dcache.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140
  1. /*
  2. * fs/dcache.c
  3. *
  4. * Complete reimplementation
  5. * (C) 1997 Thomas Schoebel-Theuer,
  6. * with heavy changes by Linus Torvalds
  7. */
  8. /*
  9. * Notes on the allocation strategy:
  10. *
  11. * The dcache is a master of the icache - whenever a dcache entry
  12. * exists, the inode will always exist. "iput()" is done either when
  13. * the dcache entry is deleted or garbage collected.
  14. */
  15. #include <linux/ratelimit.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/fsnotify.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/cache.h>
  24. #include <linux/export.h>
  25. #include <linux/security.h>
  26. #include <linux/seqlock.h>
  27. #include <linux/bootmem.h>
  28. #include <linux/bit_spinlock.h>
  29. #include <linux/rculist_bl.h>
  30. #include <linux/list_lru.h>
  31. #include "internal.h"
  32. #include "mount.h"
  33. /*
  34. * Usage:
  35. * dcache->d_inode->i_lock protects:
  36. * - i_dentry, d_u.d_alias, d_inode of aliases
  37. * dcache_hash_bucket lock protects:
  38. * - the dcache hash table
  39. * s_roots bl list spinlock protects:
  40. * - the s_roots list (see __d_drop)
  41. * dentry->d_sb->s_dentry_lru_lock protects:
  42. * - the dcache lru lists and counters
  43. * d_lock protects:
  44. * - d_flags
  45. * - d_name
  46. * - d_lru
  47. * - d_count
  48. * - d_unhashed()
  49. * - d_parent and d_subdirs
  50. * - childrens' d_child and d_parent
  51. * - d_u.d_alias, d_inode
  52. *
  53. * Ordering:
  54. * dentry->d_inode->i_lock
  55. * dentry->d_lock
  56. * dentry->d_sb->s_dentry_lru_lock
  57. * dcache_hash_bucket lock
  58. * s_roots lock
  59. *
  60. * If there is an ancestor relationship:
  61. * dentry->d_parent->...->d_parent->d_lock
  62. * ...
  63. * dentry->d_parent->d_lock
  64. * dentry->d_lock
  65. *
  66. * If no ancestor relationship:
  67. * arbitrary, since it's serialized on rename_lock
  68. */
  69. int sysctl_vfs_cache_pressure __read_mostly = 100;
  70. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  72. EXPORT_SYMBOL(rename_lock);
  73. static struct kmem_cache *dentry_cache __read_mostly;
  74. const struct qstr empty_name = QSTR_INIT("", 0);
  75. EXPORT_SYMBOL(empty_name);
  76. const struct qstr slash_name = QSTR_INIT("/", 1);
  77. EXPORT_SYMBOL(slash_name);
  78. /*
  79. * This is the single most critical data structure when it comes
  80. * to the dcache: the hashtable for lookups. Somebody should try
  81. * to make this good - I've just made it work.
  82. *
  83. * This hash-function tries to avoid losing too many bits of hash
  84. * information, yet avoid using a prime hash-size or similar.
  85. */
  86. static unsigned int d_hash_shift __read_mostly;
  87. static struct hlist_bl_head *dentry_hashtable __read_mostly;
  88. static inline struct hlist_bl_head *d_hash(unsigned int hash)
  89. {
  90. return dentry_hashtable + (hash >> d_hash_shift);
  91. }
  92. #define IN_LOOKUP_SHIFT 10
  93. static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
  94. static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
  95. unsigned int hash)
  96. {
  97. hash += (unsigned long) parent / L1_CACHE_BYTES;
  98. return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
  99. }
  100. /* Statistics gathering. */
  101. struct dentry_stat_t dentry_stat = {
  102. .age_limit = 45,
  103. };
  104. static DEFINE_PER_CPU(long, nr_dentry);
  105. static DEFINE_PER_CPU(long, nr_dentry_unused);
  106. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  107. /*
  108. * Here we resort to our own counters instead of using generic per-cpu counters
  109. * for consistency with what the vfs inode code does. We are expected to harvest
  110. * better code and performance by having our own specialized counters.
  111. *
  112. * Please note that the loop is done over all possible CPUs, not over all online
  113. * CPUs. The reason for this is that we don't want to play games with CPUs going
  114. * on and off. If one of them goes off, we will just keep their counters.
  115. *
  116. * glommer: See cffbc8a for details, and if you ever intend to change this,
  117. * please update all vfs counters to match.
  118. */
  119. static long get_nr_dentry(void)
  120. {
  121. int i;
  122. long sum = 0;
  123. for_each_possible_cpu(i)
  124. sum += per_cpu(nr_dentry, i);
  125. return sum < 0 ? 0 : sum;
  126. }
  127. static long get_nr_dentry_unused(void)
  128. {
  129. int i;
  130. long sum = 0;
  131. for_each_possible_cpu(i)
  132. sum += per_cpu(nr_dentry_unused, i);
  133. return sum < 0 ? 0 : sum;
  134. }
  135. int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
  136. size_t *lenp, loff_t *ppos)
  137. {
  138. dentry_stat.nr_dentry = get_nr_dentry();
  139. dentry_stat.nr_unused = get_nr_dentry_unused();
  140. return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  141. }
  142. #endif
  143. /*
  144. * Compare 2 name strings, return 0 if they match, otherwise non-zero.
  145. * The strings are both count bytes long, and count is non-zero.
  146. */
  147. #ifdef CONFIG_DCACHE_WORD_ACCESS
  148. #include <asm/word-at-a-time.h>
  149. /*
  150. * NOTE! 'cs' and 'scount' come from a dentry, so it has a
  151. * aligned allocation for this particular component. We don't
  152. * strictly need the load_unaligned_zeropad() safety, but it
  153. * doesn't hurt either.
  154. *
  155. * In contrast, 'ct' and 'tcount' can be from a pathname, and do
  156. * need the careful unaligned handling.
  157. */
  158. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  159. {
  160. unsigned long a,b,mask;
  161. for (;;) {
  162. a = read_word_at_a_time(cs);
  163. b = load_unaligned_zeropad(ct);
  164. if (tcount < sizeof(unsigned long))
  165. break;
  166. if (unlikely(a != b))
  167. return 1;
  168. cs += sizeof(unsigned long);
  169. ct += sizeof(unsigned long);
  170. tcount -= sizeof(unsigned long);
  171. if (!tcount)
  172. return 0;
  173. }
  174. mask = bytemask_from_count(tcount);
  175. return unlikely(!!((a ^ b) & mask));
  176. }
  177. #else
  178. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  179. {
  180. do {
  181. if (*cs != *ct)
  182. return 1;
  183. cs++;
  184. ct++;
  185. tcount--;
  186. } while (tcount);
  187. return 0;
  188. }
  189. #endif
  190. static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
  191. {
  192. /*
  193. * Be careful about RCU walk racing with rename:
  194. * use 'READ_ONCE' to fetch the name pointer.
