node.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "xattr.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  25. static struct kmem_cache *nat_entry_slab;
  26. static struct kmem_cache *free_nid_slab;
  27. static struct kmem_cache *nat_entry_set_slab;
  28. static struct kmem_cache *fsync_node_entry_slab;
  29. /*
  30. * Check whether the given nid is within node id range.
  31. */
  32. int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  33. {
  34. if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  35. set_sbi_flag(sbi, SBI_NEED_FSCK);
  36. f2fs_msg(sbi->sb, KERN_WARNING,
  37. "%s: out-of-range nid=%x, run fsck to fix.",
  38. __func__, nid);
  39. return -EFSCORRUPTED;
  40. }
  41. return 0;
  42. }
  43. bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  44. {
  45. struct f2fs_nm_info *nm_i = NM_I(sbi);
  46. struct sysinfo val;
  47. unsigned long avail_ram;
  48. unsigned long mem_size = 0;
  49. bool res = false;
  50. si_meminfo(&val);
  51. /* only uses low memory */
  52. avail_ram = val.totalram - val.totalhigh;
  53. /*
  54. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  55. */
  56. if (type == FREE_NIDS) {
  57. mem_size = (nm_i->nid_cnt[FREE_NID] *
  58. sizeof(struct free_nid)) >> PAGE_SHIFT;
  59. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  60. } else if (type == NAT_ENTRIES) {
  61. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  62. PAGE_SHIFT;
  63. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64. if (excess_cached_nats(sbi))
  65. res = false;
  66. } else if (type == DIRTY_DENTS) {
  67. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  68. return false;
  69. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  70. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  71. } else if (type == INO_ENTRIES) {
  72. int i;
  73. for (i = 0; i < MAX_INO_ENTRY; i++)
  74. mem_size += sbi->im[i].ino_num *
  75. sizeof(struct ino_entry);
  76. mem_size >>= PAGE_SHIFT;
  77. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  78. } else if (type == EXTENT_CACHE) {
  79. mem_size = (atomic_read(&sbi->total_ext_tree) *
  80. sizeof(struct extent_tree) +
  81. atomic_read(&sbi->total_ext_node) *
  82. sizeof(struct extent_node)) >> PAGE_SHIFT;
  83. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  84. } else if (type == INMEM_PAGES) {
  85. /* it allows 20% / total_ram for inmemory pages */
  86. mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  87. res = mem_size < (val.totalram / 5);
  88. } else {
  89. if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  90. return true;
  91. }
  92. return res;
  93. }
  94. static void clear_node_page_dirty(struct page *page)
  95. {
  96. if (PageDirty(page)) {
  97. f2fs_clear_radix_tree_dirty_tag(page);
  98. clear_page_dirty_for_io(page);
  99. dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  100. }
  101. ClearPageUptodate(page);
  102. }
  103. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  104. {
  105. return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
  106. }
  107. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  108. {
  109. struct page *src_page;
  110. struct page *dst_page;
  111. pgoff_t dst_off;
  112. void *src_addr;
  113. void *dst_addr;
  114. struct f2fs_nm_info *nm_i = NM_I(sbi);
  115. dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
  116. /* get current nat block page with lock */
  117. src_page = get_current_nat_page(sbi, nid);
  118. dst_page = f2fs_grab_meta_page(sbi, dst_off);
  119. f2fs_bug_on(sbi, PageDirty(src_page));
  120. src_addr = page_address(src_page);
  121. dst_addr = page_address(dst_page);
  122. memcpy(dst_addr, src_addr, PAGE_SIZE);
  123. set_page_dirty(dst_page);
  124. f2fs_put_page(src_page, 1);
  125. set_to_next_nat(nm_i, nid);
  126. return dst_page;
  127. }
  128. static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
  129. {
  130. struct nat_entry *new;
  131. if (no_fail)
  132. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  133. else
  134. new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  135. if (new) {
  136. nat_set_nid(new, nid);
  137. nat_reset_flag(new);
  138. }
  139. return new;
  140. }
  141. static void __free_nat_entry(struct nat_entry *e)
  142. {
  143. kmem_cache_free(nat_entry_slab, e);
  144. }
  145. /* must be locked by nat_tree_lock */
  146. static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
  147. struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
  148. {
  149. if (no_fail)
  150. f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
  151. else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
  152. return NULL;
  153. if (raw_ne)
  154. node_info_from_raw_nat(&ne->ni, raw_ne);
  155. spin_lock(&nm_i->nat_list_lock);
  156. list_add_tail(&ne->list, &nm_i->nat_entries);
  157. spin_unlock(&nm_i->nat_list_lock);
  158. nm_i->nat_cnt++;
  159. return ne;
  160. }
  161. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  162. {
  163. struct nat_entry *ne;
  164. ne = radix_tree_lookup(&nm_i->nat_root, n);
  165. /* for recent accessed nat entry, move it to tail of lru list */
  166. if (ne && !get_nat_flag(ne, IS_DIRTY)) {
  167. spin_lock(&nm_i->nat_list_lock);
  168. if (!list_empty(&ne->list))
  169. list_move_tail(&ne->list, &nm_i->nat_entries);
  170. spin_unlock(&nm_i->nat_list_lock);
  171. }
  172. return ne;
  173. }
  174. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  175. nid_t start, unsigned int nr, struct nat_entry **ep)
  176. {
  177. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  178. }
  179. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  180. {
  181. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  182. nm_i->nat_cnt--;
  183. __free_nat_entry(e);
  184. }
  185. static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
  186. struct nat_entry *ne)
  187. {
  188. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  189. struct nat_entry_set *head;
  190. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  191. if (!head) {
  192. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
  193. INIT_LIST_HEAD(&head->entry_list);
  194. INIT_LIST_HEAD(&head->set_list);
  195. head->set = set;
  196. head->entry_cnt = 0;
  197. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  198. }
  199. return head;
  200. }
  201. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  202. struct nat_entry *ne)
  203. {
  204. struct nat_entry_set *head;
  205. bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
  206. if (!new_ne)
  207. head = __grab_nat_entry_set(nm_i, ne);
  208. /*
  209. * update entry_cnt in below condition:
  210. * 1. update NEW_ADDR to valid block address;
  211. * 2. update old block address to new one;
  212. */
  213. if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
  214. !get_nat_flag(ne, IS_DIRTY)))
  215. head->entry_cnt++;
  216. set_nat_flag(ne, IS_PREALLOC, new_ne);
  217. if (get_nat_flag(ne, IS_DIRTY))
  218. goto refresh_list;
  219. nm_i->dirty_nat_cnt++;
  220. set_nat_flag(ne, IS_DIRTY, true);
  221. refresh_list:
  222. spin_lock(&nm_i->nat_list_lock);
  223. if (new_ne)
  224. list_del_init(&ne->list);
  225. else
  226. list_move_tail(&ne->list, &head->entry_list);
  227. spin_unlock(&nm_i->nat_list_lock);
  228. }
  229. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  230. struct nat_entry_set *set, struct nat_entry *ne)
  231. {
  232. spin_lock(&nm_i->nat_list_lock);
  233. list_move_tail(&ne->list, &nm_i->nat_entries);
  234. spin_unlock(&nm_i->nat_list_lock);
  235. set_nat_flag(ne, IS_DIRTY, false);
  236. set->entry_cnt--;
  237. nm_i->dirty_nat_cnt--;
  238. }
  239. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  240. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  241. {
  242. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  243. start, nr);
  244. }
  245. bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
  246. {
  247. return NODE_MAPPING(sbi) == page->mapping &&
  248. IS_DNODE(page) && is_cold_node(page);
  249. }
  250. void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
  251. {
  252. spin_lock_init(&sbi->fsync_node_lock);
  253. INIT_LIST_HEAD(&sbi->fsync_node_list);
  254. sbi->fsync_seg_id = 0;
  255. sbi->fsync_node_num = 0;
  256. }
  257. static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
  258. struct page *page)
  259. {
  260. struct fsync_node_entry *fn;
  261. unsigned long flags;
  262. unsigned int seq_id;
  263. fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
  264. get_page(page);
  265. fn->page = page;
  266. INIT_LIST_HEAD(&fn->list);
  267. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  268. list_add_tail(&fn->list, &sbi->fsync_node_list);
  269. fn->seq_id = sbi->fsync_seg_id++;
  270. seq_id = fn->seq_id;
  271. sbi->fsync_node_num++;
  272. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  273. return seq_id;
  274. }
  275. void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
  276. {
  277. struct fsync_node_entry *fn;
  278. unsigned long flags;
  279. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  280. list_for_each_entry(fn, &sbi->fsync_node_list, list) {
  281. if (fn->page == page) {
  282. list_del(&fn->list);
  283. sbi->fsync_node_num--;
  284. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  285. kmem_cache_free(fsync_node_entry_slab, fn);
  286. put_page(page);
  287. return;
  288. }
  289. }
  290. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  291. f2fs_bug_on(sbi, 1);
  292. }
  293. void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
  294. {
  295. unsigned long flags;
  296. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  297. sbi->fsync_seg_id = 0;
  298. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  299. }
  300. int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  301. {
  302. struct f2fs_nm_info *nm_i = NM_I(sbi);
  303. struct nat_entry *e;
  304. bool need = false;
  305. down_read(&nm_i->nat_tree_lock);
  306. e = __lookup_nat_cache(nm_i, nid);
  307. if (e) {
  308. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  309. !get_nat_flag(e, HAS_FSYNCED_INODE))
  310. need = true;
  311. }
  312. up_read(&nm_i->nat_tree_lock);
  313. return need;
  314. }
  315. bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  316. {
  317. struct f2fs_nm_info *nm_i = NM_I(sbi);
  318. struct nat_entry *e;
  319. bool is_cp = true;
  320. down_read(&nm_i->nat_tree_lock);
  321. e = __lookup_nat_cache(nm_i, nid);
  322. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  323. is_cp = false;
  324. up_read(&nm_i->nat_tree_lock);
  325. return is_cp;
  326. }
  327. bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  328. {
  329. struct f2fs_nm_info *nm_i = NM_I(sbi);
  330. struct nat_entry *e;
  331. bool need_update = true;
  332. down_read(&nm_i->nat_tree_lock);
  333. e = __lookup_nat_cache(nm_i, ino);
  334. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  335. (get_nat_flag(e, IS_CHECKPOINTED) ||
  336. get_nat_flag(e, HAS_FSYNCED_INODE)))
  337. need_update = false;
  338. up_read(&nm_i->nat_tree_lock);
  339. return need_update;
  340. }
  341. /* must be locked by nat_tree_lock */
  342. static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
  343. struct f2fs_nat_entry *ne)
  344. {
  345. struct f2fs_nm_info *nm_i = NM_I(sbi);
  346. struct nat_entry *new, *e;
  347. new = __alloc_nat_entry(nid, false);
  348. if (!new)
  349. return;
  350. down_write(&nm_i->nat_tree_lock);
  351. e = __lookup_nat_cache(nm_i, nid);
  352. if (!e)
  353. e = __init_nat_entry(nm_i, new, ne, false);
  354. else
  355. f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
  356. nat_get_blkaddr(e) !=
  357. le32_to_cpu(ne->block_addr) ||
  358. nat_get_version(e) != ne->version);
  359. up_write(&nm_i->nat_tree_lock);
  360. if (e != new)
  361. __free_nat_entry(new);
  362. }
  363. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  364. block_t new_blkaddr, bool fsync_done)
  365. {
  366. struct f2fs_nm_info *nm_i = NM_I(sbi);
  367. struct nat_entry *e;
  368. struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
  369. down_write(&nm_i->nat_tree_lock);
  370. e = __lookup_nat_cache(nm_i, ni->nid);
  371. if (!e) {
  372. e = __init_nat_entry(nm_i, new, NULL, true);
  373. copy_node_info(&e->ni, ni);
  374. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  375. } else if (new_blkaddr == NEW_ADDR) {
  376. /*
  377. * when nid is reallocated,
  378. * previous nat entry can be remained in nat cache.
