out1;
  2056. err = -EINVAL;
  2057. if (old_path.dentry != old_path.mnt->mnt_root)
  2058. goto out1;
  2059. if (!mnt_has_parent(old))
  2060. goto out1;
  2061. if (d_is_dir(path->dentry) !=
  2062. d_is_dir(old_path.dentry))
  2063. goto out1;
  2064. /*
  2065. * Don't move a mount residing in a shared parent.
  2066. */
  2067. if (IS_MNT_SHARED(old->mnt_parent))
  2068. goto out1;
  2069. /*
  2070. * Don't move a mount tree containing unbindable mounts to a destination
  2071. * mount which is shared.
  2072. */
  2073. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2074. goto out1;
  2075. err = -ELOOP;
  2076. for (; mnt_has_parent(p); p = p->mnt_parent)
  2077. if (p == old)
  2078. goto out1;
  2079. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2080. if (err)
  2081. goto out1;
  2082. /* if the mount is moved, it should no longer be expire
  2083. * automatically */
  2084. list_del_init(&old->mnt_expire);
  2085. out1:
  2086. unlock_mount(mp);
  2087. out:
  2088. if (!err)
  2089. path_put(&parent_path);
  2090. path_put(&old_path);
  2091. return err;
  2092. }
  2093. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2094. {
  2095. int err;
  2096. const char *subtype = strchr(fstype, '.');
  2097. if (subtype) {
  2098. subtype++;
  2099. err = -EINVAL;
  2100. if (!subtype[0])
  2101. goto err;
  2102. } else
  2103. subtype = "";
  2104. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2105. err = -ENOMEM;
  2106. if (!mnt->mnt_sb->s_subtype)
  2107. goto err;
  2108. return mnt;
  2109. err:
  2110. mntput(mnt);
  2111. return ERR_PTR(err);
  2112. }
  2113. /*
  2114. * add a mount into a namespace's mount tree
  2115. */
  2116. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2117. {
  2118. struct mountpoint *mp;
  2119. struct mount *parent;
  2120. int err;
  2121. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2122. mp = lock_mount(path);
  2123. if (IS_ERR(mp))
  2124. return PTR_ERR(mp);
  2125. parent = real_mount(path->mnt);
  2126. err = -EINVAL;
  2127. if (unlikely(!check_mnt(parent))) {
  2128. /* that's acceptable only for automounts done in private ns */
  2129. if (!(mnt_flags & MNT_SHRINKABLE))
  2130. goto unlock;
  2131. /* ... and for those we'd better have mountpoint still alive */
  2132. if (!parent->mnt_ns)
  2133. goto unlock;
  2134. }
  2135. /* Refuse the same filesystem on the same mount point */
  2136. err = -EBUSY;
  2137. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2138. path->mnt->mnt_root == path->dentry)
  2139. goto unlock;
  2140. err = -EINVAL;
  2141. if (d_is_symlink(newmnt->mnt.mnt_root))
  2142. goto unlock;
  2143. newmnt->mnt.mnt_flags = mnt_flags;
  2144. err = graft_tree(newmnt, parent, mp);
  2145. unlock:
  2146. unlock_mount(mp);
  2147. return err;
  2148. }
  2149. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2150. /*
  2151. * create a new mount for userspace and request it to be added into the
  2152. * namespace's tree
  2153. */
  2154. static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
  2155. int mnt_flags, const char *name, void *data)
  2156. {
  2157. struct file_system_type *type;
  2158. struct vfsmount *mnt;
  2159. int err;
  2160. if (!fstype)
  2161. return -EINVAL;
  2162. type = get_fs_type(fstype);
  2163. if (!type)
  2164. return -ENODEV;
  2165. mnt = vfs_kern_mount(type, sb_flags, name, data);
  2166. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2167. !mnt->mnt_sb->s_subtype)
  2168. mnt = fs_set_subtype(mnt, fstype);
  2169. put_filesystem(type);
  2170. if (IS_ERR(mnt))
  2171. return PTR_ERR(mnt);
  2172. if (mount_too_revealing(mnt, &mnt_flags)) {
  2173. mntput(mnt);
  2174. return -EPERM;
  2175. }
  2176. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2177. if (err)
  2178. mntput(mnt);
  2179. return err;
  2180. }
  2181. int finish_automount(struct vfsmount *m, struct path *path)
  2182. {
  2183. struct mount *mnt = real_mount(m);
  2184. int err;
  2185. /* The new mount record should have at least 2 refs to prevent it being
  2186. * expired before we get a chance to add it
  2187. */
  2188. BUG_ON(mnt_get_count(mnt) < 2);
  2189. if (m->mnt_sb == path->mnt->mnt_sb &&
  2190. m->mnt_root == path->dentry) {
  2191. err = -ELOOP;
  2192. goto fail;
  2193. }
  2194. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2195. if (!err)
  2196. return 0;
  2197. fail:
  2198. /* remove m from any expiration list it may be on */
  2199. if (!list_empty(&mnt->mnt_expire)) {
  2200. namespace_lock();
  2201. list_del_init(&mnt->mnt_expire);
  2202. namespace_unlock();
  2203. }
  2204. mntput(m);
  2205. mntput(m);
  2206. return err;
  2207. }
  2208. /**
  2209. * mnt_set_expiry - Put a mount on an expiration list
  2210. * @mnt: The mount to list.