  195. *
  196. * NOTE! Even if a rename will mean that the length
  197. * was not loaded atomically, we don't care. The
  198. * RCU walk will check the sequence count eventually,
  199. * and catch it. And we won't overrun the buffer,
  200. * because we're reading the name pointer atomically,
  201. * and a dentry name is guaranteed to be properly
  202. * terminated with a NUL byte.
  203. *
  204. * End result: even if 'len' is wrong, we'll exit
  205. * early because the data cannot match (there can
  206. * be no NUL in the ct/tcount data)
  207. */
  208. const unsigned char *cs = READ_ONCE(dentry->d_name.name);
  209. return dentry_string_cmp(cs, ct, tcount);
  210. }
  211. struct external_name {
  212. union {
  213. atomic_t count;
  214. struct rcu_head head;
  215. } u;
  216. unsigned char name[];
  217. };
  218. static inline struct external_name *external_name(struct dentry *dentry)
  219. {
  220. return container_of(dentry->d_name.name, struct external_name, name[0]);
  221. }
  222. static void __d_free(struct rcu_head *head)
  223. {
  224. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  225. kmem_cache_free(dentry_cache, dentry);
  226. }
  227. static void __d_free_external_name(struct rcu_head *head)
  228. {
  229. struct external_name *name = container_of(head, struct external_name,
  230. u.head);
  231. mod_node_page_state(page_pgdat(virt_to_page(name)),
  232. NR_INDIRECTLY_RECLAIMABLE_BYTES,
  233. -ksize(name));
  234. kfree(name);
  235. }
  236. static void __d_free_external(struct rcu_head *head)
  237. {
  238. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  239. __d_free_external_name(&external_name(dentry)->u.head);
  240. kmem_cache_free(dentry_cache, dentry);
  241. }
  242. static inline int dname_external(const struct dentry *dentry)
  243. {
  244. return dentry->d_name.name != dentry->d_iname;
  245. }
  246. void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
  247. {
  248. spin_lock(&dentry->d_lock);
  249. if (unlikely(dname_external(dentry))) {
  250. struct external_name *p = external_name(dentry);
  251. atomic_inc(&p->u.count);
  252. spin_unlock(&dentry->d_lock);
  253. name->name = p->name;
  254. } else {
  255. memcpy(name->inline_name, dentry->d_iname,
  256. dentry->d_name.len + 1);
  257. spin_unlock(&dentry->d_lock);
  258. name->name = name->inline_name;
  259. }
  260. }
  261. EXPORT_SYMBOL(take_dentry_name_snapshot);
  262. void release_dentry_name_snapshot(struct name_snapshot *name)
  263. {
  264. if (unlikely(name->name != name->inline_name)) {
  265. struct external_name *p;
  266. p = container_of(name->name, struct external_name, name[0]);
  267. if (unlikely(atomic_dec_and_test(&p->u.count)))
  268. call_rcu(&p->u.head, __d_free_external_name);
  269. }
  270. }
  271. EXPORT_SYMBOL(release_dentry_name_snapshot);
  272. static inline void __d_set_inode_and_type(struct dentry *dentry,
  273. struct inode *inode,
  274. unsigned type_flags)
  275. {
  276. unsigned flags;
  277. dentry->d_inode = inode;
  278. flags = READ_ONCE(dentry->d_flags);
  279. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  280. flags |= type_flags;
  281. WRITE_ONCE(dentry->d_flags, flags);
  282. }
  283. static inline void __d_clear_type_and_inode(struct dentry *dentry)
  284. {
  285. unsigned flags = READ_ONCE(dentry->d_flags);
  286. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  287. WRITE_ONCE(dentry->d_flags, flags);
  288. dentry->d_inode = NULL;
  289. }
  290. static void dentry_free(struct dentry *dentry)
  291. {
  292. WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
  293. if (unlikely(dname_external(dentry))) {
  294. struct external_name *p = external_name(dentry);
  295. if (likely(atomic_dec_and_test(&p->u.count))) {
  296. call_rcu(&dentry->d_u.d_rcu, __d_free_external);
  297. return;
  298. }
  299. }
  300. /* if dentry was never visible to RCU, immediate free is OK */
  301. if (dentry->d_flags & DCACHE_NORCU)
  302. __d_free(&dentry->d_u.d_rcu);
  303. else
  304. call_rcu(&dentry->d_u.d_rcu, __d_free);
  305. }
  306. /*
  307. * Release the dentry's inode, using the filesystem
  308. * d_iput() operation if defined.
  309. */
  310. static void dentry_unlink_inode(struct dentry * dentry)
  311. __releases(dentry->d_lock)
  312. __releases(dentry->d_inode->i_lock)
  313. {
  314. struct inode *inode = dentry->d_inode;
  315. raw_write_seqcount_begin(&dentry->d_seq);
  316. __d_clear_type_and_inode(dentry);
  317. hlist_del_init(&dentry->d_u.d_alias);
  318. raw_write_seqcount_end(&dentry->d_seq);
  319. spin_unlock(&dentry->d_lock);
  320. spin_unlock(&inode->i_lock);
  321. if (!inode->i_nlink)
  322. fsnotify_inoderemove(inode);
  323. if (dentry->d_op && dentry->d_op->d_iput)
  324. dentry->d_op->d_iput(dentry, inode);
  325. else
  326. iput(inode);
  327. }
  328. /*
  329. * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
  330. * is in use - which includes both the "real" per-superblock
  331. * LRU list _and_ the DCACHE_SHRINK_LIST use.
  332. *
  333. * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
  334. * on the shrink list (ie not on the superblock LRU list).
  335. *
  336. * The per-cpu "nr_dentry_unused" counters are updated with
  337. * the DCACHE_LRU_LIST bit.
  338. *
  339. * These helper functions make sure we always follow the
  340. * rules. d_lock must be held by the caller.
  341. */
  342. #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
  343. static void d_lru_add(struct dentry *dentry)
  344. {
  345. D_FLAG_VERIFY(dentry, 0);
  346. dentry->d_flags |= DCACHE_LRU_LIST;
  347. this_cpu_inc(nr_dentry_unused);
  348. WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  349. }
  350. static void d_lru_del(struct dentry *dentry)
  351. {
  352. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  353. dentry->d_flags &= ~DCACHE_LRU_LIST;
  354. this_cpu_dec(nr_dentry_unused);
  355. WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  356. }
  357. static void d_shrink_del(struct dentry *dentry)
  358. {
  359. D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  360. list_del_init(&dentry->d_lru);
  361. dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  362. this_cpu_dec(nr_dentry_unused);
  363. }
  364. static void d_shrink_add(struct dentry *dentry, struct list_head *list)
  365. {
  366. D_FLAG_VERIFY(dentry, 0);
  367. list_add(&dentry->d_lru, list);
  368. dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
  369. this_cpu_inc(nr_dentry_unused);
  370. }
  371. /*
  372. * These can only be called under the global LRU lock, ie during the
  373. * callback for freeing the LRU list. "isolate" removes it from the
  374. * LRU lists entirely, while shrink_move moves it to the indicated
  375. * private list.