  379. * So, reinitialize it with new information.
  380. */
  381. copy_node_info(&e->ni, ni);
  382. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  383. }
  384. /* let's free early to reduce memory consumption */
  385. if (e != new)
  386. __free_nat_entry(new);
  387. /* sanity check */
  388. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  389. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  390. new_blkaddr == NULL_ADDR);
  391. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  392. new_blkaddr == NEW_ADDR);
  393. f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
  394. new_blkaddr == NEW_ADDR);
  395. /* increment version no as node is removed */
  396. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  397. unsigned char version = nat_get_version(e);
  398. nat_set_version(e, inc_node_version(version));
  399. }
  400. /* change address */
  401. nat_set_blkaddr(e, new_blkaddr);
  402. if (!is_valid_data_blkaddr(sbi, new_blkaddr))
  403. set_nat_flag(e, IS_CHECKPOINTED, false);
  404. __set_nat_cache_dirty(nm_i, e);
  405. /* update fsync_mark if its inode nat entry is still alive */
  406. if (ni->nid != ni->ino)
  407. e = __lookup_nat_cache(nm_i, ni->ino);
  408. if (e) {
  409. if (fsync_done && ni->nid == ni->ino)
  410. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  411. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  412. }
  413. up_write(&nm_i->nat_tree_lock);
  414. }
  415. int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  416. {
  417. struct f2fs_nm_info *nm_i = NM_I(sbi);
  418. int nr = nr_shrink;
  419. if (!down_write_trylock(&nm_i->nat_tree_lock))
  420. return 0;
  421. spin_lock(&nm_i->nat_list_lock);
  422. while (nr_shrink) {
  423. struct nat_entry *ne;
  424. if (list_empty(&nm_i->nat_entries))
  425. break;
  426. ne = list_first_entry(&nm_i->nat_entries,
  427. struct nat_entry, list);
  428. list_del(&ne->list);
  429. spin_unlock(&nm_i->nat_list_lock);
  430. __del_from_nat_cache(nm_i, ne);
  431. nr_shrink--;
  432. spin_lock(&nm_i->nat_list_lock);
  433. }
  434. spin_unlock(&nm_i->nat_list_lock);
  435. up_write(&nm_i->nat_tree_lock);
  436. return nr - nr_shrink;
  437. }
  438. /*
  439. * This function always returns success
  440. */
  441. int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
  442. struct node_info *ni)
  443. {
  444. struct f2fs_nm_info *nm_i = NM_I(sbi);
  445. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  446. struct f2fs_journal *journal = curseg->journal;
  447. nid_t start_nid = START_NID(nid);
  448. struct f2fs_nat_block *nat_blk;
  449. struct page *page = NULL;
  450. struct f2fs_nat_entry ne;
  451. struct nat_entry *e;
  452. pgoff_t index;
  453. int i;
  454. ni->nid = nid;
  455. /* Check nat cache */
  456. down_read(&nm_i->nat_tree_lock);
  457. e = __lookup_nat_cache(nm_i, nid);
  458. if (e) {
  459. ni->ino = nat_get_ino(e);
  460. ni->blk_addr = nat_get_blkaddr(e);
  461. ni->version = nat_get_version(e);
  462. up_read(&nm_i->nat_tree_lock);
  463. return 0;
  464. }
  465. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  466. /* Check current segment summary */
  467. down_read(&curseg->journal_rwsem);
  468. i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
  469. if (i >= 0) {
  470. ne = nat_in_journal(journal, i);
  471. node_info_from_raw_nat(ni, &ne);
  472. }
  473. up_read(&curseg->journal_rwsem);
  474. if (i >= 0) {
  475. up_read(&nm_i->nat_tree_lock);
  476. goto cache;
  477. }
  478. /* Fill node_info from nat page */
  479. index = current_nat_addr(sbi, nid);
  480. up_read(&nm_i->nat_tree_lock);
  481. page = f2fs_get_meta_page(sbi, index);
  482. if (IS_ERR(page))
  483. return PTR_ERR(page);
  484. nat_blk = (struct f2fs_nat_block *)page_address(page);
  485. ne = nat_blk->entries[nid - start_nid];
  486. node_info_from_raw_nat(ni, &ne);
  487. f2fs_put_page(page, 1);
  488. cache:
  489. /* cache nat entry */
  490. cache_nat_entry(sbi, nid, &ne);
  491. return 0;
  492. }
  493. /*
  494. * readahead MAX_RA_NODE number of node pages.
  495. */
  496. static void f2fs_ra_node_pages(struct page *parent, int start, int n)
  497. {
  498. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  499. struct blk_plug plug;
  500. int i, end;
  501. nid_t nid;
  502. blk_start_plug(&plug);
  503. /* Then, try readahead for siblings of the desired node */
  504. end = start + n;
  505. end = min(end, NIDS_PER_BLOCK);
  506. for (i = start; i < end; i++) {
  507. nid = get_nid(parent, i, false);
  508. f2fs_ra_node_page(sbi, nid);
  509. }
  510. blk_finish_plug(&plug);
  511. }
  512. pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
  513. {
  514. const long direct_index = ADDRS_PER_INODE(dn->inode);
  515. const long direct_blks = ADDRS_PER_BLOCK;
  516. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  517. unsigned int skipped_unit = ADDRS_PER_BLOCK;
  518. int cur_level = dn->cur_level;
  519. int max_level = dn->max_level;
  520. pgoff_t base = 0;
  521. if (!dn->max_level)
  522. return pgofs + 1;
  523. while (max_level-- > cur_level)
  524. skipped_unit *= NIDS_PER_BLOCK;
  525. switch (dn->max_level) {
  526. case 3:
  527. base += 2 * indirect_blks;
  528. case 2:
  529. base += 2 * direct_blks;
  530. case 1:
  531. base += direct_index;
  532. break;
  533. default:
  534. f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
  535. }
  536. return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
  537. }
  538. /*
  539. * The maximum depth is four.
  540. * Offset[0] will have raw inode offset.
  541. */
  542. static int get_node_path(struct inode *inode, long block,
  543. int offset[4], unsigned int noffset[4])
  544. {
  545. const long direct_index = ADDRS_PER_INODE(inode);
  546. const long direct_blks = ADDRS_PER_BLOCK;
  547. const long dptrs_per_blk = NIDS_PER_BLOCK;
  548. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  549. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  550. int n = 0;
  551. int level = 0;
  552. noffset[0] = 0;
  553. if (block < direct_index) {
  554. offset[n] = block;
  555. goto got;
  556. }
  557. block -= direct_index;
  558. if (block < direct_blks) {
  559. offset[n++] = NODE_DIR1_BLOCK;
  560. noffset[n] = 1;
  561. offset[n] = block;
  562. level = 1;
  563. goto got;
  564. }
  565. block -= direct_blks;
  566. if (block < direct_blks) {
  567. offset[n++] = NODE_DIR2_BLOCK;
  568. noffset[n] = 2;
  569. offset[n] = block;
  570. level = 1;
  571. goto got;
  572. }
  573. block -= direct_blks;
  574. if (block < indirect_blks) {
  575. offset[n++] = NODE_IND1_BLOCK;
  576. noffset[n] = 3;
  577. offset[n++] = block / direct_blks;
  578. noffset[n] = 4 + offset[n - 1];
  579. offset[n] = block % direct_blks;
  580. level = 2;
  581. goto got;
  582. }
  583. block -= indirect_blks;
  584. if (block < indirect_blks) {
  585. offset[n++] = NODE_IND2_BLOCK;
  586. noffset[n] = 4 + dptrs_per_blk;
  587. offset[n++] = block / direct_blks;
  588. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  589. offset[n] = block % direct_blks;
  590. level = 2;
  591. goto got;
  592. }
  593. block -= indirect_blks;
  594. if (block < dindirect_blks) {
  595. offset[n++] = NODE_DIND_BLOCK;
  596. noffset[n] = 5 + (dptrs_per_blk * 2);
  597. offset[n++] = block / indirect_blks;
  598. noffset[n] = 6 + (dptrs_per_blk * 2) +
  599. offset[n - 1] * (dptrs_per_blk + 1);
  600. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  601. noffset[n] = 7 + (dptrs_per_blk * 2) +
  602. offset[n - 2] * (dptrs_per_blk + 1) +
  603. offset[n - 1];
  604. offset[n] = block % direct_blks;
  605. level = 3;
  606. goto got;
  607. } else {
  608. return -E2BIG;
  609. }
  610. got:
  611. return level;
  612. }
  613. /*
  614. * Caller should call f2fs_put_dnode(dn).
  615. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  616. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  617. * In the case of RDONLY_NODE, we don't need to care about mutex.