  2211. * @expiry_list: The list to add the mount to.
  2212. */
  2213. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2214. {
  2215. namespace_lock();
  2216. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2217. namespace_unlock();
  2218. }
  2219. EXPORT_SYMBOL(mnt_set_expiry);
  2220. /*
  2221. * process a list of expirable mountpoints with the intent of discarding any
  2222. * mountpoints that aren't in use and haven't been touched since last we came
  2223. * here
  2224. */
  2225. void mark_mounts_for_expiry(struct list_head *mounts)
  2226. {
  2227. struct mount *mnt, *next;
  2228. LIST_HEAD(graveyard);
  2229. if (list_empty(mounts))
  2230. return;
  2231. namespace_lock();
  2232. lock_mount_hash();
  2233. /* extract from the expiration list every vfsmount that matches the
  2234. * following criteria:
  2235. * - only referenced by its parent vfsmount
  2236. * - still marked for expiry (marked on the last call here; marks are
  2237. * cleared by mntput())
  2238. */
  2239. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2240. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2241. propagate_mount_busy(mnt, 1))
  2242. continue;
  2243. list_move(&mnt->mnt_expire, &graveyard);
  2244. }
  2245. while (!list_empty(&graveyard)) {
  2246. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2247. touch_mnt_namespace(mnt->mnt_ns);
  2248. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2249. }
  2250. unlock_mount_hash();
  2251. namespace_unlock();
  2252. }
  2253. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2254. /*
  2255. * Ripoff of 'select_parent()'
  2256. *
  2257. * search the list of submounts for a given mountpoint, and move any
  2258. * shrinkable submounts to the 'graveyard' list.
  2259. */
  2260. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2261. {
  2262. struct mount *this_parent = parent;
  2263. struct list_head *next;
  2264. int found = 0;
  2265. repeat:
  2266. next = this_parent->mnt_mounts.next;
  2267. resume:
  2268. while (next != &this_parent->mnt_mounts) {
  2269. struct list_head *tmp = next;
  2270. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2271. next = tmp->next;
  2272. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2273. continue;
  2274. /*
  2275. * Descend a level if the d_mounts list is non-empty.
  2276. */
  2277. if (!list_empty(&mnt->mnt_mounts)) {
  2278. this_parent = mnt;
  2279. goto repeat;
  2280. }
  2281. if (!propagate_mount_busy(mnt, 1)) {
  2282. list_move_tail(&mnt->mnt_expire, graveyard);
  2283. found++;
  2284. }
  2285. }
  2286. /*
  2287. * All done at this level ... ascend and resume the search
  2288. */
  2289. if (this_parent != parent) {
  2290. next = this_parent->mnt_child.next;
  2291. this_parent = this_parent->mnt_parent;
  2292. goto resume;
  2293. }
  2294. return found;
  2295. }
  2296. /*
  2297. * process a list of expirable mountpoints with the intent of discarding any
  2298. * submounts of a specific parent mountpoint
  2299. *
  2300. * mount_lock must be held for write
  2301. */
  2302. static void shrink_submounts(struct mount *mnt)
  2303. {
  2304. LIST_HEAD(graveyard);
  2305. struct mount *m;
  2306. /* extract submounts of 'mountpoint' from the expiration list */
  2307. while (select_submounts(mnt, &graveyard)) {
  2308. while (!list_empty(&graveyard)) {
  2309. m = list_first_entry(&graveyard, struct mount,
  2310. mnt_expire);
  2311. touch_mnt_namespace(m->mnt_ns);
  2312. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2313. }
  2314. }
  2315. }
  2316. /*
  2317. * Some copy_from_user() implementations do not return the exact number of
  2318. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2319. * Note that this function differs from copy_from_user() in that it will oops
  2320. * on bad values of `to', rather than returning a short copy.