  376. */
  377. static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
  378. {
  379. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  380. dentry->d_flags &= ~DCACHE_LRU_LIST;
  381. this_cpu_dec(nr_dentry_unused);
  382. list_lru_isolate(lru, &dentry->d_lru);
  383. }
  384. static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
  385. struct list_head *list)
  386. {
  387. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  388. dentry->d_flags |= DCACHE_SHRINK_LIST;
  389. list_lru_isolate_move(lru, &dentry->d_lru, list);
  390. }
  391. /**
  392. * d_drop - drop a dentry
  393. * @dentry: dentry to drop
  394. *
  395. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  396. * be found through a VFS lookup any more. Note that this is different from
  397. * deleting the dentry - d_delete will try to mark the dentry negative if
  398. * possible, giving a successful _negative_ lookup, while d_drop will
  399. * just make the cache lookup fail.
  400. *
  401. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  402. * reason (NFS timeouts or autofs deletes).
  403. *
  404. * __d_drop requires dentry->d_lock
  405. * ___d_drop doesn't mark dentry as "unhashed"
  406. * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
  407. */
  408. static void ___d_drop(struct dentry *dentry)
  409. {
  410. struct hlist_bl_head *b;
  411. /*
  412. * Hashed dentries are normally on the dentry hashtable,
  413. * with the exception of those newly allocated by
  414. * d_obtain_root, which are always IS_ROOT:
  415. */
  416. if (unlikely(IS_ROOT(dentry)))
  417. b = &dentry->d_sb->s_roots;
  418. else
  419. b = d_hash(dentry->d_name.hash);
  420. hlist_bl_lock(b);
  421. __hlist_bl_del(&dentry->d_hash);
  422. hlist_bl_unlock(b);
  423. }
  424. void __d_drop(struct dentry *dentry)
  425. {
  426. if (!d_unhashed(dentry)) {
  427. ___d_drop(dentry);
  428. dentry->d_hash.pprev = NULL;
  429. write_seqcount_invalidate(&dentry->d_seq);
  430. }
  431. }
  432. EXPORT_SYMBOL(__d_drop);
  433. void d_drop(struct dentry *dentry)
  434. {
  435. spin_lock(&dentry->d_lock);
  436. __d_drop(dentry);
  437. spin_unlock(&dentry->d_lock);
  438. }
  439. EXPORT_SYMBOL(d_drop);
  440. static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
  441. {
  442. struct dentry *next;
  443. /*
  444. * Inform d_walk() and shrink_dentry_list() that we are no longer
  445. * attached to the dentry tree
  446. */
  447. dentry->d_flags |= DCACHE_DENTRY_KILLED;
  448. if (unlikely(list_empty(&dentry->d_child)))
  449. return;
  450. __list_del_entry(&dentry->d_child);
  451. /*
  452. * Cursors can move around the list of children. While we'd been
  453. * a normal list member, it didn't matter - ->d_child.next would've
  454. * been updated. However, from now on it won't be and for the
  455. * things like d_walk() it might end up with a nasty surprise.
  456. * Normally d_walk() doesn't care about cursors moving around -
  457. * ->d_lock on parent prevents that and since a cursor has no children
  458. * of its own, we get through it without ever unlocking the parent.
  459. * There is one exception, though - if we ascend from a child that
  460. * gets killed as soon as we unlock it, the next sibling is found
  461. * using the value left in its ->d_child.next. And if _that_
  462. * pointed to a cursor, and cursor got moved (e.g. by lseek())
  463. * before d_walk() regains parent->d_lock, we'll end up skipping
  464. * everything the cursor had been moved past.
  465. *
  466. * Solution: make sure that the pointer left behind in ->d_child.next
  467. * points to something that won't be moving around. I.e. skip the
  468. * cursors.
  469. */
  470. while (dentry->d_child.next != &parent->d_subdirs) {
  471. next = list_entry(dentry->d_child.next, struct dentry, d_child);
  472. if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
  473. break;
  474. dentry->d_child.next = next->d_child.next;
  475. }
  476. }
  477. static void __dentry_kill(struct dentry *dentry)
  478. {
  479. struct dentry *parent = NULL;
  480. bool can_free = true;
  481. if (!IS_ROOT(dentry))
  482. parent = dentry->d_parent;
  483. /*
  484. * The dentry is now unrecoverably dead to the world.
  485. */
  486. lockref_mark_dead(&dentry->d_lockref);
  487. /*
  488. * inform the fs via d_prune that this dentry is about to be
  489. * unhashed and destroyed.
  490. */
  491. if (dentry->d_flags & DCACHE_OP_PRUNE)
  492. dentry->d_op->d_prune(dentry);
  493. if (dentry->d_flags & DCACHE_LRU_LIST) {
  494. if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
  495. d_lru_del(dentry);
  496. }
  497. /* if it was on the hash then remove it */
  498. __d_drop(dentry);
  499. dentry_unlist(dentry, parent);
  500. if (parent)
  501. spin_unlock(&parent->d_lock);
  502. if (dentry->d_inode)
  503. dentry_unlink_inode(dentry);
  504. else
  505. spin_unlock(&dentry->d_lock);
  506. this_cpu_dec(nr_dentry);
  507. if (dentry->d_op && dentry->d_op->d_release)
  508. dentry->d_op->d_release(dentry);
  509. spin_lock(&dentry->d_lock);
  510. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  511. dentry->d_flags |= DCACHE_MAY_FREE;
  512. can_free = false;
  513. }
  514. spin_unlock(&dentry->d_lock);
  515. if (likely(can_free))
  516. dentry_free(dentry);
  517. cond_resched();
  518. }
  519. static struct dentry *__lock_parent(struct dentry *dentry)
  520. {
  521. struct dentry *parent;
  522. rcu_read_lock();
  523. spin_unlock(&dentry->d_lock);
  524. again:
  525. parent = READ_ONCE(dentry->d_parent);
  526. spin_lock(&parent->d_lock);
  527. /*
  528. * We can't blindly lock dentry until we are sure
  529. * that we won't violate the locking order.
  530. * Any changes of dentry->d_parent must have
  531. * been done with parent->d_lock held, so
  532. * spin_lock() above is enough of a barrier
  533. * for checking if it's still our child.