  618. */
  619. int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  620. {
  621. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  622. struct page *npage[4];
  623. struct page *parent = NULL;
  624. int offset[4];
  625. unsigned int noffset[4];
  626. nid_t nids[4];
  627. int level, i = 0;
  628. int err = 0;
  629. level = get_node_path(dn->inode, index, offset, noffset);
  630. if (level < 0)
  631. return level;
  632. nids[0] = dn->inode->i_ino;
  633. npage[0] = dn->inode_page;
  634. if (!npage[0]) {
  635. npage[0] = f2fs_get_node_page(sbi, nids[0]);
  636. if (IS_ERR(npage[0]))
  637. return PTR_ERR(npage[0]);
  638. }
  639. /* if inline_data is set, should not report any block indices */
  640. if (f2fs_has_inline_data(dn->inode) && index) {
  641. err = -ENOENT;
  642. f2fs_put_page(npage[0], 1);
  643. goto release_out;
  644. }
  645. parent = npage[0];
  646. if (level != 0)
  647. nids[1] = get_nid(parent, offset[0], true);
  648. dn->inode_page = npage[0];
  649. dn->inode_page_locked = true;
  650. /* get indirect or direct nodes */
  651. for (i = 1; i <= level; i++) {
  652. bool done = false;
  653. if (!nids[i] && mode == ALLOC_NODE) {
  654. /* alloc new node */
  655. if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
  656. err = -ENOSPC;
  657. goto release_pages;
  658. }
  659. dn->nid = nids[i];
  660. npage[i] = f2fs_new_node_page(dn, noffset[i]);
  661. if (IS_ERR(npage[i])) {
  662. f2fs_alloc_nid_failed(sbi, nids[i]);
  663. err = PTR_ERR(npage[i]);
  664. goto release_pages;
  665. }
  666. set_nid(parent, offset[i - 1], nids[i], i == 1);
  667. f2fs_alloc_nid_done(sbi, nids[i]);
  668. done = true;
  669. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  670. npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
  671. if (IS_ERR(npage[i])) {
  672. err = PTR_ERR(npage[i]);
  673. goto release_pages;
  674. }
  675. done = true;
  676. }
  677. if (i == 1) {
  678. dn->inode_page_locked = false;
  679. unlock_page(parent);
  680. } else {
  681. f2fs_put_page(parent, 1);
  682. }
  683. if (!done) {
  684. npage[i] = f2fs_get_node_page(sbi, nids[i]);
  685. if (IS_ERR(npage[i])) {
  686. err = PTR_ERR(npage[i]);
  687. f2fs_put_page(npage[0], 0);
  688. goto release_out;
  689. }
  690. }
  691. if (i < level) {
  692. parent = npage[i];
  693. nids[i + 1] = get_nid(parent, offset[i], false);
  694. }
  695. }
  696. dn->nid = nids[level];
  697. dn->ofs_in_node = offset[level];
  698. dn->node_page = npage[level];
  699. dn->data_blkaddr = datablock_addr(dn->inode,
  700. dn->node_page, dn->ofs_in_node);
  701. return 0;
  702. release_pages:
  703. f2fs_put_page(parent, 1);
  704. if (i > 1)
  705. f2fs_put_page(npage[0], 0);
  706. release_out:
  707. dn->inode_page = NULL;
  708. dn->node_page = NULL;
  709. if (err == -ENOENT) {
  710. dn->cur_level = i;
  711. dn->max_level = level;
  712. dn->ofs_in_node = offset[level];
  713. }
  714. return err;
  715. }
  716. static int truncate_node(struct dnode_of_data *dn)
  717. {
  718. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  719. struct node_info ni;
  720. int err;
  721. pgoff_t index;
  722. err = f2fs_get_node_info(sbi, dn->nid, &ni);
  723. if (err)
  724. return err;
  725. /* Deallocate node address */
  726. f2fs_invalidate_blocks(sbi, ni.blk_addr);
  727. dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
  728. set_node_addr(sbi, &ni, NULL_ADDR, false);
  729. if (dn->nid == dn->inode->i_ino) {
  730. f2fs_remove_orphan_inode(sbi, dn->nid);
  731. dec_valid_inode_count(sbi);
  732. f2fs_inode_synced(dn->inode);
  733. }
  734. clear_node_page_dirty(dn->node_page);
  735. set_sbi_flag(sbi, SBI_IS_DIRTY);
  736. index = dn->node_page->index;
  737. f2fs_put_page(dn->node_page, 1);
  738. invalidate_mapping_pages(NODE_MAPPING(sbi),
  739. index, index);
  740. dn->node_page = NULL;
  741. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  742. return 0;
  743. }
  744. static int truncate_dnode(struct dnode_of_data *dn)
  745. {
  746. struct page *page;
  747. int err;
  748. if (dn->nid == 0)
  749. return 1;
  750. /* get direct node */
  751. page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  752. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  753. return 1;
  754. else if (IS_ERR(page))
  755. return PTR_ERR(page);
  756. /* Make dnode_of_data for parameter */
  757. dn->node_page = page;
  758. dn->ofs_in_node = 0;
  759. f2fs_truncate_data_blocks(dn);
  760. err = truncate_node(dn);
  761. if (err)
  762. return err;
  763. return 1;
  764. }
  765. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  766. int ofs, int depth)
  767. {
  768. struct dnode_of_data rdn = *dn;
  769. struct page *page;
  770. struct f2fs_node *rn;
  771. nid_t child_nid;
  772. unsigned int child_nofs;
  773. int freed = 0;
  774. int i, ret;
  775. if (dn->nid == 0)
  776. return NIDS_PER_BLOCK + 1;
  777. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  778. page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  779. if (IS_ERR(page)) {
  780. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  781. return PTR_ERR(page);
  782. }
  783. f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
  784. rn = F2FS_NODE(page);
  785. if (depth < 3) {
  786. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  787. child_nid = le32_to_cpu(rn->in.nid[i]);
  788. if (child_nid == 0)
  789. continue;
  790. rdn.nid = child_nid;
  791. ret = truncate_dnode(&rdn);
  792. if (ret < 0)
  793. goto out_err;
  794. if (set_nid(page, i, 0, false))
  795. dn->node_changed = true;
  796. }
  797. } else {
  798. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  799. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  800. child_nid = le32_to_cpu(rn->in.nid[i]);
  801. if (child_nid == 0) {
  802. child_nofs += NIDS_PER_BLOCK + 1;
  803. continue;
  804. }
  805. rdn.nid = child_nid;
  806. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  807. if (ret == (NIDS_PER_BLOCK + 1)) {
  808. if (set_nid(page, i, 0, false))
  809. dn->node_changed = true;
  810. child_nofs += ret;
  811. } else if (ret < 0 && ret != -ENOENT) {
  812. goto out_err;
  813. }
  814. }
  815. freed = child_nofs;
  816. }
  817. if (!ofs) {
  818. /* remove current indirect node */
  819. dn->node_page = page;
  820. ret = truncate_node(dn);
  821. if (ret)
  822. goto out_err;
  823. freed++;
  824. } else {
  825. f2fs_put_page(page, 1);
  826. }
  827. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  828. return freed;
  829. out_err:
  830. f2fs_put_page(page, 1);
  831. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  832. return ret;
  833. }
  834. static int truncate_partial_nodes(struct dnode_of_data *dn,
  835. struct f2fs_inode *ri, int *offset, int depth)
  836. {
  837. struct page *pages[2];
  838. nid_t nid[3];
  839. nid_t child_nid;
  840. int err = 0;
  841. int i;
  842. int idx = depth - 2;
  843. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  844. if (!nid[0])
  845. return 0;
  846. /* get indirect nodes in the path */
  847. for (i = 0; i < idx + 1; i++) {
  848. /* reference count'll be increased */
  849. pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  850. if (IS_ERR(pages[i])) {
  851. err = PTR_ERR(pages[i]);
  852. idx = i - 1;
  853. goto fail;
  854. }
  855. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  856. }
  857. f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
  858. /* free direct nodes linked to a partial indirect node */
  859. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  860. child_nid = get_nid(pages[idx], i, false);
  861. if (!child_nid)
  862. continue;
  863. dn->nid = child_nid;
  864. err = truncate_dnode(dn);
  865. if (err < 0)
  866. goto fail;
  867. if (set_nid(pages[idx], i, 0, false))
  868. dn->node_changed = true;
  869. }
  870. if (offset[idx + 1] == 0) {
  871. dn->node_page = pages[idx];
  872. dn->nid = nid[idx];
  873. err = truncate_node(dn);
  874. if (err)
  875. goto fail;
  876. } else {
  877. f2fs_put_page(pages[idx], 1);
  878. }
  879. offset[idx]++;
  880. offset[idx + 1] = 0;
  881. idx--;
  882. fail:
  883. for (i = idx; i >= 0; i--)
  884. f2fs_put_page(pages[i], 1);
  885. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  886. return err;
  887. }
  888. /*
  889. * All the block addresses of data and nodes should be nullified.
  890. */
  891. int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
  892. {
  893. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  894. int err = 0, cont = 1;
  895. int level, offset[4], noffset[4];
  896. unsigned int nofs = 0;
  897. struct f2fs_inode *ri;
  898. struct dnode_of_data dn;
  899. struct page *page;
  900. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  901. level = get_node_path(inode, from, offset, noffset);
  902. if (level < 0)
  903. return level;
  904. page = f2fs_get_node_page(sbi, inode->i_ino);
  905. if (IS_ERR(page)) {
  906. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  907. return PTR_ERR(page);
  908. }
  909. set_new_dnode(&dn, inode, page, NULL, 0);
  910. unlock_page(page);
  911. ri = F2FS_INODE(page);
  912. switch (level) {
  913. case 0:
  914. case 1:
  915. nofs = noffset[1];
  916. break;
  917. case 2:
  918. nofs = noffset[1];
  919. if (!offset[level - 1])
  920. goto skip_partial;
  921. err = truncate_partial_nodes(&dn, ri, offset, level);
  922. if (err < 0 && err != -ENOENT)
  923. goto fail;
  924. nofs += 1 + NIDS_PER_BLOCK;
  925. break;
  926. case 3:
  927. nofs = 5 + 2 * NIDS_PER_BLOCK;
  928. if (!offset[level - 1])
  929. goto skip_partial;
  930. err = truncate_partial_nodes(&dn, ri, offset, level);
  931. if (err < 0 && err != -ENOENT)
  932. goto fail;
  933. break;
  934. default:
  935. BUG();
  936. }
  937. skip_partial:
  938. while (cont) {
  939. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  940. switch (offset[0]) {
  941. case NODE_DIR1_BLOCK:
  942. case NODE_DIR2_BLOCK:
  943. err = truncate_dnode(&dn);
  944. break;
  945. case NODE_IND1_BLOCK:
  946. case NODE_IND2_BLOCK:
  947. err = truncate_nodes(&dn, nofs, offset[1], 2);
  948. break;
  949. case NODE_DIND_BLOCK:
  950. err = truncate_nodes(&dn, nofs, offset[1], 3);
  951. cont = 0;
  952. break;
  953. default:
  954. BUG();
  955. }
  956. if (err < 0 && err != -ENOENT)
  957. goto fail;
  958. if (offset[1] == 0 &&
  959. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  960. lock_page(page);
  961. BUG_ON(page->mapping != NODE_MAPPING(sbi));
  962. f2fs_wait_on_page_writeback(page, NODE, true);
  963. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  964. set_page_dirty(page);
  965. unlock_page(page);
  966. }
  967. offset[1] = 0;
  968. offset[0]++;
  969. nofs += err;
  970. }
  971. fail:
  972. f2fs_put_page(page, 0);
  973. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  974. return err > 0 ? 0 : err;
  975. }
  976. /* caller must lock inode page */
  977. int f2fs_truncate_xattr_node(struct inode *inode)
  978. {
  979. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  980. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  981. struct dnode_of_data dn;
  982. struct page *npage;
  983. int err;
  984. if (!nid)
  985. return 0;
  986. npage = f2fs_get_node_page(sbi, nid);
  987. if (IS_ERR(npage))
  988. return PTR_ERR(npage);
  989. set_new_dnode(&dn, inode, NULL, npage, nid);
  990. err = truncate_node(&dn);
  991. if (err) {
  992. f2fs_put_page(npage, 1);
  993. return err;
  994. }
  995. f2fs_i_xnid_write(inode, 0);
  996. return 0;
  997. }
  998. /*
  999. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  1000. * f2fs_unlock_op().
  1001. */
  1002. int f2fs_remove_inode_page(struct inode *inode)
  1003. {
  1004. struct dnode_of_data dn;
  1005. int err;
  1006. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  1007. err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  1008. if (err)
  1009. return err;
  1010. err = f2fs_truncate_xattr_node(inode);
  1011. if (err) {
  1012. f2fs_put_dnode(&dn);
  1013. return err;
  1014. }
  1015. /* remove potential inline_data blocks */
  1016. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  1017. S_ISLNK(inode->i_mode))
  1018. f2fs_truncate_data_blocks_range(&dn, 1);
  1019. /* 0 is possible, after f2fs_new_inode() has failed */
  1020. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
  1021. f2fs_put_dnode(&dn);
  1022. return -EIO;
  1023. }
  1024. if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
  1025. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1026. "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
  1027. inode->i_ino,
  1028. (unsigned long long)inode->i_blocks);
  1029. set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
  1030. }
  1031. /* will put inode & node pages */
  1032. err = truncate_node(&dn);
  1033. if (err) {
  1034. f2fs_put_dnode(&dn);
  1035. return err;
  1036. }
  1037. return 0;
  1038. }
  1039. struct page *f2fs_new_inode_page(struct inode *inode)
  1040. {
  1041. struct dnode_of_data dn;
  1042. /* allocate inode page for new inode */
  1043. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  1044. /* caller should f2fs_put_page(page, 1); */
  1045. return f2fs_new_node_page(&dn, 0);
  1046. }
  1047. struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  1048. {
  1049. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1050. struct node_info new_ni;
  1051. struct page *page;
  1052. int err;
  1053. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  1054. return ERR_PTR(-EPERM);
  1055. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
  1056. if (!page)
  1057. return ERR_PTR(-ENOMEM);
  1058. if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
  1059. goto fail;
  1060. #ifdef CONFIG_F2FS_CHECK_FS
  1061. err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
  1062. if (err) {
  1063. dec_valid_node_count(sbi, dn->inode, !ofs);
  1064. goto fail;
  1065. }
  1066. f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
  1067. #endif
  1068. new_ni.nid = dn->nid;
  1069. new_ni.ino = dn->inode->i_ino;
  1070. new_ni.blk_addr = NULL_ADDR;
  1071. new_ni.flag = 0;
  1072. new_ni.version = 0;
  1073. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1074. f2fs_wait_on_page_writeback(page, NODE, true);
  1075. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  1076. set_cold_node(page, S_ISDIR(dn->inode->i_mode));
  1077. if (!PageUptodate(page))
  1078. SetPageUptodate(page);
  1079. if (set_page_dirty(page))
  1080. dn->node_changed = true;
  1081. if (f2fs_has_xattr_block(ofs))
  1082. f2fs_i_xnid_write(dn->inode, dn->nid);
  1083. if (ofs == 0)
  1084. inc_valid_inode_count(sbi);
  1085. return page;
  1086. fail:
  1087. clear_node_page_dirty(page);
  1088. f2fs_put_page(page, 1);
  1089. return ERR_PTR(err);
  1090. }
  1091. /*
  1092. * Caller should do after getting the following values.