  2321. */
  2322. static long exact_copy_from_user(void *to, const void __user * from,
  2323. unsigned long n)
  2324. {
  2325. char *t = to;
  2326. const char __user *f = from;
  2327. char c;
  2328. if (!access_ok(VERIFY_READ, from, n))
  2329. return n;
  2330. while (n) {
  2331. if (__get_user(c, f)) {
  2332. memset(t, 0, n);
  2333. break;
  2334. }
  2335. *t++ = c;
  2336. f++;
  2337. n--;
  2338. }
  2339. return n;
  2340. }
  2341. void *copy_mount_options(const void __user * data)
  2342. {
  2343. int i;
  2344. unsigned long size;
  2345. char *copy;
  2346. if (!data)
  2347. return NULL;
  2348. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2349. if (!copy)
  2350. return ERR_PTR(-ENOMEM);
  2351. /* We only care that *some* data at the address the user
  2352. * gave us is valid. Just in case, we'll zero
  2353. * the remainder of the page.
  2354. */
  2355. /* copy_from_user cannot cross TASK_SIZE ! */
  2356. size = TASK_SIZE - (unsigned long)data;
  2357. if (size > PAGE_SIZE)
  2358. size = PAGE_SIZE;
  2359. i = size - exact_copy_from_user(copy, data, size);
  2360. if (!i) {
  2361. kfree(copy);
  2362. return ERR_PTR(-EFAULT);
  2363. }
  2364. if (i != PAGE_SIZE)
  2365. memset(copy + i, 0, PAGE_SIZE - i);
  2366. return copy;
  2367. }
  2368. char *copy_mount_string(const void __user *data)
  2369. {
  2370. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2371. }
  2372. /*
  2373. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2374. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2375. *
  2376. * data is a (void *) that can point to any structure up to
  2377. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2378. * information (or be NULL).
  2379. *
  2380. * Pre-0.97 versions of mount() didn't have a flags word.
  2381. * When the flags word was introduced its top half was required
  2382. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2383. * Therefore, if this magic number is present, it carries no information
  2384. * and must be discarded.
  2385. */
  2386. long do_mount(const char *dev_name, const char __user *dir_name,
  2387. const char *type_page, unsigned long flags, void *data_page)
  2388. {
  2389. struct path path;
  2390. unsigned int mnt_flags = 0, sb_flags;
  2391. int retval = 0;
  2392. /* Discard magic */
  2393. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2394. flags &= ~MS_MGC_MSK;
  2395. /* Basic sanity checks */
  2396. if (data_page)
  2397. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2398. if (flags & MS_NOUSER)
  2399. return -EINVAL;
  2400. /* ... and get the mountpoint */
  2401. retval = user_path(dir_name, &path);
  2402. if (retval)
  2403. return retval;
  2404. retval = security_sb_mount(dev_name, &path,
  2405. type_page, flags, data_page);
  2406. if (!retval && !may_mount())
  2407. retval = -EPERM;
  2408. if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
  2409. retval = -EPERM;
  2410. if (retval)
  2411. goto dput_out;
  2412. /* Default to relatime unless overriden */
  2413. if (!(flags & MS_NOATIME))
  2414. mnt_flags |= MNT_RELATIME;
  2415. /* Separate the per-mountpoint flags */
  2416. if (flags & MS_NOSUID)
  2417. mnt_flags |= MNT_NOSUID;
  2418. if (flags & MS_NODEV)
  2419. mnt_flags |= MNT_NODEV;
  2420. if (flags & MS_NOEXEC)
  2421. mnt_flags |= MNT_NOEXEC;
  2422. if (flags & MS_NOATIME)
  2423. mnt_flags |= MNT_NOATIME;
  2424. if (flags & MS_NODIRATIME)
  2425. mnt_flags |= MNT_NODIRATIME;
  2426. if (flags & MS_STRICTATIME)
  2427. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2428. if (flags & MS_RDONLY)
  2429. mnt_flags |= MNT_READONLY;
  2430. /* The default atime for remount is preservation */
  2431. if ((flags & MS_REMOUNT) &&
  2432. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2433. MS_STRICTATIME)) == 0)) {
  2434. mnt_flags &= ~MNT_ATIME_MASK;
  2435. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2436. }
