dir.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/sched/signal.h>
  14. #include "f2fs.h"
  15. #include "node.h"
  16. #include "acl.h"
  17. #include "xattr.h"
  18. #include <trace/events/f2fs.h>
  19. static unsigned long dir_blocks(struct inode *inode)
  20. {
  21. return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
  22. >> PAGE_SHIFT;
  23. }
  24. static unsigned int dir_buckets(unsigned int level, int dir_level)
  25. {
  26. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  27. return 1 << (level + dir_level);
  28. else
  29. return MAX_DIR_BUCKETS;
  30. }
  31. static unsigned int bucket_blocks(unsigned int level)
  32. {
  33. if (level < MAX_DIR_HASH_DEPTH / 2)
  34. return 2;
  35. else
  36. return 4;
  37. }
  38. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  39. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  40. [F2FS_FT_REG_FILE] = DT_REG,
  41. [F2FS_FT_DIR] = DT_DIR,
  42. [F2FS_FT_CHRDEV] = DT_CHR,
  43. [F2FS_FT_BLKDEV] = DT_BLK,
  44. [F2FS_FT_FIFO] = DT_FIFO,
  45. [F2FS_FT_SOCK] = DT_SOCK,
  46. [F2FS_FT_SYMLINK] = DT_LNK,
  47. };
  48. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  49. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  50. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  51. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  52. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  53. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  54. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  55. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  56. };
  57. static void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  58. {
  59. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  60. }
  61. unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de)
  62. {
  63. if (de->file_type < F2FS_FT_MAX)
  64. return f2fs_filetype_table[de->file_type];
  65. return DT_UNKNOWN;
  66. }
  67. static unsigned long dir_block_index(unsigned int level,
  68. int dir_level, unsigned int idx)
  69. {
  70. unsigned long i;
  71. unsigned long bidx = 0;
  72. for (i = 0; i < level; i++)
  73. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  74. bidx += idx * bucket_blocks(level);
  75. return bidx;
  76. }
  77. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  78. struct fscrypt_name *fname,
  79. f2fs_hash_t namehash,
  80. int *max_slots,
  81. struct page **res_page)
  82. {
  83. struct f2fs_dentry_block *dentry_blk;
  84. struct f2fs_dir_entry *de;
  85. struct f2fs_dentry_ptr d;
  86. dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
  87. make_dentry_ptr_block(NULL, &d, dentry_blk);
  88. de = f2fs_find_target_dentry(fname, namehash, max_slots, &d);
  89. if (de)
  90. *res_page = dentry_page;
  91. return de;
  92. }
  93. struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
  94. f2fs_hash_t namehash, int *max_slots,
  95. struct f2fs_dentry_ptr *d)
  96. {
  97. struct f2fs_dir_entry *de;
  98. unsigned long bit_pos = 0;
  99. int max_len = 0;
  100. if (max_slots)
  101. *max_slots = 0;
  102. while (bit_pos < d->max) {
  103. if (!test_bit_le(bit_pos, d->bitmap)) {
  104. bit_pos++;
  105. max_len++;
  106. continue;
  107. }
  108. de = &d->dentry[bit_pos];
  109. if (unlikely(!de->name_len)) {
  110. bit_pos++;
  111. continue;
  112. }
  113. if (de->hash_code == namehash &&