  534. */
  535. if (unlikely(parent != dentry->d_parent)) {
  536. spin_unlock(&parent->d_lock);
  537. goto again;
  538. }
  539. rcu_read_unlock();
  540. if (parent != dentry)
  541. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  542. else
  543. parent = NULL;
  544. return parent;
  545. }
  546. static inline struct dentry *lock_parent(struct dentry *dentry)
  547. {
  548. struct dentry *parent = dentry->d_parent;
  549. if (IS_ROOT(dentry))
  550. return NULL;
  551. if (likely(spin_trylock(&parent->d_lock)))
  552. return parent;
  553. return __lock_parent(dentry);
  554. }
  555. static inline bool retain_dentry(struct dentry *dentry)
  556. {
  557. WARN_ON(d_in_lookup(dentry));
  558. /* Unreachable? Get rid of it */
  559. if (unlikely(d_unhashed(dentry)))
  560. return false;
  561. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
  562. return false;
  563. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
  564. if (dentry->d_op->d_delete(dentry))
  565. return false;
  566. }
  567. /* retain; LRU fodder */
  568. dentry->d_lockref.count--;
  569. if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
  570. d_lru_add(dentry);
  571. else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
  572. dentry->d_flags |= DCACHE_REFERENCED;
  573. return true;
  574. }
  575. /*
  576. * Finish off a dentry we've decided to kill.
  577. * dentry->d_lock must be held, returns with it unlocked.
  578. * Returns dentry requiring refcount drop, or NULL if we're done.
  579. */
  580. static struct dentry *dentry_kill(struct dentry *dentry)
  581. __releases(dentry->d_lock)
  582. {
  583. struct inode *inode = dentry->d_inode;
  584. struct dentry *parent = NULL;
  585. if (inode && unlikely(!spin_trylock(&inode->i_lock)))
  586. goto slow_positive;
  587. if (!IS_ROOT(dentry)) {
  588. parent = dentry->d_parent;
  589. if (unlikely(!spin_trylock(&parent->d_lock))) {
  590. parent = __lock_parent(dentry);
  591. if (likely(inode || !dentry->d_inode))
  592. goto got_locks;
  593. /* negative that became positive */
  594. if (parent)
  595. spin_unlock(&parent->d_lock);
  596. inode = dentry->d_inode;
  597. goto slow_positive;
  598. }
  599. }
  600. __dentry_kill(dentry);
  601. return parent;
  602. slow_positive:
  603. spin_unlock(&dentry->d_lock);
  604. spin_lock(&inode->i_lock);
  605. spin_lock(&dentry->d_lock);
  606. parent = lock_parent(dentry);
  607. got_locks:
  608. if (unlikely(dentry->d_lockref.count != 1)) {
  609. dentry->d_lockref.count--;
  610. } else if (likely(!retain_dentry(dentry))) {
  611. __dentry_kill(dentry);
  612. return parent;
  613. }
  614. /* we are keeping it, after all */
  615. if (inode)
  616. spin_unlock(&inode->i_lock);
  617. if (parent)
  618. spin_unlock(&parent->d_lock);
  619. spin_unlock(&dentry->d_lock);
  620. return NULL;
  621. }
  622. /*
  623. * Try to do a lockless dput(), and return whether that was successful.
  624. *
  625. * If unsuccessful, we return false, having already taken the dentry lock.
  626. *
  627. * The caller needs to hold the RCU read lock, so that the dentry is
  628. * guaranteed to stay around even if the refcount goes down to zero!
  629. */
  630. static inline bool fast_dput(struct dentry *dentry)
  631. {
  632. int ret;
  633. unsigned int d_flags;
  634. /*
  635. * If we have a d_op->d_delete() operation, we sould not
  636. * let the dentry count go to zero, so use "put_or_lock".
  637. */
  638. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
  639. return lockref_put_or_lock(&dentry->d_lockref);
  640. /*
  641. * .. otherwise, we can try to just decrement the
  642. * lockref optimistically.
  643. */
  644. ret = lockref_put_return(&dentry->d_lockref);
  645. /*
  646. * If the lockref_put_return() failed due to the lock being held
  647. * by somebody else, the fast path has failed. We will need to
  648. * get the lock, and then check the count again.
  649. */
  650. if (unlikely(ret < 0)) {
  651. spin_lock(&dentry->d_lock);
  652. if (dentry->d_lockref.count > 1) {
  653. dentry->d_lockref.count--;
  654. spin_unlock(&dentry->d_lock);
  655. return true;
  656. }
  657. return false;
  658. }
  659. /*
  660. * If we weren't the last ref, we're done.
  661. */
  662. if (ret)
  663. return true;
  664. /*
  665. * Careful, careful. The reference count went down
  666. * to zero, but we don't hold the dentry lock, so
  667. * somebody else could get it again, and do another
  668. * dput(), and we need to not race with that.
  669. *
  670. * However, there is a very special and common case
  671. * where we don't care, because there is nothing to
  672. * do: the dentry is still hashed, it does not have
  673. * a 'delete' op, and it's referenced and already on
  674. * the LRU list.
  675. *
  676. * NOTE! Since we aren't locked, these values are
  677. * not "stable". However, it is sufficient that at
  678. * some point after we dropped the reference the
  679. * dentry was hashed and the flags had the proper
  680. * value. Other dentry users may have re-gotten
  681. * a reference to the dentry and change that, but
  682. * our work is done - we can leave the dentry
  683. * around with a zero refcount.
  684. */
  685. smp_rmb();
  686. d_flags = READ_ONCE(dentry->d_flags);
  687. d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
  688. /* Nothing to do? Dropping the reference was all we needed? */
  689. if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
  690. return true;
  691. /*
  692. * Not the fast normal case? Get the lock. We've already decremented
  693. * the refcount, but we'll need to re-check the situation after
  694. * getting the lock.
  695. */
  696. spin_lock(&dentry->d_lock);
  697. /*
  698. * Did somebody else grab a reference to it in the meantime, and
  699. * we're no longer the last user after all? Alternatively, somebody
  700. * else could have killed it and marked it dead. Either way, we
  701. * don't need to do anything else.
  702. */
  703. if (dentry->d_lockref.count) {
  704. spin_unlock(&dentry->d_lock);
  705. return true;
  706. }
  707. /*
  708. * Re-get the reference we optimistically dropped. We hold the
  709. * lock, and we just tested that it was zero, so we can just
  710. * set it to 1.
  711. */
  712. dentry->d_lockref.count = 1;
  713. return false;
  714. }
  715. /*
  716. * This is dput
  717. *
  718. * This is complicated by the fact that we do not want to put
  719. * dentries that are no longer on any hash chain on the unused
  720. * list: we'd much rather just get rid of them immediately.
  721. *
  722. * However, that implies that we have to traverse the dentry
  723. * tree upwards to the parents which might _also_ now be
  724. * scheduled for deletion (it may have been only waiting for
  725. * its last child to go away).
  726. *
  727. * This tail recursion is done by hand as we don't want to depend
  728. * on the compiler to always get this right (gcc generally doesn't).
  729. * Real recursion would eat up our stack space.
  730. */
  731. /*
  732. * dput - release a dentry
  733. * @dentry: dentry to release
  734. *
  735. * Release a dentry. This will drop the usage count and if appropriate
  736. * call the dentry unlink method as well as removing it from the queues and
  737. * releasing its resources. If the parent dentries were scheduled for release
  738. * they too may now get deleted.