  2437. sb_flags = flags & (SB_RDONLY |
  2438. SB_SYNCHRONOUS |
  2439. SB_MANDLOCK |
  2440. SB_DIRSYNC |
  2441. SB_SILENT |
  2442. SB_POSIXACL |
  2443. SB_LAZYTIME |
  2444. SB_I_VERSION);
  2445. if (flags & MS_REMOUNT)
  2446. retval = do_remount(&path, flags, sb_flags, mnt_flags,
  2447. data_page);
  2448. else if (flags & MS_BIND)
  2449. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2450. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2451. retval = do_change_type(&path, flags);
  2452. else if (flags & MS_MOVE)
  2453. retval = do_move_mount(&path, dev_name);
  2454. else
  2455. retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
  2456. dev_name, data_page);
  2457. dput_out:
  2458. path_put(&path);
  2459. return retval;
  2460. }
  2461. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2462. {
  2463. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2464. }
  2465. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2466. {
  2467. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2468. }
  2469. static void free_mnt_ns(struct mnt_namespace *ns)
  2470. {
  2471. ns_free_inum(&ns->ns);
  2472. dec_mnt_namespaces(ns->ucounts);
  2473. put_user_ns(ns->user_ns);
  2474. kfree(ns);
  2475. }
  2476. /*
  2477. * Assign a sequence number so we can detect when we attempt to bind
  2478. * mount a reference to an older mount namespace into the current
  2479. * mount namespace, preventing reference counting loops. A 64bit
  2480. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2481. * is effectively never, so we can ignore the possibility.
  2482. */
  2483. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2484. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2485. {
  2486. struct mnt_namespace *new_ns;
  2487. struct ucounts *ucounts;
  2488. int ret;
  2489. ucounts = inc_mnt_namespaces(user_ns);
  2490. if (!ucounts)
  2491. return ERR_PTR(-ENOSPC);
  2492. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2493. if (!new_ns) {
  2494. dec_mnt_namespaces(ucounts);
  2495. return ERR_PTR(-ENOMEM);
  2496. }
  2497. ret = ns_alloc_inum(&new_ns->ns);
  2498. if (ret) {
  2499. kfree(new_ns);
  2500. dec_mnt_namespaces(ucounts);
  2501. return ERR_PTR(ret);
  2502. }
  2503. new_ns->ns.ops = &mntns_operations;
  2504. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2505. atomic_set(&new_ns->count, 1);
  2506. new_ns->root = NULL;
  2507. INIT_LIST_HEAD(&new_ns->list);
  2508. init_waitqueue_head(&new_ns->poll);
  2509. new_ns->event = 0;
  2510. new_ns->user_ns = get_user_ns(user_ns);
  2511. new_ns->ucounts = ucounts;
  2512. new_ns->mounts = 0;
  2513. new_ns->pending_mounts = 0;
  2514. return new_ns;
  2515. }
  2516. __latent_entropy
  2517. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2518. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2519. {
  2520. struct mnt_namespace *new_ns;
  2521. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2522. struct mount *p, *q;
  2523. struct mount *old;
  2524. struct mount *new;
  2525. int copy_flags;
  2526. BUG_ON(!ns);
  2527. if (likely(!(flags & CLONE_NEWNS))) {
  2528. get_mnt_ns(ns);
  2529. return ns;
  2530. }
  2531. old = ns->root;
  2532. new_ns = alloc_mnt_ns(user_ns);
  2533. if (IS_ERR(new_ns))
  2534. return new_ns;
  2535. namespace_lock();
  2536. /* First pass: copy the tree topology */
  2537. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2538. if (user_ns != ns->user_ns)
  2539. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2540. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2541. if (IS_ERR(new)) {
  2542. namespace_unlock();
  2543. free_mnt_ns(new_ns);
  2544. return ERR_CAST(new);
  2545. }
  2546. new_ns->root = new;
  2547. list_add_tail(&new_ns->list, &new->mnt_list);
  2548. /*
  2549. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2550. * as belonging to new namespace. We have already acquired a private
  2551. * fs_struct, so tsk->fs->lock is not needed.