  114. fscrypt_match_name(fname, d->filename[bit_pos],
  115. le16_to_cpu(de->name_len)))
  116. goto found;
  117. if (max_slots && max_len > *max_slots)
  118. *max_slots = max_len;
  119. max_len = 0;
  120. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  121. }
  122. de = NULL;
  123. found:
  124. if (max_slots && max_len > *max_slots)
  125. *max_slots = max_len;
  126. return de;
  127. }
  128. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  129. unsigned int level,
  130. struct fscrypt_name *fname,
  131. struct page **res_page)
  132. {
  133. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  134. int s = GET_DENTRY_SLOTS(name.len);
  135. unsigned int nbucket, nblock;
  136. unsigned int bidx, end_block;
  137. struct page *dentry_page;
  138. struct f2fs_dir_entry *de = NULL;
  139. bool room = false;
  140. int max_slots;
  141. f2fs_hash_t namehash = f2fs_dentry_hash(&name, fname);
  142. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  143. nblock = bucket_blocks(level);
  144. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  145. le32_to_cpu(namehash) % nbucket);
  146. end_block = bidx + nblock;
  147. for (; bidx < end_block; bidx++) {
  148. /* no need to allocate new dentry pages to all the indices */
  149. dentry_page = f2fs_find_data_page(dir, bidx);
  150. if (IS_ERR(dentry_page)) {
  151. if (PTR_ERR(dentry_page) == -ENOENT) {
  152. room = true;
  153. continue;
  154. } else {
  155. *res_page = dentry_page;
  156. break;
  157. }
  158. }
  159. de = find_in_block(dentry_page, fname, namehash, &max_slots,
  160. res_page);
  161. if (de)
  162. break;
  163. if (max_slots >= s)
  164. room = true;
  165. f2fs_put_page(dentry_page, 0);
  166. }
  167. if (!de && room && F2FS_I(dir)->chash != namehash) {
  168. F2FS_I(dir)->chash = namehash;
  169. F2FS_I(dir)->clevel = level;
  170. }
  171. return de;
  172. }
  173. struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
  174. struct fscrypt_name *fname, struct page **res_page)
  175. {
  176. unsigned long npages = dir_blocks(dir);
  177. struct f2fs_dir_entry *de = NULL;
  178. unsigned int max_depth;
  179. unsigned int level;
  180. if (f2fs_has_inline_dentry(dir)) {
  181. *res_page = NULL;
  182. de = f2fs_find_in_inline_dir(dir, fname, res_page);
  183. goto out;
  184. }
  185. if (npages == 0) {
  186. *res_page = NULL;
  187. goto out;
  188. }
  189. max_depth = F2FS_I(dir)->i_current_depth;
  190. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  191. f2fs_msg(F2FS_I_SB(dir)->sb, KERN_WARNING,
  192. "Corrupted max_depth of %lu: %u",
  193. dir->i_ino, max_depth);
  194. max_depth = MAX_DIR_HASH_DEPTH;
  195. f2fs_i_depth_write(dir, max_depth);
  196. }
  197. for (level = 0; level < max_depth; level++) {
  198. *res_page = NULL;
  199. de = find_in_level(dir, level, fname, res_page);
  200. if (de || IS_ERR(*res_page))
  201. break;
  202. }
  203. out:
  204. /* This is to increase the speed of f2fs_create */
  205. if (!de)
  206. F2FS_I(dir)->task = current;
  207. return de;
  208. }
  209. /*
  210. * Find an entry in the specified directory with the wanted name.
  211. * It returns the page where the entry was found (as a parameter - res_page),
  212. * and the entry itself. Page is returned mapped and unlocked.
  213. * Entry is guaranteed to be valid.