  739. */
  740. void dput(struct dentry *dentry)
  741. {
  742. while (dentry) {
  743. might_sleep();
  744. rcu_read_lock();
  745. if (likely(fast_dput(dentry))) {
  746. rcu_read_unlock();
  747. return;
  748. }
  749. /* Slow case: now with the dentry lock held */
  750. rcu_read_unlock();
  751. if (likely(retain_dentry(dentry))) {
  752. spin_unlock(&dentry->d_lock);
  753. return;
  754. }
  755. dentry = dentry_kill(dentry);
  756. }
  757. }
  758. EXPORT_SYMBOL(dput);
  759. /* This must be called with d_lock held */
  760. static inline void __dget_dlock(struct dentry *dentry)
  761. {
  762. dentry->d_lockref.count++;
  763. }
  764. static inline void __dget(struct dentry *dentry)
  765. {
  766. lockref_get(&dentry->d_lockref);
  767. }
  768. struct dentry *dget_parent(struct dentry *dentry)
  769. {
  770. int gotref;
  771. struct dentry *ret;
  772. /*
  773. * Do optimistic parent lookup without any
  774. * locking.
  775. */
  776. rcu_read_lock();
  777. ret = READ_ONCE(dentry->d_parent);
  778. gotref = lockref_get_not_zero(&ret->d_lockref);
  779. rcu_read_unlock();
  780. if (likely(gotref)) {
  781. if (likely(ret == READ_ONCE(dentry->d_parent)))
  782. return ret;
  783. dput(ret);
  784. }
  785. repeat:
  786. /*
  787. * Don't need rcu_dereference because we re-check it was correct under
  788. * the lock.
  789. */
  790. rcu_read_lock();
  791. ret = dentry->d_parent;
  792. spin_lock(&ret->d_lock);
  793. if (unlikely(ret != dentry->d_parent)) {
  794. spin_unlock(&ret->d_lock);
  795. rcu_read_unlock();
  796. goto repeat;
  797. }
  798. rcu_read_unlock();
  799. BUG_ON(!ret->d_lockref.count);
  800. ret->d_lockref.count++;
  801. spin_unlock(&ret->d_lock);
  802. return ret;
  803. }
  804. EXPORT_SYMBOL(dget_parent);
  805. static struct dentry * __d_find_any_alias(struct inode *inode)
  806. {
  807. struct dentry *alias;
  808. if (hlist_empty(&inode->i_dentry))
  809. return NULL;
  810. alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
  811. __dget(alias);
  812. return alias;
  813. }
  814. /**
  815. * d_find_any_alias - find any alias for a given inode
  816. * @inode: inode to find an alias for
  817. *
  818. * If any aliases exist for the given inode, take and return a
  819. * reference for one of them. If no aliases exist, return %NULL.
  820. */
  821. struct dentry *d_find_any_alias(struct inode *inode)
  822. {
  823. struct dentry *de;
  824. spin_lock(&inode->i_lock);
  825. de = __d_find_any_alias(inode);
  826. spin_unlock(&inode->i_lock);
  827. return de;
  828. }
  829. EXPORT_SYMBOL(d_find_any_alias);
  830. /**
  831. * d_find_alias - grab a hashed alias of inode
  832. * @inode: inode in question
  833. *
  834. * If inode has a hashed alias, or is a directory and has any alias,
  835. * acquire the reference to alias and return it. Otherwise return NULL.
  836. * Notice that if inode is a directory there can be only one alias and
  837. * it can be unhashed only if it has no children, or if it is the root
  838. * of a filesystem, or if the directory was renamed and d_revalidate
  839. * was the first vfs operation to notice.
  840. *
  841. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  842. * any other hashed alias over that one.
  843. */
  844. static struct dentry *__d_find_alias(struct inode *inode)
  845. {
  846. struct dentry *alias;
  847. if (S_ISDIR(inode->i_mode))
  848. return __d_find_any_alias(inode);
  849. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  850. spin_lock(&alias->d_lock);
  851. if (!d_unhashed(alias)) {
  852. __dget_dlock(alias);
  853. spin_unlock(&alias->d_lock);
  854. return alias;
  855. }
  856. spin_unlock(&alias->d_lock);
  857. }
  858. return NULL;
  859. }
  860. struct dentry *d_find_alias(struct inode *inode)
  861. {
  862. struct dentry *de = NULL;
  863. if (!hlist_empty(&inode->i_dentry)) {
  864. spin_lock(&inode->i_lock);
  865. de = __d_find_alias(inode);
  866. spin_unlock(&inode->i_lock);
  867. }
  868. return de;
  869. }
  870. EXPORT_SYMBOL(d_find_alias);
  871. /*
  872. * Try to kill dentries associated with this inode.
  873. * WARNING: you must own a reference to inode.
  874. */
  875. void d_prune_aliases(struct inode *inode)
  876. {
  877. struct dentry *dentry;
  878. restart:
  879. spin_lock(&inode->i_lock);
  880. hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
  881. spin_lock(&dentry->d_lock);
  882. if (!dentry->d_lockref.count) {
  883. struct dentry *parent = lock_parent(dentry);
  884. if (likely(!dentry->d_lockref.count)) {
  885. __dentry_kill(dentry);
  886. dput(parent);
  887. goto restart;
  888. }
  889. if (parent)
  890. spin_unlock(&parent->d_lock);
  891. }
  892. spin_unlock(&dentry->d_lock);
  893. }
  894. spin_unlock(&inode->i_lock);
  895. }
  896. EXPORT_SYMBOL(d_prune_aliases);
  897. /*
  898. * Lock a dentry from shrink list.
  899. * Called under rcu_read_lock() and dentry->d_lock; the former
  900. * guarantees that nothing we access will be freed under us.
  901. * Note that dentry is *not* protected from concurrent dentry_kill(),
  902. * d_delete(), etc.
  903. *
  904. * Return false if dentry has been disrupted or grabbed, leaving
  905. * the caller to kick it off-list. Otherwise, return true and have
  906. * that dentry's inode and parent both locked.