  2552. */
  2553. p = old;
  2554. q = new;
  2555. while (p) {
  2556. q->mnt_ns = new_ns;
  2557. new_ns->mounts++;
  2558. if (new_fs) {
  2559. if (&p->mnt == new_fs->root.mnt) {
  2560. new_fs->root.mnt = mntget(&q->mnt);
  2561. rootmnt = &p->mnt;
  2562. }
  2563. if (&p->mnt == new_fs->pwd.mnt) {
  2564. new_fs->pwd.mnt = mntget(&q->mnt);
  2565. pwdmnt = &p->mnt;
  2566. }
  2567. }
  2568. p = next_mnt(p, old);
  2569. q = next_mnt(q, new);
  2570. if (!q)
  2571. break;
  2572. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2573. p = next_mnt(p, old);
  2574. }
  2575. namespace_unlock();
  2576. if (rootmnt)
  2577. mntput(rootmnt);
  2578. if (pwdmnt)
  2579. mntput(pwdmnt);
  2580. return new_ns;
  2581. }
  2582. /**
  2583. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2584. * @mnt: pointer to the new root filesystem mountpoint
  2585. */
  2586. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2587. {
  2588. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2589. if (!IS_ERR(new_ns)) {
  2590. struct mount *mnt = real_mount(m);
  2591. mnt->mnt_ns = new_ns;
  2592. new_ns->root = mnt;
  2593. new_ns->mounts++;
  2594. list_add(&mnt->mnt_list, &new_ns->list);
  2595. } else {
  2596. mntput(m);
  2597. }
  2598. return new_ns;
  2599. }
  2600. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2601. {
  2602. struct mnt_namespace *ns;
  2603. struct super_block *s;
  2604. struct path path;
  2605. int err;
  2606. ns = create_mnt_ns(mnt);
  2607. if (IS_ERR(ns))
  2608. return ERR_CAST(ns);
  2609. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2610. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2611. put_mnt_ns(ns);
  2612. if (err)
  2613. return ERR_PTR(err);
  2614. /* trade a vfsmount reference for active sb one */
  2615. s = path.mnt->mnt_sb;
  2616. atomic_inc(&s->s_active);
  2617. mntput(path.mnt);
  2618. /* lock the sucker */
  2619. down_write(&s->s_umount);
  2620. /* ... and return the root of (sub)tree on it */
  2621. return path.dentry;
  2622. }
  2623. EXPORT_SYMBOL(mount_subtree);
  2624. int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
  2625. unsigned long flags, void __user *data)
  2626. {
  2627. int ret;
  2628. char *kernel_type;
  2629. char *kernel_dev;
  2630. void *options;
  2631. kernel_type = copy_mount_string(type);
  2632. ret = PTR_ERR(kernel_type);
  2633. if (IS_ERR(kernel_type))
  2634. goto out_type;
  2635. kernel_dev = copy_mount_string(dev_name);
  2636. ret = PTR_ERR(kernel_dev);
  2637. if (IS_ERR(kernel_dev))
  2638. goto out_dev;
  2639. options = copy_mount_options(data);
  2640. ret = PTR_ERR(options);
  2641. if (IS_ERR(options))
  2642. goto out_data;
  2643. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2644. kfree(options);
  2645. out_data:
  2646. kfree(kernel_dev);
  2647. out_dev:
  2648. kfree(kernel_type);
  2649. out_type:
  2650. return ret;
  2651. }
  2652. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2653. char __user *, type, unsigned long, flags, void __user *, data)
  2654. {
  2655. return ksys_mount(dev_name, dir_name, type, flags, data);
  2656. }
  2657. /*
  2658. * Return true if path is reachable from root
  2659. *
  2660. * namespace_sem or mount_lock is held
  2661. */
  2662. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2663. const struct path *root)
  2664. {
  2665. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2666. dentry = mnt->mnt_mountpoint;
  2667. mnt = mnt->mnt_parent;
  2668. }
  2669. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2670. }
  2671. bool path_is_under(const struct path *path1, const struct path *path2)
  2672. {
  2673. bool res;
  2674. read_seqlock_excl(&mount_lock);
  2675. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2676. read_sequnlock_excl(&mount_lock);
  2677. return res;
  2678. }
  2679. EXPORT_SYMBOL(path_is_under);
  2680. /*
  2681. * pivot_root Semantics:
  2682. * Moves the root file system of the current process to the directory put_old,
  2683. * makes new_root as the new root file system of the current process, and sets
  2684. * root/cwd of all processes which had them on the current root to new_root.
