node.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. /*
  2. * fs/f2fs/node.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* start node id of a node block dedicated to the given node id */
  12. #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13. /* node block offset on the NAT area dedicated to the given start node id */
  14. #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
  15. /* # of pages to perform synchronous readahead before building free nids */
  16. #define FREE_NID_PAGES 8
  17. #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  18. #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
  19. /* maximum readahead size for node during getting data blocks */
  20. #define MAX_RA_NODE 128
  21. /* control the memory footprint threshold (10MB per 1GB ram) */
  22. #define DEF_RAM_THRESHOLD 1
  23. /* control dirty nats ratio threshold (default: 10% over max nid count) */
  24. #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
  25. /* control total # of nats */
  26. #define DEF_NAT_CACHE_THRESHOLD 100000
  27. /* vector size for gang look-up from nat cache that consists of radix tree */
  28. #define NATVEC_SIZE 64
  29. #define SETVEC_SIZE 32
  30. /* return value for read_node_page */
  31. #define LOCKED_PAGE 1
  32. /* For flag in struct node_info */
  33. enum {
  34. IS_CHECKPOINTED, /* is it checkpointed before? */
  35. HAS_FSYNCED_INODE, /* is the inode fsynced before? */
  36. HAS_LAST_FSYNC, /* has the latest node fsync mark? */
  37. IS_DIRTY, /* this nat entry is dirty? */
  38. IS_PREALLOC, /* nat entry is preallocated */
  39. };
  40. /*
  41. * For node information
  42. */
  43. struct node_info {
  44. nid_t nid; /* node id */
  45. nid_t ino; /* inode number of the node's owner */
  46. block_t blk_addr; /* block address of the node */
  47. unsigned char version; /* version of the node */
  48. unsigned char flag; /* for node information bits */
  49. };
  50. struct nat_entry {
  51. struct list_head list; /* for clean or dirty nat list */
  52. struct node_info ni; /* in-memory node information */
  53. };
  54. #define nat_get_nid(nat) ((nat)->ni.nid)
  55. #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
  56. #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
  57. #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
  58. #define nat_get_ino(nat) ((nat)->ni.ino)
  59. #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
  60. #define nat_get_version(nat) ((nat)->ni.version)
  61. #define nat_set_version(nat, v) ((nat)->ni.version = (v))
  62. #define inc_node_version(version) (++(version))
  63. static inline void copy_node_info(struct node_info *dst,
  64. struct node_info *src)
  65. {
  66. dst->nid = src->nid;
  67. dst->ino = src->ino;
  68. dst->blk_addr = src->blk_addr;
  69. dst->version = src->version;
  70. /* should not copy flag here */
  71. }
  72. static inline void set_nat_flag(struct nat_entry *ne,
  73. unsigned int type, bool set)
  74. {
  75. unsigned char mask = 0x01 << type;
  76. if (set)
  77. ne->ni.flag |= mask;
  78. else
  79. ne->ni.flag &= ~mask;
  80. }
  81. static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  82. {
  83. unsigned char mask = 0x01 << type;
  84. return ne->ni.flag & mask;
  85. }
  86. static inline void nat_reset_flag(struct nat_entry *ne)
  87. {
  88. /* these states can be set only after checkpoint was done */
  89. set_nat_flag(ne, IS_CHECKPOINTED, true);
  90. set_nat_flag(ne, HAS_FSYNCED_INODE, false);
  91. set_nat_flag(ne, HAS_LAST_FSYNC, true);
  92. }
  93. static inline void node_info_from_raw_nat(struct node_info *ni,
  94. struct f2fs_nat_entry *raw_ne)
  95. {
  96. ni->ino = le32_to_cpu(raw_ne->ino);
  97. ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  98. ni->version = raw_ne->version;
  99. }
  100. static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
  101. struct node_info *ni)
  102. {
  103. raw_ne->ino = cpu_to_le32(ni->ino);
  104. raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
  105. raw_ne->version = ni->version;
  106. }
  107. static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
  108. {
  109. return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
  110. NM_I(sbi)->dirty_nats_ratio / 100;
  111. }
  112. static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
  113. {
  114. return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
  115. }
  116. static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
  117. {
  118. return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
  119. }
  120. enum mem_type {
  121. FREE_NIDS, /* indicates the free nid list */
  122. NAT_ENTRIES, /* indicates the cached nat entry */
  123. DIRTY_DENTS, /* indicates dirty dentry pages */
  124. INO_ENTRIES, /* indicates inode entries */
  125. EXTENT_CACHE, /* indicates extent cache */
  126. INMEM_PAGES, /* indicates inmemory pages */
  127. BASE_CHECK, /* check kernel status */
  128. };
  129. struct nat_entry_set {
  130. struct list_head set_list; /* link with other nat sets */
  131. struct list_head entry_list; /* link with dirty nat entries */
  132. nid_t set; /* set number*/