  907. */
  908. static bool shrink_lock_dentry(struct dentry *dentry)
  909. {
  910. struct inode *inode;
  911. struct dentry *parent;
  912. if (dentry->d_lockref.count)
  913. return false;
  914. inode = dentry->d_inode;
  915. if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
  916. spin_unlock(&dentry->d_lock);
  917. spin_lock(&inode->i_lock);
  918. spin_lock(&dentry->d_lock);
  919. if (unlikely(dentry->d_lockref.count))
  920. goto out;
  921. /* changed inode means that somebody had grabbed it */
  922. if (unlikely(inode != dentry->d_inode))
  923. goto out;
  924. }
  925. parent = dentry->d_parent;
  926. if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
  927. return true;
  928. spin_unlock(&dentry->d_lock);
  929. spin_lock(&parent->d_lock);
  930. if (unlikely(parent != dentry->d_parent)) {
  931. spin_unlock(&parent->d_lock);
  932. spin_lock(&dentry->d_lock);
  933. goto out;
  934. }
  935. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  936. if (likely(!dentry->d_lockref.count))
  937. return true;
  938. spin_unlock(&parent->d_lock);
  939. out:
  940. if (inode)
  941. spin_unlock(&inode->i_lock);
  942. return false;
  943. }
  944. static void shrink_dentry_list(struct list_head *list)
  945. {
  946. while (!list_empty(list)) {
  947. struct dentry *dentry, *parent;
  948. dentry = list_entry(list->prev, struct dentry, d_lru);
  949. spin_lock(&dentry->d_lock);
  950. rcu_read_lock();
  951. if (!shrink_lock_dentry(dentry)) {
  952. bool can_free = false;
  953. rcu_read_unlock();
  954. d_shrink_del(dentry);
  955. if (dentry->d_lockref.count < 0)
  956. can_free = dentry->d_flags & DCACHE_MAY_FREE;
  957. spin_unlock(&dentry->d_lock);
  958. if (can_free)
  959. dentry_free(dentry);
  960. continue;
  961. }
  962. rcu_read_unlock();
  963. d_shrink_del(dentry);
  964. parent = dentry->d_parent;
  965. __dentry_kill(dentry);
  966. if (parent == dentry)
  967. continue;
  968. /*
  969. * We need to prune ancestors too. This is necessary to prevent
  970. * quadratic behavior of shrink_dcache_parent(), but is also
  971. * expected to be beneficial in reducing dentry cache
  972. * fragmentation.
  973. */
  974. dentry = parent;
  975. while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
  976. dentry = dentry_kill(dentry);
  977. }
  978. }
  979. static enum lru_status dentry_lru_isolate(struct list_head *item,
  980. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  981. {
  982. struct list_head *freeable = arg;
  983. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  984. /*
  985. * we are inverting the lru lock/dentry->d_lock here,
  986. * so use a trylock. If we fail to get the lock, just skip
  987. * it
  988. */
  989. if (!spin_trylock(&dentry->d_lock))
  990. return LRU_SKIP;
  991. /*
  992. * Referenced dentries are still in use. If they have active
  993. * counts, just remove them from the LRU. Otherwise give them
  994. * another pass through the LRU.
  995. */
  996. if (dentry->d_lockref.count) {
  997. d_lru_isolate(lru, dentry);
  998. spin_unlock(&dentry->d_lock);
  999. return LRU_REMOVED;
  1000. }
  1001. if (dentry->d_flags & DCACHE_REFERENCED) {
  1002. dentry->d_flags &= ~DCACHE_REFERENCED;
  1003. spin_unlock(&dentry->d_lock);
  1004. /*
  1005. * The list move itself will be made by the common LRU code. At
  1006. * this point, we've dropped the dentry->d_lock but keep the
  1007. * lru lock. This is safe to do, since every list movement is
  1008. * protected by the lru lock even if both locks are held.
  1009. *
  1010. * This is guaranteed by the fact that all LRU management
  1011. * functions are intermediated by the LRU API calls like
  1012. * list_lru_add and list_lru_del. List movement in this file
  1013. * only ever occur through this functions or through callbacks
  1014. * like this one, that are called from the LRU API.
  1015. *
  1016. * The only exceptions to this are functions like
  1017. * shrink_dentry_list, and code that first checks for the
  1018. * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
  1019. * operating only with stack provided lists after they are
  1020. * properly isolated from the main list. It is thus, always a
  1021. * local access.
  1022. */
  1023. return LRU_ROTATE;
  1024. }
  1025. d_lru_shrink_move(lru, dentry, freeable);
  1026. spin_unlock(&dentry->d_lock);
  1027. return LRU_REMOVED;
  1028. }
  1029. /**
  1030. * prune_dcache_sb - shrink the dcache
  1031. * @sb: superblock
  1032. * @sc: shrink control, passed to list_lru_shrink_walk()
  1033. *
  1034. * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
  1035. * is done when we need more memory and called from the superblock shrinker
  1036. * function.
  1037. *
  1038. * This function may fail to free any resources if all the dentries are in
  1039. * use.
  1040. */
  1041. long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
  1042. {
  1043. LIST_HEAD(dispose);
  1044. long freed;
  1045. freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
  1046. dentry_lru_isolate, &dispose);
  1047. shrink_dentry_list(&dispose);
  1048. return freed;
  1049. }
  1050. static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
  1051. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  1052. {
  1053. struct list_head *freeable = arg;
  1054. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  1055. /*
  1056. * we are inverting the lru lock/dentry->d_lock here,
  1057. * so use a trylock. If we fail to get the lock, just skip
  1058. * it
  1059. */
  1060. if (!spin_trylock(&dentry->d_lock))
  1061. return LRU_SKIP;
  1062. d_lru_shrink_move(lru, dentry, freeable);
  1063. spin_unlock(&dentry->d_lock);
  1064. return LRU_REMOVED;
  1065. }
  1066. /**
  1067. * shrink_dcache_sb - shrink dcache for a superblock
  1068. * @sb: superblock
  1069. *
  1070. * Shrink the dcache for the specified super block. This is used to free
  1071. * the dcache before unmounting a file system.
  1072. */
  1073. void shrink_dcache_sb(struct super_block *sb)
  1074. {
  1075. do {
  1076. LIST_HEAD(dispose);
  1077. list_lru_walk(&sb->s_dentry_lru,
  1078. dentry_lru_isolate_shrink, &dispose, 1024);
  1079. shrink_dentry_list(&dispose);
  1080. } while (list_lru_count(&sb->s_dentry_lru) > 0);
  1081. }
  1082. EXPORT_SYMBOL(shrink_dcache_sb);
  1083. /**
  1084. * enum d_walk_ret - action to talke during tree walk
  1085. * @D_WALK_CONTINUE: contrinue walk
  1086. * @D_WALK_QUIT: quit walk
  1087. * @D_WALK_NORETRY: quit when retry is needed
  1088. * @D_WALK_SKIP: skip this dentry and its children
  1089. */
  1090. enum d_walk_ret {
  1091. D_WALK_CONTINUE,
  1092. D_WALK_QUIT,
  1093. D_WALK_NORETRY,
  1094. D_WALK_SKIP,
  1095. };
  1096. /**
  1097. * d_walk - walk the dentry tree
  1098. * @parent: start of walk
  1099. * @data: data passed to @enter() and @finish()
  1100. * @enter: callback when first entering the dentry
  1101. *
  1102. * The @enter() callbacks are called with d_lock held.