  2685. *
  2686. * Restrictions:
  2687. * The new_root and put_old must be directories, and must not be on the
  2688. * same file system as the current process root. The put_old must be
  2689. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2690. * pointed to by put_old must yield the same directory as new_root. No other
  2691. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2692. *
  2693. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2694. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2695. * in this situation.
  2696. *
  2697. * Notes:
  2698. * - we don't move root/cwd if they are not at the root (reason: if something
  2699. * cared enough to change them, it's probably wrong to force them elsewhere)
  2700. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2701. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2702. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2703. * first.
  2704. */
  2705. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2706. const char __user *, put_old)
  2707. {
  2708. struct path new, old, parent_path, root_parent, root;
  2709. struct mount *new_mnt, *root_mnt, *old_mnt;
  2710. struct mountpoint *old_mp, *root_mp;
  2711. int error;
  2712. if (!may_mount())
  2713. return -EPERM;
  2714. error = user_path_dir(new_root, &new);
  2715. if (error)
  2716. goto out0;
  2717. error = user_path_dir(put_old, &old);
  2718. if (error)
  2719. goto out1;
  2720. error = security_sb_pivotroot(&old, &new);
  2721. if (error)
  2722. goto out2;
  2723. get_fs_root(current->fs, &root);
  2724. old_mp = lock_mount(&old);
  2725. error = PTR_ERR(old_mp);
  2726. if (IS_ERR(old_mp))
  2727. goto out3;
  2728. error = -EINVAL;
  2729. new_mnt = real_mount(new.mnt);
  2730. root_mnt = real_mount(root.mnt);
  2731. old_mnt = real_mount(old.mnt);
  2732. if (IS_MNT_SHARED(old_mnt) ||
  2733. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2734. IS_MNT_SHARED(root_mnt->mnt_parent))
  2735. goto out4;
  2736. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2737. goto out4;
  2738. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2739. goto out4;
  2740. error = -ENOENT;
  2741. if (d_unlinked(new.dentry))
  2742. goto out4;
  2743. error = -EBUSY;
  2744. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2745. goto out4; /* loop, on the same file system */
  2746. error = -EINVAL;
  2747. if (root.mnt->mnt_root != root.dentry)
  2748. goto out4; /* not a mountpoint */
  2749. if (!mnt_has_parent(root_mnt))
  2750. goto out4; /* not attached */
  2751. root_mp = root_mnt->mnt_mp;
  2752. if (new.mnt->mnt_root != new.dentry)
  2753. goto out4; /* not a mountpoint */
  2754. if (!mnt_has_parent(new_mnt))
  2755. goto out4; /* not attached */
  2756. /* make sure we can reach put_old from new_root */
  2757. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2758. goto out4;
  2759. /* make certain new is below the root */
  2760. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2761. goto out4;
  2762. root_mp->m_count++; /* pin it so it won't go away */
  2763. lock_mount_hash();
  2764. detach_mnt(new_mnt, &parent_path);
  2765. detach_mnt(root_mnt, &root_parent);
  2766. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2767. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2768. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2769. }
  2770. /* mount old root on put_old */
  2771. attach_mnt(root_mnt, old_mnt, old_mp);
  2772. /* mount new_root on / */
  2773. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2774. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2775. /* A moved mount should not expire automatically */
  2776. list_del_init(&new_mnt->mnt_expire);
  2777. put_mountpoint(root_mp);
  2778. unlock_mount_hash();
  2779. chroot_fs_refs(&root, &new);
  2780. error = 0;
  2781. out4:
  2782. unlock_mount(old_mp);
  2783. if (!error) {
  2784. path_put(&root_parent);
  2785. path_put(&parent_path);
  2786. }
  2787. out3:
  2788. path_put(&root);
  2789. out2:
  2790. path_put(&old);
  2791. out1:
  2792. path_put(&new);
  2793. out0:
  2794. return error;
  2795. }
  2796. static void __init init_mount_tree(void)
  2797. {
  2798. struct vfsmount *mnt;
  2799. struct mnt_namespace *ns;
  2800. struct path root;
  2801. struct file_system_type *type;
  2802. type = get_fs_type("rootfs");
  2803. if (!type)
  2804. panic("Can't find rootfs type");
  2805. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2806. put_filesystem(type);
  2807. if (IS_ERR(mnt))
  2808. panic("Can't create rootfs");
  2809. ns = create_mnt_ns(mnt);
  2810. if (IS_ERR(ns))
  2811. panic("Can't allocate initial namespace");
  2812. init_task.nsproxy->mnt_ns = ns;
  2813. get_mnt_ns(ns);
  2814. root.mnt = mnt;
  2815. root.dentry = mnt->mnt_root;
  2816. mnt->mnt_flags |= MNT_LOCKED;
  2817. set_fs_pwd(current->fs, &root);
  2818. set_fs_root(current->fs, &root);
  2819. }
  2820. void __init mnt_init(void)
  2821. {
  2822. int err;
  2823. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2824. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2825. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2826. sizeof(struct hlist_head),
  2827. mhash_entries, 19,
  2828. HASH_ZERO,
  2829. &m_hash_shift, &m_hash_mask, 0, 0);
  2830. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2831. sizeof(struct hlist_head),
  2832. mphash_entries, 19,
  2833. HASH_ZERO,
  2834. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2835. if (!mount_hashtable || !mountpoint_hashtable)
  2836. panic("Failed to allocate mount hash table\n");
  2837. kernfs_init();
  2838. err = sysfs_init();
  2839. if (err)
  2840. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2841. __func__, err);
  2842. fs_kobj = kobject_create_and_add("fs", NULL);
  2843. if (!fs_kobj)
  2844. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2845. init_rootfs();
  2846. init_mount_tree();
  2847. }
  2848. void put_mnt_ns(struct mnt_namespace *ns)
  2849. {
  2850. if (!atomic_dec_and_test(&ns->count))
  2851. return;
  2852. drop_collected_mounts(&ns->root->mnt);
  2853. free_mnt_ns(ns);
  2854. }
  2855. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2856. {
  2857. struct vfsmount *mnt;
  2858. mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
  2859. if (!IS_ERR(mnt)) {
  2860. /*
  2861. * it is a longterm mount, don't release mnt until
  2862. * we unmount before file sys is unregistered
  2863. */
  2864. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2865. }
  2866. return mnt;
  2867. }
  2868. EXPORT_SYMBOL_GPL(kern_mount_data);
  2869. void kern_unmount(struct vfsmount *mnt)
  2870. {
  2871. /* release long term mount so mount point can be released */
  2872. if (!IS_ERR_OR_NULL(mnt)) {
  2873. real_mount(mnt)->mnt_ns = NULL;
  2874. synchronize_rcu(); /* yecchhh... */
  2875. mntput(mnt);
  2876. }
  2877. }
  2878. EXPORT_SYMBOL(kern_unmount);
  2879. bool our_mnt(struct vfsmount *mnt)
  2880. {
  2881. return check_mnt(real_mount(mnt));
  2882. }
  2883. bool current_chrooted(void)
  2884. {
  2885. /* Does the current process have a non-standard root */
  2886. struct path ns_root;
  2887. struct path fs_root;
  2888. bool chrooted;
  2889. /* Find the namespace root */
  2890. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2891. ns_root.dentry = ns_root.mnt->mnt_root;
  2892. path_get(&ns_root);
  2893. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2894. ;
  2895. get_fs_root(current->fs, &fs_root);
  2896. chrooted = !path_equal(&fs_root, &ns_root);
  2897. path_put(&fs_root);
  2898. path_put(&ns_root);
  2899. return chrooted;
  2900. }
  2901. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2902. int *new_mnt_flags)
  2903. {
  2904. int new_flags = *new_mnt_flags;
  2905. struct mount *mnt;
  2906. bool visible = false;
  2907. down_read(&namespace_sem);
  2908. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2909. struct mount *child;
  2910. int mnt_flags;
  2911. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2912. continue;
  2913. /* This mount is not fully visible if it's root directory
  2914. * is not the root directory of the filesystem.