  214. */
  215. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  216. const struct qstr *child, struct page **res_page)
  217. {
  218. struct f2fs_dir_entry *de = NULL;
  219. struct fscrypt_name fname;
  220. int err;
  221. err = fscrypt_setup_filename(dir, child, 1, &fname);
  222. if (err) {
  223. if (err == -ENOENT)
  224. *res_page = NULL;
  225. else
  226. *res_page = ERR_PTR(err);
  227. return NULL;
  228. }
  229. de = __f2fs_find_entry(dir, &fname, res_page);
  230. fscrypt_free_filename(&fname);
  231. return de;
  232. }
  233. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  234. {
  235. struct qstr dotdot = QSTR_INIT("..", 2);
  236. return f2fs_find_entry(dir, &dotdot, p);
  237. }
  238. ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
  239. struct page **page)
  240. {
  241. ino_t res = 0;
  242. struct f2fs_dir_entry *de;
  243. de = f2fs_find_entry(dir, qstr, page);
  244. if (de) {
  245. res = le32_to_cpu(de->ino);
  246. f2fs_put_page(*page, 0);
  247. }
  248. return res;
  249. }
  250. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  251. struct page *page, struct inode *inode)
  252. {
  253. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  254. lock_page(page);
  255. f2fs_wait_on_page_writeback(page, type, true);
  256. de->ino = cpu_to_le32(inode->i_ino);
  257. set_de_type(de, inode->i_mode);
  258. set_page_dirty(page);
  259. dir->i_mtime = dir->i_ctime = current_time(dir);
  260. f2fs_mark_inode_dirty_sync(dir, false);
  261. f2fs_put_page(page, 1);
  262. }
  263. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  264. {
  265. struct f2fs_inode *ri;
  266. f2fs_wait_on_page_writeback(ipage, NODE, true);
  267. /* copy name info. to this inode page */
  268. ri = F2FS_INODE(ipage);
  269. ri->i_namelen = cpu_to_le32(name->len);
  270. memcpy(ri->i_name, name->name, name->len);
  271. set_page_dirty(ipage);
  272. }
  273. void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
  274. struct f2fs_dentry_ptr *d)
  275. {
  276. struct qstr dot = QSTR_INIT(".", 1);
  277. struct qstr dotdot = QSTR_INIT("..", 2);
  278. /* update dirent of "." */
  279. f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
  280. /* update dirent of ".." */
  281. f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
  282. }
  283. static int make_empty_dir(struct inode *inode,
  284. struct inode *parent, struct page *page)
  285. {
  286. struct page *dentry_page;
  287. struct f2fs_dentry_block *dentry_blk;
  288. struct f2fs_dentry_ptr d;
  289. if (f2fs_has_inline_dentry(inode))
  290. return f2fs_make_empty_inline_dir(inode, parent, page);
  291. dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
  292. if (IS_ERR(dentry_page))
  293. return PTR_ERR(dentry_page);
  294. dentry_blk = page_address(dentry_page);
  295. make_dentry_ptr_block(NULL, &d, dentry_blk);
  296. f2fs_do_make_empty_dir(inode, parent, &d);
  297. set_page_dirty(dentry_page);
  298. f2fs_put_page(dentry_page, 1);
  299. return 0;
  300. }
  301. struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
  302. const struct qstr *new_name, const struct qstr *orig_name,
  303. struct page *dpage)
  304. {
  305. struct page *page;
  306. int dummy_encrypt = DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(dir));
  307. int err;
  308. if (is_inode_flag_set(inode, FI_NEW_INODE)) {
  309. page = f2fs_new_inode_page(inode);
  310. if (IS_ERR(page))
  311. return page;
  312. if (S_ISDIR(inode->i_mode)) {
  313. /* in order to handle error case */
  314. get_page(page);
  315. err = make_empty_dir(inode, dir, page);
  316. if (err) {
  317. lock_page(page);
  318. goto put_error;
  319. }
  320. put_page(page);
  321. }
  322. err = f2fs_init_acl(inode, dir, page, dpage);
  323. if (err)
  324. goto put_error;
  325. err = f2fs_init_security(inode, dir, orig_name, page);
  326. if (err)
  327. goto put_error;
  328. if ((f2fs_encrypted_inode(dir) || dummy_encrypt) &&
  329. f2fs_may_encrypt(inode)) {
  330. err = fscrypt_inherit_context(dir, inode, page, false);
  331. if (err)
  332. goto put_error;
  333. }
  334. } else {
  335. page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
  336. if (IS_ERR(page))
  337. return page;
  338. }
  339. if (new_name) {
  340. init_dent_inode(new_name, page);
  341. if (f2fs_encrypted_inode(dir))
  342. file_set_enc_name(inode);
  343. }
  344. /*
  345. * This file should be checkpointed during fsync.
  346. * We lost i_pino from now on.
  347. */
  348. if (is_inode_flag_set(inode, FI_INC_LINK)) {
  349. if (!S_ISDIR(inode->i_mode))
  350. file_lost_pino(inode);
  351. /*
  352. * If link the tmpfile to alias through linkat path,
  353. * we should remove this inode from orphan list.