  1093. * 0: f2fs_put_page(page, 0)
  1094. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  1095. */
  1096. static int read_node_page(struct page *page, int op_flags)
  1097. {
  1098. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1099. struct node_info ni;
  1100. struct f2fs_io_info fio = {
  1101. .sbi = sbi,
  1102. .type = NODE,
  1103. .op = REQ_OP_READ,
  1104. .op_flags = op_flags,
  1105. .page = page,
  1106. .encrypted_page = NULL,
  1107. };
  1108. int err;
  1109. if (PageUptodate(page)) {
  1110. if (!f2fs_inode_chksum_verify(sbi, page)) {
  1111. ClearPageUptodate(page);
  1112. return -EFSBADCRC;
  1113. }
  1114. return LOCKED_PAGE;
  1115. }
  1116. err = f2fs_get_node_info(sbi, page->index, &ni);
  1117. if (err)
  1118. return err;
  1119. if (unlikely(ni.blk_addr == NULL_ADDR) ||
  1120. is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
  1121. ClearPageUptodate(page);
  1122. return -ENOENT;
  1123. }
  1124. fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
  1125. return f2fs_submit_page_bio(&fio);
  1126. }
  1127. /*
  1128. * Readahead a node page
  1129. */
  1130. void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  1131. {
  1132. struct page *apage;
  1133. int err;
  1134. if (!nid)
  1135. return;
  1136. if (f2fs_check_nid_range(sbi, nid))
  1137. return;
  1138. rcu_read_lock();
  1139. apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
  1140. rcu_read_unlock();
  1141. if (apage)
  1142. return;
  1143. apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1144. if (!apage)
  1145. return;
  1146. err = read_node_page(apage, REQ_RAHEAD);
  1147. f2fs_put_page(apage, err ? 1 : 0);
  1148. }
  1149. static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
  1150. struct page *parent, int start)
  1151. {
  1152. struct page *page;
  1153. int err;
  1154. if (!nid)
  1155. return ERR_PTR(-ENOENT);
  1156. if (f2fs_check_nid_range(sbi, nid))
  1157. return ERR_PTR(-EINVAL);
  1158. repeat:
  1159. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1160. if (!page)
  1161. return ERR_PTR(-ENOMEM);
  1162. err = read_node_page(page, 0);
  1163. if (err < 0) {
  1164. f2fs_put_page(page, 1);
  1165. return ERR_PTR(err);
  1166. } else if (err == LOCKED_PAGE) {
  1167. err = 0;
  1168. goto page_hit;
  1169. }
  1170. if (parent)
  1171. f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
  1172. lock_page(page);
  1173. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1174. f2fs_put_page(page, 1);
  1175. goto repeat;
  1176. }
  1177. if (unlikely(!PageUptodate(page))) {
  1178. err = -EIO;
  1179. goto out_err;
  1180. }
  1181. if (!f2fs_inode_chksum_verify(sbi, page)) {
  1182. err = -EFSBADCRC;
  1183. goto out_err;
  1184. }
  1185. page_hit:
  1186. if(unlikely(nid != nid_of_node(page))) {
  1187. f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
  1188. "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
  1189. nid, nid_of_node(page), ino_of_node(page),
  1190. ofs_of_node(page), cpver_of_node(page),
  1191. next_blkaddr_of_node(page));
  1192. err = -EINVAL;
  1193. out_err:
  1194. ClearPageUptodate(page);
  1195. f2fs_put_page(page, 1);
  1196. return ERR_PTR(err);
  1197. }
  1198. return page;
  1199. }
  1200. struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  1201. {
  1202. return __get_node_page(sbi, nid, NULL, 0);
  1203. }
  1204. struct page *f2fs_get_node_page_ra(struct page *parent, int start)
  1205. {
  1206. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  1207. nid_t nid = get_nid(parent, start, false);
  1208. return __get_node_page(sbi, nid, parent, start);
  1209. }
  1210. static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
  1211. {
  1212. struct inode *inode;
  1213. struct page *page;
  1214. int ret;
  1215. /* should flush inline_data before evict_inode */
  1216. inode = ilookup(sbi->sb, ino);
  1217. if (!inode)
  1218. return;
  1219. page = f2fs_pagecache_get_page(inode->i_mapping, 0,
  1220. FGP_LOCK|FGP_NOWAIT, 0);
  1221. if (!page)
  1222. goto iput_out;
  1223. if (!PageUptodate(page))
  1224. goto page_out;
  1225. if (!PageDirty(page))
  1226. goto page_out;
  1227. if (!clear_page_dirty_for_io(page))
  1228. goto page_out;
  1229. ret = f2fs_write_inline_data(inode, page);
  1230. inode_dec_dirty_pages(inode);
  1231. f2fs_remove_dirty_inode(inode);
  1232. if (ret)
  1233. set_page_dirty(page);
  1234. page_out:
  1235. f2fs_put_page(page, 1);
  1236. iput_out:
  1237. iput(inode);
  1238. }
  1239. static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
  1240. {
  1241. pgoff_t index;
  1242. struct pagevec pvec;
  1243. struct page *last_page = NULL;
  1244. int nr_pages;
  1245. pagevec_init(&pvec);
  1246. index = 0;
  1247. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1248. PAGECACHE_TAG_DIRTY))) {
  1249. int i;
  1250. for (i = 0; i < nr_pages; i++) {
  1251. struct page *page = pvec.pages[i];
  1252. if (unlikely(f2fs_cp_error(sbi))) {
  1253. f2fs_put_page(last_page, 0);
  1254. pagevec_release(&pvec);
  1255. return ERR_PTR(-EIO);
  1256. }
  1257. if (!IS_DNODE(page) || !is_cold_node(page))
  1258. continue;
  1259. if (ino_of_node(page) != ino)
  1260. continue;
  1261. lock_page(page);
  1262. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1263. continue_unlock:
  1264. unlock_page(page);
  1265. continue;
  1266. }
  1267. if (ino_of_node(page) != ino)
  1268. goto continue_unlock;
  1269. if (!PageDirty(page)) {
  1270. /* someone wrote it for us */
  1271. goto continue_unlock;
  1272. }
  1273. if (last_page)
  1274. f2fs_put_page(last_page, 0);
  1275. get_page(page);
  1276. last_page = page;
  1277. unlock_page(page);
  1278. }
  1279. pagevec_release(&pvec);
  1280. cond_resched();
  1281. }
  1282. return last_page;
  1283. }
  1284. static int __write_node_page(struct page *page, bool atomic, bool *submitted,
  1285. struct writeback_control *wbc, bool do_balance,
  1286. enum iostat_type io_type, unsigned int *seq_id)
  1287. {
  1288. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1289. nid_t nid;
  1290. struct node_info ni;
  1291. struct f2fs_io_info fio = {
  1292. .sbi = sbi,
  1293. .ino = ino_of_node(page),
  1294. .type = NODE,
  1295. .op = REQ_OP_WRITE,
  1296. .op_flags = wbc_to_write_flags(wbc),
  1297. .page = page,
  1298. .encrypted_page = NULL,
  1299. .submitted = false,
  1300. .io_type = io_type,
  1301. .io_wbc = wbc,
  1302. };
  1303. unsigned int seq;
  1304. trace_f2fs_writepage(page, NODE);
  1305. if (unlikely(f2fs_cp_error(sbi)))
  1306. goto redirty_out;
  1307. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1308. goto redirty_out;
  1309. if (wbc->sync_mode == WB_SYNC_NONE &&
  1310. IS_DNODE(page) && is_cold_node(page))
  1311. goto redirty_out;
  1312. /* get old block addr of this node page */
  1313. nid = nid_of_node(page);
  1314. f2fs_bug_on(sbi, page->index != nid);
  1315. if (f2fs_get_node_info(sbi, nid, &ni))
  1316. goto redirty_out;
  1317. if (wbc->for_reclaim) {
  1318. if (!down_read_trylock(&sbi->node_write))
  1319. goto redirty_out;
  1320. } else {
  1321. down_read(&sbi->node_write);
  1322. }
  1323. /* This page is already truncated */
  1324. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1325. ClearPageUptodate(page);
  1326. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1327. up_read(&sbi->node_write);
  1328. unlock_page(page);
  1329. return 0;
  1330. }
  1331. if (__is_valid_data_blkaddr(ni.blk_addr) &&
  1332. !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
  1333. up_read(&sbi->node_write);
  1334. goto redirty_out;
  1335. }
  1336. if (atomic && !test_opt(sbi, NOBARRIER))
  1337. fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  1338. set_page_writeback(page);
  1339. ClearPageError(page);
  1340. if (f2fs_in_warm_node_list(sbi, page)) {
  1341. seq = f2fs_add_fsync_node_entry(sbi, page);
  1342. if (seq_id)
  1343. *seq_id = seq;
  1344. }
  1345. fio.old_blkaddr = ni.blk_addr;
  1346. f2fs_do_write_node_page(nid, &fio);
  1347. set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
  1348. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1349. up_read(&sbi->node_write);
  1350. if (wbc->for_reclaim) {
  1351. f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
  1352. page->index, NODE);
  1353. submitted = NULL;
  1354. }
  1355. unlock_page(page);
  1356. if (unlikely(f2fs_cp_error(sbi))) {
  1357. f2fs_submit_merged_write(sbi, NODE);
  1358. submitted = NULL;
  1359. }
  1360. if (submitted)
  1361. *submitted = fio.submitted;
  1362. if (do_balance)
  1363. f2fs_balance_fs(sbi, false);
  1364. return 0;
  1365. redirty_out:
  1366. redirty_page_for_writepage(wbc, page);
  1367. return AOP_WRITEPAGE_ACTIVATE;
  1368. }
  1369. void f2fs_move_node_page(struct page *node_page, int gc_type)
  1370. {
  1371. if (gc_type == FG_GC) {
  1372. struct writeback_control wbc = {
  1373. .sync_mode = WB_SYNC_ALL,
  1374. .nr_to_write = 1,
  1375. .for_reclaim = 0,
  1376. };
  1377. set_page_dirty(node_page);
  1378. f2fs_wait_on_page_writeback(node_page, NODE, true);
  1379. f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
  1380. if (!clear_page_dirty_for_io(node_page))
  1381. goto out_page;
  1382. if (__write_node_page(node_page, false, NULL,
  1383. &wbc, false, FS_GC_NODE_IO, NULL))
  1384. unlock_page(node_page);
  1385. goto release_page;
  1386. } else {
  1387. /* set page dirty and write it */
  1388. if (!PageWriteback(node_page))
  1389. set_page_dirty(node_page);
  1390. }
  1391. out_page:
  1392. unlock_page(node_page);
  1393. release_page:
  1394. f2fs_put_page(node_page, 0);
  1395. }
  1396. static int f2fs_write_node_page(struct page *page,
  1397. struct writeback_control *wbc)
  1398. {
  1399. return __write_node_page(page, false, NULL, wbc, false,
  1400. FS_NODE_IO, NULL);
  1401. }
  1402. int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
  1403. struct writeback_control *wbc, bool atomic,
  1404. unsigned int *seq_id)
  1405. {
  1406. pgoff_t index;
  1407. pgoff_t last_idx = ULONG_MAX;
  1408. struct pagevec pvec;
  1409. int ret = 0;
  1410. struct page *last_page = NULL;
  1411. bool marked = false;
  1412. nid_t ino = inode->i_ino;
  1413. int nr_pages;
  1414. if (atomic) {
  1415. last_page = last_fsync_dnode(sbi, ino);