  2915. */
  2916. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2917. continue;
  2918. /* A local view of the mount flags */
  2919. mnt_flags = mnt->mnt.mnt_flags;
  2920. /* Don't miss readonly hidden in the superblock flags */
  2921. if (sb_rdonly(mnt->mnt.mnt_sb))
  2922. mnt_flags |= MNT_LOCK_READONLY;
  2923. /* Verify the mount flags are equal to or more permissive
  2924. * than the proposed new mount.
  2925. */
  2926. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2927. !(new_flags & MNT_READONLY))
  2928. continue;
  2929. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2930. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2931. continue;
  2932. /* This mount is not fully visible if there are any
  2933. * locked child mounts that cover anything except for
  2934. * empty directories.
  2935. */
  2936. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2937. struct inode *inode = child->mnt_mountpoint->d_inode;
  2938. /* Only worry about locked mounts */
  2939. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2940. continue;
  2941. /* Is the directory permanetly empty? */
  2942. if (!is_empty_dir_inode(inode))
  2943. goto next;
  2944. }
  2945. /* Preserve the locked attributes */
  2946. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2947. MNT_LOCK_ATIME);
  2948. visible = true;
  2949. goto found;
  2950. next: ;
  2951. }
  2952. found:
  2953. up_read(&namespace_sem);
  2954. return visible;
  2955. }
  2956. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2957. {
  2958. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2959. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2960. unsigned long s_iflags;
  2961. if (ns->user_ns == &init_user_ns)
  2962. return false;
  2963. /* Can this filesystem be too revealing? */
  2964. s_iflags = mnt->mnt_sb->s_iflags;
  2965. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2966. return false;
  2967. if ((s_iflags & required_iflags) != required_iflags) {
  2968. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2969. required_iflags);
  2970. return true;
  2971. }
  2972. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2973. }
  2974. bool mnt_may_suid(struct vfsmount *mnt)
  2975. {
  2976. /*
  2977. * Foreign mounts (accessed via fchdir or through /proc
  2978. * symlinks) are always treated as if they are nosuid. This
  2979. * prevents namespaces from trusting potentially unsafe
  2980. * suid/sgid bits, file caps, or security labels that originate
  2981. * in other namespaces.
  2982. */
  2983. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  2984. current_in_userns(mnt->mnt_sb->s_user_ns);
  2985. }
  2986. static struct ns_common *mntns_get(struct task_struct *task)
  2987. {
  2988. struct ns_common *ns = NULL;
  2989. struct nsproxy *nsproxy;
  2990. task_lock(task);
  2991. nsproxy = task->nsproxy;
  2992. if (nsproxy) {
  2993. ns = &nsproxy->mnt_ns->ns;
  2994. get_mnt_ns(to_mnt_ns(ns));
  2995. }
  2996. task_unlock(task);
  2997. return ns;
  2998. }
  2999. static void mntns_put(struct ns_common *ns)
  3000. {
  3001. put_mnt_ns(to_mnt_ns(ns));
  3002. }
  3003. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3004. {
  3005. struct fs_struct *fs = current->fs;
  3006. struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
  3007. struct path root;
  3008. int err;
  3009. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3010. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3011. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3012. return -EPERM;
  3013. if (fs->users != 1)
  3014. return -EINVAL;
  3015. get_mnt_ns(mnt_ns);
  3016. old_mnt_ns = nsproxy->mnt_ns;
  3017. nsproxy->mnt_ns = mnt_ns;
  3018. /* Find the root */
  3019. err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
  3020. "/", LOOKUP_DOWN, &root);
  3021. if (err) {
  3022. /* revert to old namespace */
  3023. nsproxy->mnt_ns = old_mnt_ns;
  3024. put_mnt_ns(mnt_ns);
  3025. return err;
  3026. }
  3027. put_mnt_ns(old_mnt_ns);
  3028. /* Update the pwd and root */
  3029. set_fs_pwd(fs, &root);
  3030. set_fs_root(fs, &root);
  3031. path_put(&root);
  3032. return 0;
  3033. }
  3034. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3035. {
  3036. return to_mnt_ns(ns)->user_ns;
  3037. }
  3038. const struct proc_ns_operations mntns_operations = {
  3039. .name = "mnt",
  3040. .type = CLONE_NEWNS,
  3041. .get = mntns_get,
  3042. .put = mntns_put,
  3043. .install = mntns_install,
  3044. .owner = mntns_owner,
  3045. };