  354. */
  355. if (inode->i_nlink == 0)
  356. f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  357. f2fs_i_links_write(inode, true);
  358. }
  359. return page;
  360. put_error:
  361. clear_nlink(inode);
  362. f2fs_update_inode(inode, page);
  363. f2fs_put_page(page, 1);
  364. return ERR_PTR(err);
  365. }
  366. void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
  367. unsigned int current_depth)
  368. {
  369. if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
  370. if (S_ISDIR(inode->i_mode))
  371. f2fs_i_links_write(dir, true);
  372. clear_inode_flag(inode, FI_NEW_INODE);
  373. }
  374. dir->i_mtime = dir->i_ctime = current_time(dir);
  375. f2fs_mark_inode_dirty_sync(dir, false);
  376. if (F2FS_I(dir)->i_current_depth != current_depth)
  377. f2fs_i_depth_write(dir, current_depth);
  378. if (inode && is_inode_flag_set(inode, FI_INC_LINK))
  379. clear_inode_flag(inode, FI_INC_LINK);
  380. }
  381. int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
  382. {
  383. int bit_start = 0;
  384. int zero_start, zero_end;
  385. next:
  386. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  387. if (zero_start >= max_slots)
  388. return max_slots;
  389. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  390. if (zero_end - zero_start >= slots)
  391. return zero_start;
  392. bit_start = zero_end + 1;
  393. if (zero_end + 1 >= max_slots)
  394. return max_slots;
  395. goto next;
  396. }
  397. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  398. const struct qstr *name, f2fs_hash_t name_hash,
  399. unsigned int bit_pos)
  400. {
  401. struct f2fs_dir_entry *de;
  402. int slots = GET_DENTRY_SLOTS(name->len);
  403. int i;
  404. de = &d->dentry[bit_pos];
  405. de->hash_code = name_hash;
  406. de->name_len = cpu_to_le16(name->len);
  407. memcpy(d->filename[bit_pos], name->name, name->len);
  408. de->ino = cpu_to_le32(ino);
  409. set_de_type(de, mode);
  410. for (i = 0; i < slots; i++) {
  411. __set_bit_le(bit_pos + i, (void *)d->bitmap);
  412. /* avoid wrong garbage data for readdir */
  413. if (i)
  414. (de + i)->name_len = 0;
  415. }
  416. }
  417. int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
  418. const struct qstr *orig_name,
  419. struct inode *inode, nid_t ino, umode_t mode)
  420. {
  421. unsigned int bit_pos;
  422. unsigned int level;
  423. unsigned int current_depth;
  424. unsigned long bidx, block;
  425. f2fs_hash_t dentry_hash;
  426. unsigned int nbucket, nblock;
  427. struct page *dentry_page = NULL;
  428. struct f2fs_dentry_block *dentry_blk = NULL;
  429. struct f2fs_dentry_ptr d;
  430. struct page *page = NULL;
  431. int slots, err = 0;
  432. level = 0;
  433. slots = GET_DENTRY_SLOTS(new_name->len);
  434. dentry_hash = f2fs_dentry_hash(new_name, NULL);
  435. current_depth = F2FS_I(dir)->i_current_depth;
  436. if (F2FS_I(dir)->chash == dentry_hash) {
  437. level = F2FS_I(dir)->clevel;
  438. F2FS_I(dir)->chash = 0;
  439. }
  440. start:
  441. if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
  442. f2fs_show_injection_info(FAULT_DIR_DEPTH);
  443. return -ENOSPC;
  444. }
  445. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
  446. return -ENOSPC;
  447. /* Increase the depth, if required */
  448. if (level == current_depth)
  449. ++current_depth;
  450. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  451. nblock = bucket_blocks(level);
  452. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  453. (le32_to_cpu(dentry_hash) % nbucket));
  454. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  455. dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
  456. if (IS_ERR(dentry_page))
  457. return PTR_ERR(dentry_page);
  458. dentry_blk = page_address(dentry_page);
  459. bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
  460. slots, NR_DENTRY_IN_BLOCK);
  461. if (bit_pos < NR_DENTRY_IN_BLOCK)
  462. goto add_dentry;
  463. f2fs_put_page(dentry_page, 1);
  464. }
  465. /* Move to next level to find the empty slot for new dentry */
  466. ++level;
  467. goto start;