  1103. */
  1104. void d_walk(struct dentry *parent, void *data,
  1105. enum d_walk_ret (*enter)(void *, struct dentry *))
  1106. {
  1107. struct dentry *this_parent;
  1108. struct list_head *next;
  1109. unsigned seq = 0;
  1110. enum d_walk_ret ret;
  1111. bool retry = true;
  1112. again:
  1113. read_seqbegin_or_lock(&rename_lock, &seq);
  1114. this_parent = parent;
  1115. spin_lock(&this_parent->d_lock);
  1116. ret = enter(data, this_parent);
  1117. switch (ret) {
  1118. case D_WALK_CONTINUE:
  1119. break;
  1120. case D_WALK_QUIT:
  1121. case D_WALK_SKIP:
  1122. goto out_unlock;
  1123. case D_WALK_NORETRY:
  1124. retry = false;
  1125. break;
  1126. }
  1127. repeat:
  1128. next = this_parent->d_subdirs.next;
  1129. resume:
  1130. while (next != &this_parent->d_subdirs) {
  1131. struct list_head *tmp = next;
  1132. struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
  1133. next = tmp->next;
  1134. if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
  1135. continue;
  1136. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1137. ret = enter(data, dentry);
  1138. switch (ret) {
  1139. case D_WALK_CONTINUE:
  1140. break;
  1141. case D_WALK_QUIT:
  1142. spin_unlock(&dentry->d_lock);
  1143. goto out_unlock;
  1144. case D_WALK_NORETRY:
  1145. retry = false;
  1146. break;
  1147. case D_WALK_SKIP:
  1148. spin_unlock(&dentry->d_lock);
  1149. continue;
  1150. }
  1151. if (!list_empty(&dentry->d_subdirs)) {
  1152. spin_unlock(&this_parent->d_lock);
  1153. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1154. this_parent = dentry;
  1155. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1156. goto repeat;
  1157. }
  1158. spin_unlock(&dentry->d_lock);
  1159. }
  1160. /*
  1161. * All done at this level ... ascend and resume the search.
  1162. */
  1163. rcu_read_lock();
  1164. ascend:
  1165. if (this_parent != parent) {
  1166. struct dentry *child = this_parent;
  1167. this_parent = child->d_parent;
  1168. spin_unlock(&child->d_lock);
  1169. spin_lock(&this_parent->d_lock);
  1170. /* might go back up the wrong parent if we have had a rename. */
  1171. if (need_seqretry(&rename_lock, seq))
  1172. goto rename_retry;
  1173. /* go into the first sibling still alive */
  1174. do {
  1175. next = child->d_child.next;
  1176. if (next == &this_parent->d_subdirs)
  1177. goto ascend;
  1178. child = list_entry(next, struct dentry, d_child);
  1179. } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
  1180. rcu_read_unlock();
  1181. goto resume;
  1182. }
  1183. if (need_seqretry(&rename_lock, seq))
  1184. goto rename_retry;
  1185. rcu_read_unlock();
  1186. out_unlock:
  1187. spin_unlock(&this_parent->d_lock);
  1188. done_seqretry(&rename_lock, seq);
  1189. return;
  1190. rename_retry:
  1191. spin_unlock(&this_parent->d_lock);
  1192. rcu_read_unlock();
  1193. BUG_ON(seq & 1);
  1194. if (!retry)
  1195. return;
  1196. seq = 1;
  1197. goto again;
  1198. }
  1199. EXPORT_SYMBOL_GPL(d_walk);
  1200. struct check_mount {
  1201. struct vfsmount *mnt;
  1202. unsigned int mounted;
  1203. };
  1204. static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
  1205. {
  1206. struct check_mount *info = data;
  1207. struct path path = { .mnt = info->mnt, .dentry = dentry };
  1208. if (likely(!d_mountpoint(dentry)))
  1209. return D_WALK_CONTINUE;
  1210. if (__path_is_mountpoint(&path)) {
  1211. info->mounted = 1;
  1212. return D_WALK_QUIT;
  1213. }
  1214. return D_WALK_CONTINUE;
  1215. }
  1216. /**
  1217. * path_has_submounts - check for mounts over a dentry in the
  1218. * current namespace.
  1219. * @parent: path to check.
  1220. *
  1221. * Return true if the parent or its subdirectories contain
  1222. * a mount point in the current namespace.
  1223. */
  1224. int path_has_submounts(const struct path *parent)
  1225. {
  1226. struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
  1227. read_seqlock_excl(&mount_lock);
  1228. d_walk(parent->dentry, &data, path_check_mount);
  1229. read_sequnlock_excl(&mount_lock);
  1230. return data.mounted;
  1231. }
  1232. EXPORT_SYMBOL(path_has_submounts);
  1233. /*
  1234. * Called by mount code to set a mountpoint and check if the mountpoint is
  1235. * reachable (e.g. NFS can unhash a directory dentry and then the complete
  1236. * subtree can become unreachable).
  1237. *
  1238. * Only one of d_invalidate() and d_set_mounted() must succeed. For
  1239. * this reason take rename_lock and d_lock on dentry and ancestors.
  1240. */
  1241. int d_set_mounted(struct dentry *dentry)
  1242. {
  1243. struct dentry *p;
  1244. int ret = -ENOENT;
  1245. write_seqlock(&rename_lock);
  1246. for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
  1247. /* Need exclusion wrt. d_invalidate() */
  1248. spin_lock(&p->d_lock);
  1249. if (unlikely(d_unhashed(p))) {
  1250. spin_unlock(&p->d_lock);
  1251. goto out;
  1252. }
  1253. spin_unlock(&p->d_lock);
  1254. }
  1255. spin_lock(&dentry->d_lock);
  1256. if (!d_unlinked(dentry)) {
  1257. ret = -EBUSY;
  1258. if (!d_mountpoint(dentry)) {
  1259. dentry->d_flags |= DCACHE_MOUNTED;
  1260. ret = 0;
  1261. }
  1262. }
  1263. spin_unlock(&dentry->d_lock);
  1264. out:
  1265. write_sequnlock(&rename_lock);
  1266. return ret;
  1267. }
  1268. /*
  1269. * Search the dentry child list of the specified parent,
  1270. * and move any unused dentries to the end of the unused
  1271. * list for prune_dcache(). We descend to the next level
  1272. * whenever the d_subdirs list is non-empty and continue
  1273. * searching.
  1274. *
  1275. * It returns zero iff there are no unused children,
  1276. * otherwise it returns the number of children moved to
  1277. * the end of the unused list. This may not be the total
  1278. * number of unused children, because select_parent can
  1279. * drop the lock and return early due to latency
  1280. * constraints.
  1281. */
  1282. struct select_data {
  1283. struct dentry *start;
  1284. struct list_head dispose;
  1285. int found;
  1286. };
  1287. static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
  1288. {
  1289. struct select_data *data = _data;
  1290. enum d_walk_ret ret = D_WALK_CONTINUE;
  1291. if (data->start == dentry)
  1292. goto out;
  1293. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  1294. data->found++;
  1295. } else {
  1296. if (dentry->d_flags & DCACHE_LRU_LIST)
  1297. d_lru_del(dentry);
  1298. if (!dentry->d_lockref.count) {
  1299. d_shrink_add(dentry, &data->dispose);
  1300. data->found++;
  1301. }
  1302. }
  1303. /*
  1304. * We can return to the caller if we have found some (this
  1305. * ensures forward progress). We'll be coming back to find
  1306. * the rest.