  1416. if (IS_ERR_OR_NULL(last_page))
  1417. return PTR_ERR_OR_ZERO(last_page);
  1418. }
  1419. retry:
  1420. pagevec_init(&pvec);
  1421. index = 0;
  1422. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1423. PAGECACHE_TAG_DIRTY))) {
  1424. int i;
  1425. for (i = 0; i < nr_pages; i++) {
  1426. struct page *page = pvec.pages[i];
  1427. bool submitted = false;
  1428. if (unlikely(f2fs_cp_error(sbi))) {
  1429. f2fs_put_page(last_page, 0);
  1430. pagevec_release(&pvec);
  1431. ret = -EIO;
  1432. goto out;
  1433. }
  1434. if (!IS_DNODE(page) || !is_cold_node(page))
  1435. continue;
  1436. if (ino_of_node(page) != ino)
  1437. continue;
  1438. lock_page(page);
  1439. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1440. continue_unlock:
  1441. unlock_page(page);
  1442. continue;
  1443. }
  1444. if (ino_of_node(page) != ino)
  1445. goto continue_unlock;
  1446. if (!PageDirty(page) && page != last_page) {
  1447. /* someone wrote it for us */
  1448. goto continue_unlock;
  1449. }
  1450. f2fs_wait_on_page_writeback(page, NODE, true);
  1451. BUG_ON(PageWriteback(page));
  1452. set_fsync_mark(page, 0);
  1453. set_dentry_mark(page, 0);
  1454. if (!atomic || page == last_page) {
  1455. set_fsync_mark(page, 1);
  1456. if (IS_INODE(page)) {
  1457. if (is_inode_flag_set(inode,
  1458. FI_DIRTY_INODE))
  1459. f2fs_update_inode(inode, page);
  1460. set_dentry_mark(page,
  1461. f2fs_need_dentry_mark(sbi, ino));
  1462. }
  1463. /* may be written by other thread */
  1464. if (!PageDirty(page))
  1465. set_page_dirty(page);
  1466. }
  1467. if (!clear_page_dirty_for_io(page))
  1468. goto continue_unlock;
  1469. ret = __write_node_page(page, atomic &&
  1470. page == last_page,
  1471. &submitted, wbc, true,
  1472. FS_NODE_IO, seq_id);
  1473. if (ret) {
  1474. unlock_page(page);
  1475. f2fs_put_page(last_page, 0);
  1476. break;
  1477. } else if (submitted) {
  1478. last_idx = page->index;
  1479. }
  1480. if (page == last_page) {
  1481. f2fs_put_page(page, 0);
  1482. marked = true;
  1483. break;
  1484. }
  1485. }
  1486. pagevec_release(&pvec);
  1487. cond_resched();
  1488. if (ret || marked)
  1489. break;
  1490. }
  1491. if (!ret && atomic && !marked) {
  1492. f2fs_msg(sbi->sb, KERN_DEBUG,
  1493. "Retry to write fsync mark: ino=%u, idx=%lx",
  1494. ino, last_page->index);
  1495. lock_page(last_page);
  1496. f2fs_wait_on_page_writeback(last_page, NODE, true);
  1497. set_page_dirty(last_page);
  1498. unlock_page(last_page);
  1499. goto retry;
  1500. }
  1501. out:
  1502. if (last_idx != ULONG_MAX)
  1503. f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
  1504. return ret ? -EIO: 0;
  1505. }
  1506. int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
  1507. struct writeback_control *wbc,
  1508. bool do_balance, enum iostat_type io_type)
  1509. {
  1510. pgoff_t index;
  1511. struct pagevec pvec;
  1512. int step = 0;
  1513. int nwritten = 0;
  1514. int ret = 0;
  1515. int nr_pages, done = 0;
  1516. pagevec_init(&pvec);
  1517. next_step:
  1518. index = 0;
  1519. while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
  1520. NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
  1521. int i;
  1522. for (i = 0; i < nr_pages; i++) {
  1523. struct page *page = pvec.pages[i];
  1524. bool submitted = false;
  1525. /* give a priority to WB_SYNC threads */
  1526. if (atomic_read(&sbi->wb_sync_req[NODE]) &&
  1527. wbc->sync_mode == WB_SYNC_NONE) {
  1528. done = 1;
  1529. break;
  1530. }
  1531. /*
  1532. * flushing sequence with step:
  1533. * 0. indirect nodes
  1534. * 1. dentry dnodes
  1535. * 2. file dnodes
  1536. */
  1537. if (step == 0 && IS_DNODE(page))
  1538. continue;
  1539. if (step == 1 && (!IS_DNODE(page) ||
  1540. is_cold_node(page)))
  1541. continue;
  1542. if (step == 2 && (!IS_DNODE(page) ||
  1543. !is_cold_node(page)))
  1544. continue;
  1545. lock_node:
  1546. if (wbc->sync_mode == WB_SYNC_ALL)
  1547. lock_page(page);
  1548. else if (!trylock_page(page))
  1549. continue;
  1550. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1551. continue_unlock:
  1552. unlock_page(page);
  1553. continue;
  1554. }
  1555. if (!PageDirty(page)) {
  1556. /* someone wrote it for us */
  1557. goto continue_unlock;
  1558. }
  1559. /* flush inline_data */
  1560. if (is_inline_node(page)) {
  1561. clear_inline_node(page);
  1562. unlock_page(page);
  1563. flush_inline_data(sbi, ino_of_node(page));
  1564. goto lock_node;
  1565. }
  1566. f2fs_wait_on_page_writeback(page, NODE, true);
  1567. BUG_ON(PageWriteback(page));
  1568. if (!clear_page_dirty_for_io(page))
  1569. goto continue_unlock;
  1570. set_fsync_mark(page, 0);
  1571. set_dentry_mark(page, 0);
  1572. ret = __write_node_page(page, false, &submitted,
  1573. wbc, do_balance, io_type, NULL);
  1574. if (ret)
  1575. unlock_page(page);
  1576. else if (submitted)
  1577. nwritten++;
  1578. if (--wbc->nr_to_write == 0)
  1579. break;
  1580. }
  1581. pagevec_release(&pvec);
  1582. cond_resched();
  1583. if (wbc->nr_to_write == 0) {
  1584. step = 2;
  1585. break;
  1586. }
  1587. }
  1588. if (step < 2) {
  1589. if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
  1590. goto out;
  1591. step++;
  1592. goto next_step;
  1593. }
  1594. out:
  1595. if (nwritten)
  1596. f2fs_submit_merged_write(sbi, NODE);
  1597. if (unlikely(f2fs_cp_error(sbi)))
  1598. return -EIO;
  1599. return ret;
  1600. }
  1601. int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
  1602. unsigned int seq_id)
  1603. {
  1604. struct fsync_node_entry *fn;
  1605. struct page *page;
  1606. struct list_head *head = &sbi->fsync_node_list;
  1607. unsigned long flags;
  1608. unsigned int cur_seq_id = 0;
  1609. int ret2, ret = 0;
  1610. while (seq_id && cur_seq_id < seq_id) {
  1611. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  1612. if (list_empty(head)) {
  1613. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1614. break;
  1615. }
  1616. fn = list_first_entry(head, struct fsync_node_entry, list);
  1617. if (fn->seq_id > seq_id) {
  1618. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1619. break;
  1620. }
  1621. cur_seq_id = fn->seq_id;
  1622. page = fn->page;
  1623. get_page(page);
  1624. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1625. f2fs_wait_on_page_writeback(page, NODE, true);
  1626. if (TestClearPageError(page))
  1627. ret = -EIO;
  1628. put_page(page);
  1629. if (ret)
  1630. break;
  1631. }
  1632. ret2 = filemap_check_errors(NODE_MAPPING(sbi));
  1633. if (!ret)
  1634. ret = ret2;
  1635. return ret;
  1636. }
  1637. static int f2fs_write_node_pages(struct address_space *mapping,
  1638. struct writeback_control *wbc)
  1639. {
  1640. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1641. struct blk_plug plug;
  1642. long diff;
  1643. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1644. goto skip_write;
  1645. /* balancing f2fs's metadata in background */
  1646. f2fs_balance_fs_bg(sbi);
  1647. /* collect a number of dirty node pages and write together */
  1648. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1649. goto skip_write;
  1650. if (wbc->sync_mode == WB_SYNC_ALL)
  1651. atomic_inc(&sbi->wb_sync_req[NODE]);
  1652. else if (atomic_read(&sbi->wb_sync_req[NODE]))
  1653. goto skip_write;
  1654. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1655. diff = nr_pages_to_write(sbi, NODE, wbc);
  1656. blk_start_plug(&plug);
  1657. f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
  1658. blk_finish_plug(&plug);
  1659. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1660. if (wbc->sync_mode == WB_SYNC_ALL)
  1661. atomic_dec(&sbi->wb_sync_req[NODE]);
  1662. return 0;
  1663. skip_write:
  1664. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1665. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1666. return 0;
  1667. }
  1668. static int f2fs_set_node_page_dirty(struct page *page)
  1669. {
  1670. trace_f2fs_set_page_dirty(page, NODE);
  1671. if (!PageUptodate(page))
  1672. SetPageUptodate(page);
  1673. #ifdef CONFIG_F2FS_CHECK_FS
  1674. if (IS_INODE(page))
  1675. f2fs_inode_chksum_set(F2FS_P_SB(page), page);
  1676. #endif
  1677. if (!PageDirty(page)) {
  1678. __set_page_dirty_nobuffers(page);
  1679. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1680. SetPagePrivate(page);
  1681. f2fs_trace_pid(page);
  1682. return 1;
  1683. }
  1684. return 0;
  1685. }
  1686. /*
  1687. * Structure of the f2fs node operations
  1688. */
  1689. const struct address_space_operations f2fs_node_aops = {
  1690. .writepage = f2fs_write_node_page,
  1691. .writepages = f2fs_write_node_pages,
  1692. .set_page_dirty = f2fs_set_node_page_dirty,
  1693. .invalidatepage = f2fs_invalidate_page,
  1694. .releasepage = f2fs_release_page,
  1695. #ifdef CONFIG_MIGRATION
  1696. .migratepage = f2fs_migrate_page,
  1697. #endif
  1698. };
  1699. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1700. nid_t n)
  1701. {
  1702. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1703. }
  1704. static int __insert_free_nid(struct f2fs_sb_info *sbi,
  1705. struct free_nid *i, enum nid_state state)
  1706. {
  1707. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1708. int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
  1709. if (err)
  1710. return err;
  1711. f2fs_bug_on(sbi, state != i->state);
  1712. nm_i->nid_cnt[state]++;
  1713. if (state == FREE_NID)
  1714. list_add_tail(&i->list, &nm_i->free_nid_list);
  1715. return 0;
  1716. }
  1717. static void __remove_free_nid(struct f2fs_sb_info *sbi,
  1718. struct free_nid *i, enum nid_state state)
  1719. {
  1720. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1721. f2fs_bug_on(sbi, state != i->state);
  1722. nm_i->nid_cnt[state]--;
  1723. if (state == FREE_NID)
  1724. list_del(&i->list);
  1725. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1726. }
  1727. static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
  1728. enum nid_state org_state, enum nid_state dst_state)
  1729. {
  1730. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1731. f2fs_bug_on(sbi, org_state != i->state);
  1732. i->state = dst_state;
  1733. nm_i->nid_cnt[org_state]--;
  1734. nm_i->nid_cnt[dst_state]++;
  1735. switch (dst_state) {
  1736. case PREALLOC_NID:
  1737. list_del(&i->list);
  1738. break;
  1739. case FREE_NID:
  1740. list_add_tail(&i->list, &nm_i->free_nid_list);
  1741. break;
  1742. default:
  1743. BUG_ON(1);
  1744. }
  1745. }
  1746. static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
  1747. bool set, bool build)
  1748. {
  1749. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1750. unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
  1751. unsigned int nid_ofs = nid - START_NID(nid);
  1752. if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
  1753. return;
  1754. if (set) {
  1755. if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1756. return;
  1757. __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1758. nm_i->free_nid_count[nat_ofs]++;
  1759. } else {
  1760. if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1761. return;
  1762. __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1763. if (!build)
  1764. nm_i->free_nid_count[nat_ofs]--;
  1765. }
  1766. }
  1767. /* return if the nid is recognized as free */
  1768. static bool add_free_nid(struct f2fs_sb_info *sbi,
  1769. nid_t nid, bool build, bool update)
  1770. {
  1771. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1772. struct free_nid *i, *e;
  1773. struct nat_entry *ne;
  1774. int err = -EINVAL;
  1775. bool ret = false;
  1776. /* 0 nid should not be used */
  1777. if (unlikely(nid == 0))
  1778. return false;
  1779. if (unlikely(f2fs_check_nid_range(sbi, nid)))
  1780. return false;
  1781. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1782. i->nid = nid;
  1783. i->state = FREE_NID;
  1784. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  1785. spin_lock(&nm_i->nid_list_lock);
  1786. if (build) {
  1787. /*
  1788. * Thread A Thread B
  1789. * - f2fs_create
  1790. * - f2fs_new_inode
  1791. * - f2fs_alloc_nid
  1792. * - __insert_nid_to_list(PREALLOC_NID)
  1793. * - f2fs_balance_fs_bg
  1794. * - f2fs_build_free_nids
  1795. * - __f2fs_build_free_nids
  1796. * - scan_nat_page
  1797. * - add_free_nid
  1798. * - __lookup_nat_cache
  1799. * - f2fs_add_link
  1800. * - f2fs_init_inode_metadata
  1801. * - f2fs_new_inode_page
  1802. * - f2fs_new_node_page
  1803. * - set_node_addr
  1804. * - f2fs_alloc_nid_done
  1805. * - __remove_nid_from_list(PREALLOC_NID)
  1806. * - __insert_nid_to_list(FREE_NID)
  1807. */
  1808. ne = __lookup_nat_cache(nm_i, nid);
  1809. if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1810. nat_get_blkaddr(ne) != NULL_ADDR))
  1811. goto err_out;
  1812. e = __lookup_free_nid_list(nm_i, nid);
  1813. if (e) {
  1814. if (e->state == FREE_NID)
  1815. ret = true;
  1816. goto err_out;
  1817. }
  1818. }
  1819. ret = true;
  1820. err = __insert_free_nid(sbi, i, FREE_NID);
  1821. err_out:
  1822. if (update) {
  1823. update_free_nid_bitmap(sbi, nid, ret, build);
  1824. if (!build)
  1825. nm_i->available_nids++;
  1826. }
  1827. spin_unlock(&nm_i->nid_list_lock);
  1828. radix_tree_preload_end();
  1829. if (err)
  1830. kmem_cache_free(free_nid_slab, i);
  1831. return ret;
  1832. }
  1833. static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
  1834. {
  1835. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1836. struct free_nid *i;
  1837. bool need_free = false;
  1838. spin_lock(&nm_i->nid_list_lock);
  1839. i = __lookup_free_nid_list(nm_i, nid);
  1840. if (i && i->state == FREE_NID) {
  1841. __remove_free_nid(sbi, i, FREE_NID);
  1842. need_free = true;
  1843. }
  1844. spin_unlock(&nm_i->nid_list_lock);
  1845. if (need_free)
  1846. kmem_cache_free(free_nid_slab, i);
  1847. }
  1848. static int scan_nat_page(struct f2fs_sb_info *sbi,
  1849. struct page *nat_page, nid_t start_nid)
  1850. {
  1851. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1852. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1853. block_t blk_addr;
  1854. unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
  1855. int i;
  1856. __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
  1857. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1858. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1859. if (unlikely(start_nid >= nm_i->max_nid))
  1860. break;
  1861. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1862. if (blk_addr == NEW_ADDR)
  1863. return -EINVAL;
  1864. if (blk_addr == NULL_ADDR) {
  1865. add_free_nid(sbi, start_nid, true, true);
  1866. } else {
  1867. spin_lock(&NM_I(sbi)->nid_list_lock);
  1868. update_free_nid_bitmap(sbi, start_nid, false, true);
  1869. spin_unlock(&NM_I(sbi)->nid_list_lock);
  1870. }
  1871. }
  1872. return 0;
  1873. }
  1874. static void scan_curseg_cache(struct f2fs_sb_info *sbi)
  1875. {
  1876. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1877. struct f2fs_journal *journal = curseg->journal;
  1878. int i;
  1879. down_read(&curseg->journal_rwsem);
  1880. for (i = 0; i < nats_in_cursum(journal); i++) {
  1881. block_t addr;
  1882. nid_t nid;
  1883. addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
  1884. nid = le32_to_cpu(nid_in_journal(journal, i));
  1885. if (addr == NULL_ADDR)
  1886. add_free_nid(sbi, nid, true, false);
  1887. else
  1888. remove_free_nid(sbi, nid);
  1889. }
  1890. up_read(&curseg->journal_rwsem);
  1891. }
  1892. static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
  1893. {
  1894. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1895. unsigned int i, idx;
  1896. nid_t nid;
  1897. down_read(&nm_i->nat_tree_lock);
  1898. for (i = 0; i < nm_i->nat_blocks; i++) {
  1899. if (!test_bit_le(i, nm_i->nat_block_bitmap))
  1900. continue;
  1901. if (!nm_i->free_nid_count[i])
  1902. continue;
  1903. for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
  1904. idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
  1905. NAT_ENTRY_PER_BLOCK, idx);
  1906. if (idx >= NAT_ENTRY_PER_BLOCK)
  1907. break;
  1908. nid = i * NAT_ENTRY_PER_BLOCK + idx;
  1909. add_free_nid(sbi, nid, true, false);
  1910. if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
  1911. goto out;
  1912. }
  1913. }
  1914. out:
  1915. scan_curseg_cache(sbi);
  1916. up_read(&nm_i->nat_tree_lock);
  1917. }
  1918. static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
  1919. bool sync, bool mount)
  1920. {
  1921. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1922. int i = 0, ret;
  1923. nid_t nid = nm_i->next_scan_nid;
  1924. if (unlikely(nid >= nm_i->max_nid))
  1925. nid = 0;
  1926. /* Enough entries */
  1927. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1928. return 0;
  1929. if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
  1930. return 0;
  1931. if (!mount) {
  1932. /* try to find free nids in free_nid_bitmap */
  1933. scan_free_nid_bits(sbi);
  1934. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1935. return 0;
  1936. }
  1937. /* readahead nat pages to be scanned */
  1938. f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
  1939. META_NAT, true);
  1940. down_read(&nm_i->nat_tree_lock);
  1941. while (1) {
  1942. if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
  1943. nm_i->nat_block_bitmap)) {
  1944. struct page *page = get_current_nat_page(sbi, nid);
  1945. ret = scan_nat_page(sbi, page, nid);
  1946. f2fs_put_page(page, 1);
  1947. if (ret) {
  1948. up_read(&nm_i->nat_tree_lock);
  1949. f2fs_bug_on(sbi, !mount);
  1950. f2fs_msg(sbi->sb, KERN_ERR,
  1951. "NAT is corrupt, run fsck to fix it");
  1952. return -EINVAL;
  1953. }
  1954. }
  1955. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1956. if (unlikely(nid >= nm_i->max_nid))
  1957. nid = 0;
  1958. if (++i >= FREE_NID_PAGES)
  1959. break;
  1960. }
  1961. /* go to the next free nat pages to find free nids abundantly */
  1962. nm_i->next_scan_nid = nid;
  1963. /* find free nids from current sum_pages */
  1964. scan_curseg_cache(sbi);
  1965. up_read(&nm_i->nat_tree_lock);
  1966. f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
  1967. nm_i->ra_nid_pages, META_NAT, false);
  1968. return 0;
  1969. }
  1970. int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1971. {
  1972. int ret;
  1973. mutex_lock(&NM_I(sbi)->build_lock);
  1974. ret = __f2fs_build_free_nids(sbi, sync, mount);
  1975. mutex_unlock(&NM_I(sbi)->build_lock);
  1976. return ret;
  1977. }
  1978. /*
  1979. * If this function returns success, caller can obtain a new nid
  1980. * from second parameter of this function.
  1981. * The returned nid could be used ino as well as nid when inode is created.
  1982. */
  1983. bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1984. {
  1985. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1986. struct free_nid *i = NULL;
  1987. retry:
  1988. if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
  1989. f2fs_show_injection_info(FAULT_ALLOC_NID);
  1990. return false;
  1991. }
  1992. spin_lock(&nm_i->nid_list_lock);
  1993. if (unlikely(nm_i->available_nids == 0)) {
  1994. spin_unlock(&nm_i->nid_list_lock);
  1995. return false;
  1996. }
  1997. /* We should not use stale free nids created by f2fs_build_free_nids */
  1998. if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
  1999. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  2000. i = list_first_entry(&nm_i->free_nid_list,
  2001. struct free_nid, list);
  2002. *nid = i->nid;
  2003. __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
  2004. nm_i->available_nids--;
  2005. update_free_nid_bitmap(sbi, *nid, false, false);
  2006. spin_unlock(&nm_i->nid_list_lock);
  2007. return true;
  2008. }
  2009. spin_unlock(&nm_i->nid_list_lock);
  2010. /* Let's scan nat pages and its caches to get free nids */
  2011. if (!f2fs_build_free_nids(sbi, true, false))
  2012. goto retry;
  2013. return false;
  2014. }
  2015. /*
  2016. * f2fs_alloc_nid() should be called prior to this function.
  2017. */
  2018. void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  2019. {
  2020. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2021. struct free_nid *i;
  2022. spin_lock(&nm_i->nid_list_lock);
  2023. i = __lookup_free_nid_list(nm_i, nid);
  2024. f2fs_bug_on(sbi, !i);
  2025. __remove_free_nid(sbi, i, PREALLOC_NID);
  2026. spin_unlock(&nm_i->nid_list_lock);
  2027. kmem_cache_free(free_nid_slab, i);
  2028. }
  2029. /*
  2030. * f2fs_alloc_nid() should be called prior to this function.