  468. add_dentry:
  469. f2fs_wait_on_page_writeback(dentry_page, DATA, true);
  470. if (inode) {
  471. down_write(&F2FS_I(inode)->i_sem);
  472. page = f2fs_init_inode_metadata(inode, dir, new_name,
  473. orig_name, NULL);
  474. if (IS_ERR(page)) {
  475. err = PTR_ERR(page);
  476. goto fail;
  477. }
  478. }
  479. make_dentry_ptr_block(NULL, &d, dentry_blk);
  480. f2fs_update_dentry(ino, mode, &d, new_name, dentry_hash, bit_pos);
  481. set_page_dirty(dentry_page);
  482. if (inode) {
  483. f2fs_i_pino_write(inode, dir->i_ino);
  484. /* synchronize inode page's data from inode cache */
  485. if (is_inode_flag_set(inode, FI_NEW_INODE))
  486. f2fs_update_inode(inode, page);
  487. f2fs_put_page(page, 1);
  488. }
  489. f2fs_update_parent_metadata(dir, inode, current_depth);
  490. fail:
  491. if (inode)
  492. up_write(&F2FS_I(inode)->i_sem);
  493. f2fs_put_page(dentry_page, 1);
  494. return err;
  495. }
  496. int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
  497. struct inode *inode, nid_t ino, umode_t mode)
  498. {
  499. struct qstr new_name;
  500. int err = -EAGAIN;
  501. new_name.name = fname_name(fname);
  502. new_name.len = fname_len(fname);
  503. if (f2fs_has_inline_dentry(dir))
  504. err = f2fs_add_inline_entry(dir, &new_name, fname->usr_fname,
  505. inode, ino, mode);
  506. if (err == -EAGAIN)
  507. err = f2fs_add_regular_entry(dir, &new_name, fname->usr_fname,
  508. inode, ino, mode);
  509. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  510. return err;
  511. }
  512. /*
  513. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  514. * f2fs_unlock_op().
  515. */
  516. int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
  517. struct inode *inode, nid_t ino, umode_t mode)
  518. {
  519. struct fscrypt_name fname;
  520. struct page *page = NULL;
  521. struct f2fs_dir_entry *de = NULL;
  522. int err;
  523. err = fscrypt_setup_filename(dir, name, 0, &fname);
  524. if (err)
  525. return err;
  526. /*
  527. * An immature stakable filesystem shows a race condition between lookup
  528. * and create. If we have same task when doing lookup and create, it's
  529. * definitely fine as expected by VFS normally. Otherwise, let's just
  530. * verify on-disk dentry one more time, which guarantees filesystem
  531. * consistency more.
  532. */
  533. if (current != F2FS_I(dir)->task) {
  534. de = __f2fs_find_entry(dir, &fname, &page);
  535. F2FS_I(dir)->task = NULL;
  536. }
  537. if (de) {
  538. f2fs_put_page(page, 0);
  539. err = -EEXIST;
  540. } else if (IS_ERR(page)) {
  541. err = PTR_ERR(page);
  542. } else {
  543. err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
  544. }
  545. fscrypt_free_filename(&fname);
  546. return err;
  547. }
  548. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  549. {
  550. struct page *page;
  551. int err = 0;
  552. down_write(&F2FS_I(inode)->i_sem);
  553. page = f2fs_init_inode_metadata(inode, dir, NULL, NULL, NULL);
  554. if (IS_ERR(page)) {
  555. err = PTR_ERR(page);
  556. goto fail;
  557. }
  558. f2fs_put_page(page, 1);
  559. clear_inode_flag(inode, FI_NEW_INODE);
  560. fail:
  561. up_write(&F2FS_I(inode)->i_sem);
  562. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  563. return err;
  564. }
  565. void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
  566. {
  567. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  568. down_write(&F2FS_I(inode)->i_sem);
  569. if (S_ISDIR(inode->i_mode))
  570. f2fs_i_links_write(dir, false);
  571. inode->i_ctime = current_time(inode);
  572. f2fs_i_links_write(inode, false);
  573. if (S_ISDIR(inode->i_mode)) {
  574. f2fs_i_links_write(inode, false);
  575. f2fs_i_size_write(inode, 0);
  576. }
  577. up_write(&F2FS_I(inode)->i_sem);
  578. if (inode->i_nlink == 0)
  579. f2fs_add_orphan_inode(inode);
  580. else
  581. f2fs_release_orphan_inode(sbi);
  582. }
  583. /*
  584. * It only removes the dentry from the dentry page, corresponding name
  585. * entry in name page does not need to be touched during deletion.