  133. unsigned int entry_cnt; /* the # of nat entries in set */
  134. };
  135. struct free_nid {
  136. struct list_head list; /* for free node id list */
  137. nid_t nid; /* node id */
  138. int state; /* in use or not: FREE_NID or PREALLOC_NID */
  139. };
  140. static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  141. {
  142. struct f2fs_nm_info *nm_i = NM_I(sbi);
  143. struct free_nid *fnid;
  144. spin_lock(&nm_i->nid_list_lock);
  145. if (nm_i->nid_cnt[FREE_NID] <= 0) {
  146. spin_unlock(&nm_i->nid_list_lock);
  147. return;
  148. }
  149. fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
  150. *nid = fnid->nid;
  151. spin_unlock(&nm_i->nid_list_lock);
  152. }
  153. /*
  154. * inline functions
  155. */
  156. static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
  157. {
  158. struct f2fs_nm_info *nm_i = NM_I(sbi);
  159. #ifdef CONFIG_F2FS_CHECK_FS
  160. if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
  161. nm_i->bitmap_size))
  162. f2fs_bug_on(sbi, 1);
  163. #endif
  164. memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
  165. }
  166. static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
  167. {
  168. struct f2fs_nm_info *nm_i = NM_I(sbi);
  169. pgoff_t block_off;
  170. pgoff_t block_addr;
  171. /*
  172. * block_off = segment_off * 512 + off_in_segment
  173. * OLD = (segment_off * 512) * 2 + off_in_segment
  174. * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
  175. */
  176. block_off = NAT_BLOCK_OFFSET(start);
  177. block_addr = (pgoff_t)(nm_i->nat_blkaddr +
  178. (block_off << 1) -
  179. (block_off & (sbi->blocks_per_seg - 1)));
  180. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  181. block_addr += sbi->blocks_per_seg;
  182. return block_addr;
  183. }
  184. static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
  185. pgoff_t block_addr)
  186. {
  187. struct f2fs_nm_info *nm_i = NM_I(sbi);
  188. block_addr -= nm_i->nat_blkaddr;
  189. block_addr ^= 1 << sbi->log_blocks_per_seg;
  190. return block_addr + nm_i->nat_blkaddr;
  191. }
  192. static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
  193. {
  194. unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
  195. f2fs_change_bit(block_off, nm_i->nat_bitmap);
  196. #ifdef CONFIG_F2FS_CHECK_FS
  197. f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
  198. #endif
  199. }
  200. static inline nid_t ino_of_node(struct page *node_page)
  201. {
  202. struct f2fs_node *rn = F2FS_NODE(node_page);
  203. return le32_to_cpu(rn->footer.ino);
  204. }
  205. static inline nid_t nid_of_node(struct page *node_page)
  206. {
  207. struct f2fs_node *rn = F2FS_NODE(node_page);
  208. return le32_to_cpu(rn->footer.nid);
  209. }
  210. static inline unsigned int ofs_of_node(struct page *node_page)
  211. {
  212. struct f2fs_node *rn = F2FS_NODE(node_page);
  213. unsigned flag = le32_to_cpu(rn->footer.flag);
  214. return flag >> OFFSET_BIT_SHIFT;
  215. }
  216. static inline __u64 cpver_of_node(struct page *node_page)
  217. {
  218. struct f2fs_node *rn = F2FS_NODE(node_page);
  219. return le64_to_cpu(rn->footer.cp_ver);
  220. }
  221. static inline block_t next_blkaddr_of_node(struct page *node_page)
  222. {
  223. struct f2fs_node *rn = F2FS_NODE(node_page);
  224. return le32_to_cpu(rn->footer.next_blkaddr);
  225. }
  226. static inline void fill_node_footer(struct page *page, nid_t nid,
  227. nid_t ino, unsigned int ofs, bool reset)
  228. {
  229. struct f2fs_node *rn = F2FS_NODE(page);
  230. unsigned int old_flag = 0;
  231. if (reset)
  232. memset(rn, 0, sizeof(*rn));
  233. else
  234. old_flag = le32_to_cpu(rn->footer.flag);
  235. rn->footer.nid = cpu_to_le32(nid);
  236. rn->footer.ino = cpu_to_le32(ino);
  237. /* should remain old flag bits such as COLD_BIT_SHIFT */
  238. rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
  239. (old_flag & OFFSET_BIT_MASK));
  240. }
  241. static inline void copy_node_footer(struct page *dst, struct page *src)
  242. {
  243. struct f2fs_node *src_rn = F2FS_NODE(src);
  244. struct f2fs_node *dst_rn = F2FS_NODE(dst);
  245. memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
  246. }
  247. static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
  248. {
  249. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  250. struct f2fs_node *rn = F2FS_NODE(page);
  251. __u64 cp_ver = cur_cp_version(ckpt);
  252. if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
  253. cp_ver |= (cur_cp_crc(ckpt) << 32);
  254. rn->footer.cp_ver = cpu_to_le64(cp_ver);
  255. rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
  256. }
  257. static inline bool is_recoverable_dnode(struct page *page)
  258. {
  259. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  260. __u64 cp_ver = cur_cp_version(ckpt);
  261. /* Don't care crc part, if fsck.f2fs sets it. */
  262. if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
  263. return (cp_ver << 32) == (cpver_of_node(page) << 32);
  264. if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
  265. cp_ver |= (cur_cp_crc(ckpt) << 32);
  266. return cp_ver == cpver_of_node(page);
  267. }
  268. /*
  269. * f2fs assigns the following node offsets described as (num).