  2031. */
  2032. void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  2033. {
  2034. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2035. struct free_nid *i;
  2036. bool need_free = false;
  2037. if (!nid)
  2038. return;
  2039. spin_lock(&nm_i->nid_list_lock);
  2040. i = __lookup_free_nid_list(nm_i, nid);
  2041. f2fs_bug_on(sbi, !i);
  2042. if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
  2043. __remove_free_nid(sbi, i, PREALLOC_NID);
  2044. need_free = true;
  2045. } else {
  2046. __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
  2047. }
  2048. nm_i->available_nids++;
  2049. update_free_nid_bitmap(sbi, nid, true, false);
  2050. spin_unlock(&nm_i->nid_list_lock);
  2051. if (need_free)
  2052. kmem_cache_free(free_nid_slab, i);
  2053. }
  2054. int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  2055. {
  2056. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2057. struct free_nid *i, *next;
  2058. int nr = nr_shrink;
  2059. if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  2060. return 0;
  2061. if (!mutex_trylock(&nm_i->build_lock))
  2062. return 0;
  2063. spin_lock(&nm_i->nid_list_lock);
  2064. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  2065. if (nr_shrink <= 0 ||
  2066. nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  2067. break;
  2068. __remove_free_nid(sbi, i, FREE_NID);
  2069. kmem_cache_free(free_nid_slab, i);
  2070. nr_shrink--;
  2071. }
  2072. spin_unlock(&nm_i->nid_list_lock);
  2073. mutex_unlock(&nm_i->build_lock);
  2074. return nr - nr_shrink;
  2075. }
  2076. void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
  2077. {
  2078. void *src_addr, *dst_addr;
  2079. size_t inline_size;
  2080. struct page *ipage;
  2081. struct f2fs_inode *ri;
  2082. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  2083. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  2084. ri = F2FS_INODE(page);
  2085. if (ri->i_inline & F2FS_INLINE_XATTR) {
  2086. set_inode_flag(inode, FI_INLINE_XATTR);
  2087. } else {
  2088. clear_inode_flag(inode, FI_INLINE_XATTR);
  2089. goto update_inode;
  2090. }
  2091. dst_addr = inline_xattr_addr(inode, ipage);
  2092. src_addr = inline_xattr_addr(inode, page);
  2093. inline_size = inline_xattr_size(inode);
  2094. f2fs_wait_on_page_writeback(ipage, NODE, true);
  2095. memcpy(dst_addr, src_addr, inline_size);
  2096. update_inode:
  2097. f2fs_update_inode(inode, ipage);
  2098. f2fs_put_page(ipage, 1);
  2099. }
  2100. int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
  2101. {
  2102. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2103. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  2104. nid_t new_xnid;
  2105. struct dnode_of_data dn;
  2106. struct node_info ni;
  2107. struct page *xpage;
  2108. int err;
  2109. if (!prev_xnid)
  2110. goto recover_xnid;
  2111. /* 1: invalidate the previous xattr nid */
  2112. err = f2fs_get_node_info(sbi, prev_xnid, &ni);
  2113. if (err)
  2114. return err;
  2115. f2fs_invalidate_blocks(sbi, ni.blk_addr);
  2116. dec_valid_node_count(sbi, inode, false);
  2117. set_node_addr(sbi, &ni, NULL_ADDR, false);
  2118. recover_xnid:
  2119. /* 2: update xattr nid in inode */
  2120. if (!f2fs_alloc_nid(sbi, &new_xnid))
  2121. return -ENOSPC;
  2122. set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
  2123. xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
  2124. if (IS_ERR(xpage)) {
  2125. f2fs_alloc_nid_failed(sbi, new_xnid);
  2126. return PTR_ERR(xpage);
  2127. }
  2128. f2fs_alloc_nid_done(sbi, new_xnid);
  2129. f2fs_update_inode_page(inode);
  2130. /* 3: update and set xattr node page dirty */
  2131. memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
  2132. set_page_dirty(xpage);
  2133. f2fs_put_page(xpage, 1);
  2134. return 0;
  2135. }
  2136. int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  2137. {
  2138. struct f2fs_inode *src, *dst;
  2139. nid_t ino = ino_of_node(page);
  2140. struct node_info old_ni, new_ni;
  2141. struct page *ipage;
  2142. int err;
  2143. err = f2fs_get_node_info(sbi, ino, &old_ni);
  2144. if (err)
  2145. return err;
  2146. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  2147. return -EINVAL;
  2148. retry:
  2149. ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
  2150. if (!ipage) {
  2151. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2152. goto retry;
  2153. }
  2154. /* Should not use this inode from free nid list */
  2155. remove_free_nid(sbi, ino);
  2156. if (!PageUptodate(ipage))
  2157. SetPageUptodate(ipage);
  2158. fill_node_footer(ipage, ino, ino, 0, true);
  2159. set_cold_node(ipage, false);
  2160. src = F2FS_INODE(page);
  2161. dst = F2FS_INODE(ipage);
  2162. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  2163. dst->i_size = 0;
  2164. dst->i_blocks = cpu_to_le64(1);
  2165. dst->i_links = cpu_to_le32(1);
  2166. dst->i_xattr_nid = 0;
  2167. dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
  2168. if (dst->i_inline & F2FS_EXTRA_ATTR) {
  2169. dst->i_extra_isize = src->i_extra_isize;
  2170. if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
  2171. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2172. i_inline_xattr_size))
  2173. dst->i_inline_xattr_size = src->i_inline_xattr_size;
  2174. if (f2fs_sb_has_project_quota(sbi->sb) &&
  2175. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2176. i_projid))
  2177. dst->i_projid = src->i_projid;
  2178. if (f2fs_sb_has_inode_crtime(sbi->sb) &&
  2179. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2180. i_crtime_nsec)) {
  2181. dst->i_crtime = src->i_crtime;
  2182. dst->i_crtime_nsec = src->i_crtime_nsec;
  2183. }
  2184. }
  2185. new_ni = old_ni;
  2186. new_ni.ino = ino;
  2187. if (unlikely(inc_valid_node_count(sbi, NULL, true)))
  2188. WARN_ON(1);
  2189. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  2190. inc_valid_inode_count(sbi);
  2191. set_page_dirty(ipage);
  2192. f2fs_put_page(ipage, 1);
  2193. return 0;
  2194. }
  2195. int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
  2196. unsigned int segno, struct f2fs_summary_block *sum)
  2197. {
  2198. struct f2fs_node *rn;
  2199. struct f2fs_summary *sum_entry;
  2200. block_t addr;
  2201. int i, idx, last_offset, nrpages;
  2202. /* scan the node segment */
  2203. last_offset = sbi->blocks_per_seg;
  2204. addr = START_BLOCK(sbi, segno);
  2205. sum_entry = &sum->entries[0];
  2206. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  2207. nrpages = min(last_offset - i, BIO_MAX_PAGES);
  2208. /* readahead node pages */
  2209. f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
  2210. for (idx = addr; idx < addr + nrpages; idx++) {
  2211. struct page *page = f2fs_get_tmp_page(sbi, idx);
  2212. if (IS_ERR(page))
  2213. return PTR_ERR(page);
  2214. rn = F2FS_NODE(page);
  2215. sum_entry->nid = rn->footer.nid;
  2216. sum_entry->version = 0;
  2217. sum_entry->ofs_in_node = 0;
  2218. sum_entry++;
  2219. f2fs_put_page(page, 1);
  2220. }
  2221. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  2222. addr + nrpages);
  2223. }
  2224. return 0;
  2225. }
  2226. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  2227. {
  2228. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2229. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2230. struct f2fs_journal *journal = curseg->journal;
  2231. int i;
  2232. down_write(&curseg->journal_rwsem);
  2233. for (i = 0; i < nats_in_cursum(journal); i++) {
  2234. struct nat_entry *ne;
  2235. struct f2fs_nat_entry raw_ne;
  2236. nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
  2237. raw_ne = nat_in_journal(journal, i);
  2238. ne = __lookup_nat_cache(nm_i, nid);
  2239. if (!ne) {
  2240. ne = __alloc_nat_entry(nid, true);
  2241. __init_nat_entry(nm_i, ne, &raw_ne, true);
  2242. }
  2243. /*
  2244. * if a free nat in journal has not been used after last
  2245. * checkpoint, we should remove it from available nids,
  2246. * since later we will add it again.
  2247. */
  2248. if (!get_nat_flag(ne, IS_DIRTY) &&
  2249. le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
  2250. spin_lock(&nm_i->nid_list_lock);
  2251. nm_i->available_nids--;
  2252. spin_unlock(&nm_i->nid_list_lock);
  2253. }
  2254. __set_nat_cache_dirty(nm_i, ne);
  2255. }
  2256. update_nats_in_cursum(journal, -i);
  2257. up_write(&curseg->journal_rwsem);
  2258. }
  2259. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  2260. struct list_head *head, int max)
  2261. {
  2262. struct nat_entry_set *cur;
  2263. if (nes->entry_cnt >= max)
  2264. goto add_out;
  2265. list_for_each_entry(cur, head, set_list) {
  2266. if (cur->entry_cnt >= nes->entry_cnt) {
  2267. list_add(&nes->set_list, cur->set_list.prev);
  2268. return;
  2269. }
  2270. }
  2271. add_out:
  2272. list_add_tail(&nes->set_list, head);
  2273. }
  2274. static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
  2275. struct page *page)
  2276. {
  2277. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2278. unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
  2279. struct f2fs_nat_block *nat_blk = page_address(page);
  2280. int valid = 0;
  2281. int i = 0;
  2282. if (!enabled_nat_bits(sbi, NULL))
  2283. return;
  2284. if (nat_index == 0) {
  2285. valid = 1;
  2286. i = 1;
  2287. }
  2288. for (; i < NAT_ENTRY_PER_BLOCK; i++) {
  2289. if (nat_blk->entries[i].block_addr != NULL_ADDR)
  2290. valid++;
  2291. }
  2292. if (valid == 0) {
  2293. __set_bit_le(nat_index, nm_i->empty_nat_bits);
  2294. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2295. return;
  2296. }
  2297. __clear_bit_le(nat_index, nm_i->empty_nat_bits);
  2298. if (valid == NAT_ENTRY_PER_BLOCK)
  2299. __set_bit_le(nat_index, nm_i->full_nat_bits);
  2300. else
  2301. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2302. }
  2303. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  2304. struct nat_entry_set *set, struct cp_control *cpc)
  2305. {
  2306. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2307. struct f2fs_journal *journal = curseg->journal;
  2308. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  2309. bool to_journal = true;
  2310. struct f2fs_nat_block *nat_blk;
  2311. struct nat_entry *ne, *cur;
  2312. struct page *page = NULL;
  2313. /*
  2314. * there are two steps to flush nat entries:
  2315. * #1, flush nat entries to journal in current hot data summary block.
  2316. * #2, flush nat entries to nat page.
  2317. */
  2318. if (enabled_nat_bits(sbi, cpc) ||
  2319. !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
  2320. to_journal = false;
  2321. if (to_journal) {
  2322. down_write(&curseg->journal_rwsem);
  2323. } else {
  2324. page = get_next_nat_page(sbi, start_nid);
  2325. nat_blk = page_address(page);
  2326. f2fs_bug_on(sbi, !nat_blk);
  2327. }
  2328. /* flush dirty nats in nat entry set */
  2329. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  2330. struct f2fs_nat_entry *raw_ne;
  2331. nid_t nid = nat_get_nid(ne);
  2332. int offset;
  2333. f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
  2334. if (to_journal) {
  2335. offset = f2fs_lookup_journal_in_cursum(journal,
  2336. NAT_JOURNAL, nid, 1);
  2337. f2fs_bug_on(sbi, offset < 0);
  2338. raw_ne = &nat_in_journal(journal, offset);
  2339. nid_in_journal(journal, offset) = cpu_to_le32(nid);
  2340. } else {
  2341. raw_ne = &nat_blk->entries[nid - start_nid];
  2342. }
  2343. raw_nat_from_node_info(raw_ne, &ne->ni);
  2344. nat_reset_flag(ne);
  2345. __clear_nat_cache_dirty(NM_I(sbi), set, ne);
  2346. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  2347. add_free_nid(sbi, nid, false, true);
  2348. } else {
  2349. spin_lock(&NM_I(sbi)->nid_list_lock);
  2350. update_free_nid_bitmap(sbi, nid, false, false);
  2351. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2352. }
  2353. }
  2354. if (to_journal) {
  2355. up_write(&curseg->journal_rwsem);
  2356. } else {
  2357. __update_nat_bits(sbi, start_nid, page);
  2358. f2fs_put_page(page, 1);
  2359. }
  2360. /* Allow dirty nats by node block allocation in write_begin */
  2361. if (!set->entry_cnt) {
  2362. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  2363. kmem_cache_free(nat_entry_set_slab, set);
  2364. }
  2365. }
  2366. /*
  2367. * This function is called during the checkpointing process.