  586. */
  587. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  588. struct inode *dir, struct inode *inode)
  589. {
  590. struct f2fs_dentry_block *dentry_blk;
  591. unsigned int bit_pos;
  592. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  593. int i;
  594. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  595. if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
  596. f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
  597. if (f2fs_has_inline_dentry(dir))
  598. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  599. lock_page(page);
  600. f2fs_wait_on_page_writeback(page, DATA, true);
  601. dentry_blk = page_address(page);
  602. bit_pos = dentry - dentry_blk->dentry;
  603. for (i = 0; i < slots; i++)
  604. __clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  605. /* Let's check and deallocate this dentry page */
  606. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  607. NR_DENTRY_IN_BLOCK,
  608. 0);
  609. set_page_dirty(page);
  610. dir->i_ctime = dir->i_mtime = current_time(dir);
  611. f2fs_mark_inode_dirty_sync(dir, false);
  612. if (inode)
  613. f2fs_drop_nlink(dir, inode);
  614. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  615. !f2fs_truncate_hole(dir, page->index, page->index + 1)) {
  616. f2fs_clear_radix_tree_dirty_tag(page);
  617. clear_page_dirty_for_io(page);
  618. ClearPagePrivate(page);
  619. ClearPageUptodate(page);
  620. clear_cold_data(page);
  621. inode_dec_dirty_pages(dir);
  622. f2fs_remove_dirty_inode(dir);
  623. }
  624. f2fs_put_page(page, 1);
  625. }
  626. bool f2fs_empty_dir(struct inode *dir)
  627. {
  628. unsigned long bidx;
  629. struct page *dentry_page;
  630. unsigned int bit_pos;
  631. struct f2fs_dentry_block *dentry_blk;
  632. unsigned long nblock = dir_blocks(dir);
  633. if (f2fs_has_inline_dentry(dir))
  634. return f2fs_empty_inline_dir(dir);
  635. for (bidx = 0; bidx < nblock; bidx++) {
  636. dentry_page = f2fs_get_lock_data_page(dir, bidx, false);
  637. if (IS_ERR(dentry_page)) {
  638. if (PTR_ERR(dentry_page) == -ENOENT)
  639. continue;
  640. else
  641. return false;
  642. }
  643. dentry_blk = page_address(dentry_page);
  644. if (bidx == 0)
  645. bit_pos = 2;
  646. else
  647. bit_pos = 0;
  648. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  649. NR_DENTRY_IN_BLOCK,
  650. bit_pos);
  651. f2fs_put_page(dentry_page, 1);
  652. if (bit_pos < NR_DENTRY_IN_BLOCK)
  653. return false;
  654. }
  655. return true;
  656. }
  657. int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  658. unsigned int start_pos, struct fscrypt_str *fstr)
  659. {
  660. unsigned char d_type = DT_UNKNOWN;
  661. unsigned int bit_pos;
  662. struct f2fs_dir_entry *de = NULL;
  663. struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
  664. struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
  665. int err = 0;
  666. bit_pos = ((unsigned long)ctx->pos % d->max);
  667. while (bit_pos < d->max) {
  668. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  669. if (bit_pos >= d->max)
  670. break;
  671. de = &d->dentry[bit_pos];
  672. if (de->name_len == 0) {
  673. bit_pos++;
  674. ctx->pos = start_pos + bit_pos;
  675. continue;
  676. }
  677. d_type = f2fs_get_de_type(de);
  678. de_name.name = d->filename[bit_pos];
  679. de_name.len = le16_to_cpu(de->name_len);
  680. /* check memory boundary before moving forward */
  681. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  682. if (unlikely(bit_pos > d->max ||