  270. * N = NIDS_PER_BLOCK
  271. *
  272. * Inode block (0)
  273. * |- direct node (1)
  274. * |- direct node (2)
  275. * |- indirect node (3)
  276. * | `- direct node (4 => 4 + N - 1)
  277. * |- indirect node (4 + N)
  278. * | `- direct node (5 + N => 5 + 2N - 1)
  279. * `- double indirect node (5 + 2N)
  280. * `- indirect node (6 + 2N)
  281. * `- direct node
  282. * ......
  283. * `- indirect node ((6 + 2N) + x(N + 1))
  284. * `- direct node
  285. * ......
  286. * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
  287. * `- direct node
  288. */
  289. static inline bool IS_DNODE(struct page *node_page)
  290. {
  291. unsigned int ofs = ofs_of_node(node_page);
  292. if (f2fs_has_xattr_block(ofs))
  293. return true;
  294. if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
  295. ofs == 5 + 2 * NIDS_PER_BLOCK)
  296. return false;
  297. if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
  298. ofs -= 6 + 2 * NIDS_PER_BLOCK;
  299. if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
  300. return false;
  301. }
  302. return true;
  303. }
  304. static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
  305. {
  306. struct f2fs_node *rn = F2FS_NODE(p);
  307. f2fs_wait_on_page_writeback(p, NODE, true);
  308. if (i)
  309. rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
  310. else
  311. rn->in.nid[off] = cpu_to_le32(nid);
  312. return set_page_dirty(p);
  313. }
  314. static inline nid_t get_nid(struct page *p, int off, bool i)
  315. {
  316. struct f2fs_node *rn = F2FS_NODE(p);
  317. if (i)
  318. return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
  319. return le32_to_cpu(rn->in.nid[off]);
  320. }
  321. /*
  322. * Coldness identification:
  323. * - Mark cold files in f2fs_inode_info
  324. * - Mark cold node blocks in their node footer
  325. * - Mark cold data pages in page cache
  326. */
  327. static inline int is_cold_data(struct page *page)
  328. {
  329. return PageChecked(page);
  330. }
  331. static inline void set_cold_data(struct page *page)
  332. {
  333. SetPageChecked(page);
  334. }
  335. static inline void clear_cold_data(struct page *page)
  336. {
  337. ClearPageChecked(page);
  338. }
  339. static inline int is_node(struct page *page, int type)
  340. {
  341. struct f2fs_node *rn = F2FS_NODE(page);
  342. return le32_to_cpu(rn->footer.flag) & (1 << type);
  343. }
  344. #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
  345. #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
  346. #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
  347. static inline int is_inline_node(struct page *page)
  348. {
  349. return PageChecked(page);
  350. }
  351. static inline void set_inline_node(struct page *page)
  352. {
  353. SetPageChecked(page);
  354. }
  355. static inline void clear_inline_node(struct page *page)
  356. {
  357. ClearPageChecked(page);
  358. }
  359. static inline void set_cold_node(struct page *page, bool is_dir)
  360. {
  361. struct f2fs_node *rn = F2FS_NODE(page);
  362. unsigned int flag = le32_to_cpu(rn->footer.flag);
  363. if (is_dir)
  364. flag &= ~(0x1 << COLD_BIT_SHIFT);
  365. else
  366. flag |= (0x1 << COLD_BIT_SHIFT);
  367. rn->footer.flag = cpu_to_le32(flag);
  368. }
  369. static inline void set_mark(struct page *page, int mark, int type)
  370. {
  371. struct f2fs_node *rn = F2FS_NODE(page);
  372. unsigned int flag = le32_to_cpu(rn->footer.flag);
  373. if (mark)
  374. flag |= (0x1 << type);
  375. else
  376. flag &= ~(0x1 << type);
  377. rn->footer.flag = cpu_to_le32(flag);
  378. #ifdef CONFIG_F2FS_CHECK_FS
  379. f2fs_inode_chksum_set(F2FS_P_SB(page), page);
  380. #endif
  381. }
  382. #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
  383. #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)