  2368. */
  2369. void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2370. {
  2371. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2372. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2373. struct f2fs_journal *journal = curseg->journal;
  2374. struct nat_entry_set *setvec[SETVEC_SIZE];
  2375. struct nat_entry_set *set, *tmp;
  2376. unsigned int found;
  2377. nid_t set_idx = 0;
  2378. LIST_HEAD(sets);
  2379. /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
  2380. if (enabled_nat_bits(sbi, cpc)) {
  2381. down_write(&nm_i->nat_tree_lock);
  2382. remove_nats_in_journal(sbi);
  2383. up_write(&nm_i->nat_tree_lock);
  2384. }
  2385. if (!nm_i->dirty_nat_cnt)
  2386. return;
  2387. down_write(&nm_i->nat_tree_lock);
  2388. /*
  2389. * if there are no enough space in journal to store dirty nat
  2390. * entries, remove all entries from journal and merge them
  2391. * into nat entry set.
  2392. */
  2393. if (enabled_nat_bits(sbi, cpc) ||
  2394. !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  2395. remove_nats_in_journal(sbi);
  2396. while ((found = __gang_lookup_nat_set(nm_i,
  2397. set_idx, SETVEC_SIZE, setvec))) {
  2398. unsigned idx;
  2399. set_idx = setvec[found - 1]->set + 1;
  2400. for (idx = 0; idx < found; idx++)
  2401. __adjust_nat_entry_set(setvec[idx], &sets,
  2402. MAX_NAT_JENTRIES(journal));
  2403. }
  2404. /* flush dirty nats in nat entry set */
  2405. list_for_each_entry_safe(set, tmp, &sets, set_list)
  2406. __flush_nat_entry_set(sbi, set, cpc);
  2407. up_write(&nm_i->nat_tree_lock);
  2408. /* Allow dirty nats by node block allocation in write_begin */
  2409. }
  2410. static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
  2411. {
  2412. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2413. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2414. unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
  2415. unsigned int i;
  2416. __u64 cp_ver = cur_cp_version(ckpt);
  2417. block_t nat_bits_addr;
  2418. if (!enabled_nat_bits(sbi, NULL))
  2419. return 0;
  2420. nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
  2421. nm_i->nat_bits = f2fs_kzalloc(sbi,
  2422. nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
  2423. if (!nm_i->nat_bits)
  2424. return -ENOMEM;
  2425. nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
  2426. nm_i->nat_bits_blocks;
  2427. for (i = 0; i < nm_i->nat_bits_blocks; i++) {
  2428. struct page *page;
  2429. page = f2fs_get_meta_page(sbi, nat_bits_addr++);
  2430. if (IS_ERR(page)) {
  2431. disable_nat_bits(sbi, true);
  2432. return PTR_ERR(page);
  2433. }
  2434. memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
  2435. page_address(page), F2FS_BLKSIZE);
  2436. f2fs_put_page(page, 1);
  2437. }
  2438. cp_ver |= (cur_cp_crc(ckpt) << 32);
  2439. if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
  2440. disable_nat_bits(sbi, true);
  2441. return 0;
  2442. }
  2443. nm_i->full_nat_bits = nm_i->nat_bits + 8;
  2444. nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
  2445. f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
  2446. return 0;
  2447. }
  2448. static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
  2449. {
  2450. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2451. unsigned int i = 0;
  2452. nid_t nid, last_nid;
  2453. if (!enabled_nat_bits(sbi, NULL))
  2454. return;
  2455. for (i = 0; i < nm_i->nat_blocks; i++) {
  2456. i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
  2457. if (i >= nm_i->nat_blocks)
  2458. break;
  2459. __set_bit_le(i, nm_i->nat_block_bitmap);
  2460. nid = i * NAT_ENTRY_PER_BLOCK;
  2461. last_nid = nid + NAT_ENTRY_PER_BLOCK;
  2462. spin_lock(&NM_I(sbi)->nid_list_lock);
  2463. for (; nid < last_nid; nid++)
  2464. update_free_nid_bitmap(sbi, nid, true, true);
  2465. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2466. }
  2467. for (i = 0; i < nm_i->nat_blocks; i++) {
  2468. i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
  2469. if (i >= nm_i->nat_blocks)
  2470. break;
  2471. __set_bit_le(i, nm_i->nat_block_bitmap);
  2472. }
  2473. }
  2474. static int init_node_manager(struct f2fs_sb_info *sbi)
  2475. {
  2476. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  2477. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2478. unsigned char *version_bitmap;
  2479. unsigned int nat_segs;
  2480. int err;
  2481. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  2482. /* segment_count_nat includes pair segment so divide to 2. */
  2483. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  2484. nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  2485. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
  2486. /* not used nids: 0, node, meta, (and root counted as valid node) */
  2487. nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
  2488. sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
  2489. nm_i->nid_cnt[FREE_NID] = 0;
  2490. nm_i->nid_cnt[PREALLOC_NID] = 0;
  2491. nm_i->nat_cnt = 0;
  2492. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  2493. nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
  2494. nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
  2495. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  2496. INIT_LIST_HEAD(&nm_i->free_nid_list);
  2497. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  2498. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  2499. INIT_LIST_HEAD(&nm_i->nat_entries);
  2500. spin_lock_init(&nm_i->nat_list_lock);
  2501. mutex_init(&nm_i->build_lock);
  2502. spin_lock_init(&nm_i->nid_list_lock);
  2503. init_rwsem(&nm_i->nat_tree_lock);
  2504. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  2505. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  2506. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  2507. if (!version_bitmap)
  2508. return -EFAULT;
  2509. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  2510. GFP_KERNEL);
  2511. if (!nm_i->nat_bitmap)
  2512. return -ENOMEM;
  2513. err = __get_nat_bitmaps(sbi);
  2514. if (err)
  2515. return err;
  2516. #ifdef CONFIG_F2FS_CHECK_FS
  2517. nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
  2518. GFP_KERNEL);
  2519. if (!nm_i->nat_bitmap_mir)
  2520. return -ENOMEM;
  2521. #endif
  2522. return 0;
  2523. }
  2524. static int init_free_nid_cache(struct f2fs_sb_info *sbi)
  2525. {
  2526. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2527. int i;
  2528. nm_i->free_nid_bitmap =
  2529. f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
  2530. nm_i->nat_blocks),
  2531. GFP_KERNEL);
  2532. if (!nm_i->free_nid_bitmap)
  2533. return -ENOMEM;
  2534. for (i = 0; i < nm_i->nat_blocks; i++) {
  2535. nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
  2536. f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
  2537. if (!nm_i->free_nid_bitmap[i])
  2538. return -ENOMEM;
  2539. }
  2540. nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
  2541. GFP_KERNEL);
  2542. if (!nm_i->nat_block_bitmap)
  2543. return -ENOMEM;
  2544. nm_i->free_nid_count =
  2545. f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
  2546. nm_i->nat_blocks),
  2547. GFP_KERNEL);
  2548. if (!nm_i->free_nid_count)
  2549. return -ENOMEM;
  2550. return 0;
  2551. }
  2552. int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
  2553. {
  2554. int err;
  2555. sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
  2556. GFP_KERNEL);
  2557. if (!sbi->nm_info)
  2558. return -ENOMEM;
  2559. err = init_node_manager(sbi);
  2560. if (err)
  2561. return err;
  2562. err = init_free_nid_cache(sbi);
  2563. if (err)
  2564. return err;
  2565. /* load free nid status from nat_bits table */
  2566. load_free_nid_bitmap(sbi);
  2567. return f2fs_build_free_nids(sbi, true, true);
  2568. }
  2569. void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
  2570. {
  2571. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2572. struct free_nid *i, *next_i;
  2573. struct nat_entry *natvec[NATVEC_SIZE];
  2574. struct nat_entry_set *setvec[SETVEC_SIZE];
  2575. nid_t nid = 0;
  2576. unsigned int found;
  2577. if (!nm_i)
  2578. return;
  2579. /* destroy free nid list */
  2580. spin_lock(&nm_i->nid_list_lock);
  2581. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  2582. __remove_free_nid(sbi, i, FREE_NID);
  2583. spin_unlock(&nm_i->nid_list_lock);
  2584. kmem_cache_free(free_nid_slab, i);
  2585. spin_lock(&nm_i->nid_list_lock);
  2586. }
  2587. f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
  2588. f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
  2589. f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
  2590. spin_unlock(&nm_i->nid_list_lock);
  2591. /* destroy nat cache */
  2592. down_write(&nm_i->nat_tree_lock);
  2593. while ((found = __gang_lookup_nat_cache(nm_i,
  2594. nid, NATVEC_SIZE, natvec))) {
  2595. unsigned idx;
  2596. nid = nat_get_nid(natvec[found - 1]) + 1;
  2597. for (idx = 0; idx < found; idx++) {
  2598. spin_lock(&nm_i->nat_list_lock);
  2599. list_del(&natvec[idx]->list);
  2600. spin_unlock(&nm_i->nat_list_lock);
  2601. __del_from_nat_cache(nm_i, natvec[idx]);
  2602. }
  2603. }
  2604. f2fs_bug_on(sbi, nm_i->nat_cnt);
  2605. /* destroy nat set cache */
  2606. nid = 0;
  2607. while ((found = __gang_lookup_nat_set(nm_i,
  2608. nid, SETVEC_SIZE, setvec))) {
  2609. unsigned idx;
  2610. nid = setvec[found - 1]->set + 1;
  2611. for (idx = 0; idx < found; idx++) {
  2612. /* entry_cnt is not zero, when cp_error was occurred */
  2613. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  2614. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  2615. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  2616. }
  2617. }
  2618. up_write(&nm_i->nat_tree_lock);
  2619. kvfree(nm_i->nat_block_bitmap);
  2620. if (nm_i->free_nid_bitmap) {
  2621. int i;
  2622. for (i = 0; i < nm_i->nat_blocks; i++)
  2623. kvfree(nm_i->free_nid_bitmap[i]);
  2624. kfree(nm_i->free_nid_bitmap);
  2625. }
  2626. kvfree(nm_i->free_nid_count);
  2627. kfree(nm_i->nat_bitmap);
  2628. kfree(nm_i->nat_bits);
  2629. #ifdef CONFIG_F2FS_CHECK_FS
  2630. kfree(nm_i->nat_bitmap_mir);
  2631. #endif
  2632. sbi->nm_info = NULL;
  2633. kfree(nm_i);
  2634. }
  2635. int __init f2fs_create_node_manager_caches(void)
  2636. {
  2637. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  2638. sizeof(struct nat_entry));
  2639. if (!nat_entry_slab)
  2640. goto fail;
  2641. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  2642. sizeof(struct free_nid));
  2643. if (!free_nid_slab)
  2644. goto destroy_nat_entry;
  2645. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  2646. sizeof(struct nat_entry_set));
  2647. if (!nat_entry_set_slab)
  2648. goto destroy_free_nid;
  2649. fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
  2650. sizeof(struct fsync_node_entry));
  2651. if (!fsync_node_entry_slab)
  2652. goto destroy_nat_entry_set;
  2653. return 0;
  2654. destroy_nat_entry_set:
  2655. kmem_cache_destroy(nat_entry_set_slab);
  2656. destroy_free_nid:
  2657. kmem_cache_destroy(free_nid_slab);
  2658. destroy_nat_entry:
  2659. kmem_cache_destroy(nat_entry_slab);
  2660. fail:
  2661. return -ENOMEM;
  2662. }
  2663. void f2fs_destroy_node_manager_caches(void)
  2664. {
  2665. kmem_cache_destroy(fsync_node_entry_slab);
  2666. kmem_cache_destroy(nat_entry_set_slab);
  2667. kmem_cache_destroy(free_nid_slab);
  2668. kmem_cache_destroy(nat_entry_slab);
  2669. }