  683. le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
  684. f2fs_msg(sbi->sb, KERN_WARNING,
  685. "%s: corrupted namelen=%d, run fsck to fix.",
  686. __func__, le16_to_cpu(de->name_len));
  687. set_sbi_flag(sbi, SBI_NEED_FSCK);
  688. err = -EINVAL;
  689. goto out;
  690. }
  691. if (f2fs_encrypted_inode(d->inode)) {
  692. int save_len = fstr->len;
  693. err = fscrypt_fname_disk_to_usr(d->inode,
  694. (u32)de->hash_code, 0,
  695. &de_name, fstr);
  696. if (err)
  697. return err;
  698. de_name = *fstr;
  699. fstr->len = save_len;
  700. }
  701. if (!dir_emit(ctx, de_name.name, de_name.len,
  702. le32_to_cpu(de->ino), d_type))
  703. return 1;
  704. if (sbi->readdir_ra == 1)
  705. f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
  706. ctx->pos = start_pos + bit_pos;
  707. }
  708. out:
  709. return err;
  710. }
  711. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  712. {
  713. struct inode *inode = file_inode(file);
  714. unsigned long npages = dir_blocks(inode);
  715. struct f2fs_dentry_block *dentry_blk = NULL;
  716. struct page *dentry_page = NULL;
  717. struct file_ra_state *ra = &file->f_ra;
  718. loff_t start_pos = ctx->pos;
  719. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  720. struct f2fs_dentry_ptr d;
  721. struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
  722. int err = 0;
  723. if (f2fs_encrypted_inode(inode)) {
  724. err = fscrypt_get_encryption_info(inode);
  725. if (err && err != -ENOKEY)
  726. goto out;
  727. err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
  728. if (err < 0)
  729. goto out;
  730. }
  731. if (f2fs_has_inline_dentry(inode)) {
  732. err = f2fs_read_inline_dir(file, ctx, &fstr);
  733. goto out_free;
  734. }
  735. for (; n < npages; n++, ctx->pos = n * NR_DENTRY_IN_BLOCK) {
  736. /* allow readdir() to be interrupted */
  737. if (fatal_signal_pending(current)) {
  738. err = -ERESTARTSYS;
  739. goto out_free;
  740. }
  741. cond_resched();
  742. /* readahead for multi pages of dir */
  743. if (npages - n > 1 && !ra_has_index(ra, n))
  744. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  745. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  746. dentry_page = f2fs_get_lock_data_page(inode, n, false);
  747. if (IS_ERR(dentry_page)) {
  748. err = PTR_ERR(dentry_page);
  749. if (err == -ENOENT) {
  750. err = 0;
  751. continue;
  752. } else {
  753. goto out_free;
  754. }
  755. }
  756. dentry_blk = page_address(dentry_page);
  757. make_dentry_ptr_block(inode, &d, dentry_blk);
  758. err = f2fs_fill_dentries(ctx, &d,
  759. n * NR_DENTRY_IN_BLOCK, &fstr);
  760. if (err) {
  761. f2fs_put_page(dentry_page, 1);
  762. break;
  763. }
  764. f2fs_put_page(dentry_page, 1);
  765. }
  766. out_free:
  767. fscrypt_fname_free_buffer(&fstr);
  768. out:
  769. trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
  770. return err < 0 ? err : 0;
  771. }
  772. static int f2fs_dir_open(struct inode *inode, struct file *filp)
  773. {
  774. if (f2fs_encrypted_inode(inode))
  775. return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
  776. return 0;
  777. }
  778. const struct file_operations f2fs_dir_operations = {
  779. .llseek = generic_file_llseek,
  780. .read = generic_read_dir,
  781. .iterate_shared = f2fs_readdir,
  782. .fsync = f2fs_sync_file,
  783. .open = f2fs_dir_open,
  784. .unlocked_ioctl = f2fs_ioctl,
  785. #ifdef CONFIG_COMPAT
  786. .compat_ioctl = f2fs_compat_ioctl,
  787. #endif
  788. };