  1307. */
  1308. if (!list_empty(&data->dispose))
  1309. ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
  1310. out:
  1311. return ret;
  1312. }
  1313. /**
  1314. * shrink_dcache_parent - prune dcache
  1315. * @parent: parent of entries to prune
  1316. *
  1317. * Prune the dcache to remove unused children of the parent dentry.
  1318. */
  1319. void shrink_dcache_parent(struct dentry *parent)
  1320. {
  1321. for (;;) {
  1322. struct select_data data;
  1323. INIT_LIST_HEAD(&data.dispose);
  1324. data.start = parent;
  1325. data.found = 0;
  1326. d_walk(parent, &data, select_collect);
  1327. if (!list_empty(&data.dispose)) {
  1328. shrink_dentry_list(&data.dispose);
  1329. continue;
  1330. }
  1331. cond_resched();
  1332. if (!data.found)
  1333. break;
  1334. }
  1335. }
  1336. EXPORT_SYMBOL(shrink_dcache_parent);
  1337. static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
  1338. {
  1339. /* it has busy descendents; complain about those instead */
  1340. if (!list_empty(&dentry->d_subdirs))
  1341. return D_WALK_CONTINUE;
  1342. /* root with refcount 1 is fine */
  1343. if (dentry == _data && dentry->d_lockref.count == 1)
  1344. return D_WALK_CONTINUE;
  1345. printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
  1346. " still in use (%d) [unmount of %s %s]\n",
  1347. dentry,
  1348. dentry->d_inode ?
  1349. dentry->d_inode->i_ino : 0UL,
  1350. dentry,
  1351. dentry->d_lockref.count,
  1352. dentry->d_sb->s_type->name,
  1353. dentry->d_sb->s_id);
  1354. WARN_ON(1);
  1355. return D_WALK_CONTINUE;
  1356. }
  1357. static void do_one_tree(struct dentry *dentry)
  1358. {
  1359. shrink_dcache_parent(dentry);
  1360. d_walk(dentry, dentry, umount_check);
  1361. d_drop(dentry);
  1362. dput(dentry);
  1363. }
  1364. /*
  1365. * destroy the dentries attached to a superblock on unmounting
  1366. */
  1367. void shrink_dcache_for_umount(struct super_block *sb)
  1368. {
  1369. struct dentry *dentry;
  1370. WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
  1371. dentry = sb->s_root;
  1372. sb->s_root = NULL;
  1373. do_one_tree(dentry);
  1374. while (!hlist_bl_empty(&sb->s_roots)) {
  1375. dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
  1376. do_one_tree(dentry);
  1377. }
  1378. }
  1379. static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
  1380. {
  1381. struct dentry **victim = _data;
  1382. if (d_mountpoint(dentry)) {
  1383. __dget_dlock(dentry);
  1384. *victim = dentry;
  1385. return D_WALK_QUIT;
  1386. }
  1387. return D_WALK_CONTINUE;
  1388. }
  1389. /**
  1390. * d_invalidate - detach submounts, prune dcache, and drop
  1391. * @dentry: dentry to invalidate (aka detach, prune and drop)
  1392. */
  1393. void d_invalidate(struct dentry *dentry)
  1394. {
  1395. bool had_submounts = false;
  1396. spin_lock(&dentry->d_lock);
  1397. if (d_unhashed(dentry)) {
  1398. spin_unlock(&dentry->d_lock);
  1399. return;
  1400. }
  1401. __d_drop(dentry);
  1402. spin_unlock(&dentry->d_lock);
  1403. /* Negative dentries can be dropped without further checks */
  1404. if (!dentry->d_inode)
  1405. return;
  1406. shrink_dcache_parent(dentry);
  1407. for (;;) {
  1408. struct dentry *victim = NULL;
  1409. d_walk(dentry, &victim, find_submount);
  1410. if (!victim) {
  1411. if (had_submounts)
  1412. shrink_dcache_parent(dentry);
  1413. return;
  1414. }
  1415. had_submounts = true;
  1416. detach_mounts(victim);
  1417. dput(victim);
  1418. }
  1419. }
  1420. EXPORT_SYMBOL(d_invalidate);
  1421. /**
  1422. * __d_alloc - allocate a dcache entry
  1423. * @sb: filesystem it will belong to
  1424. * @name: qstr of the name
  1425. *
  1426. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1427. * available. On a success the dentry is returned. The name passed in is
  1428. * copied and the copy passed in may be reused after this call.
  1429. */
  1430. struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
  1431. {
  1432. struct external_name *ext = NULL;
  1433. struct dentry *dentry;
  1434. char *dname;
  1435. int err;
  1436. dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
  1437. if (!dentry)
  1438. return NULL;
  1439. /*
  1440. * We guarantee that the inline name is always NUL-terminated.
  1441. * This way the memcpy() done by the name switching in rename
  1442. * will still always have a NUL at the end, even if we might
  1443. * be overwriting an internal NUL character
  1444. */
  1445. dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
  1446. if (unlikely(!name)) {
  1447. name = &slash_name;
  1448. dname = dentry->d_iname;
  1449. } else if (name->len > DNAME_INLINE_LEN-1) {
  1450. size_t size = offsetof(struct external_name, name[1]);
  1451. ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
  1452. if (!ext) {
  1453. kmem_cache_free(dentry_cache, dentry);
  1454. return NULL;
  1455. }
  1456. atomic_set(&ext->u.count, 1);
  1457. dname = ext->name;
  1458. } else {
  1459. dname = dentry->d_iname;
  1460. }
  1461. dentry->d_name.len = name->len;
  1462. dentry->d_name.hash = name->hash;
  1463. memcpy(dname, name->name, name->len);
  1464. dname[name->len] = 0;
  1465. /* Make sure we always see the terminating NUL character */
  1466. smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
  1467. dentry->d_lockref.count = 1;
  1468. dentry->d_flags = 0;
  1469. spin_lock_init(&dentry->d_lock);
  1470. seqcount_init(&dentry->d_seq);
  1471. dentry->d_inode = NULL;
  1472. dentry->d_parent = dentry;
  1473. dentry->d_sb = sb;
  1474. dentry->d_op = NULL;
  1475. dentry->d_fsdata = NULL;
  1476. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1477. INIT_LIST_HEAD(&dentry->d_lru);
  1478. INIT_LIST_HEAD(&dentry->d_subdirs);
  1479. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  1480. INIT_LIST_HEAD(&dentry->d_child);
  1481. d_set_d_op(dentry, dentry->d_sb->s_d_op);
  1482. if (dentry->d_op && dentry->d_op->d_init) {
  1483. err = dentry->d_op->d_init(dentry);
  1484. if (err) {
  1485. if (dname_external(dentry))
  1486. kfree(external_name(dentry));
  1487. kmem_cache_free(dentry_cache, dentry);
  1488. return NULL;
  1489. }
  1490. }
  1491. if (unlikely(ext)) {
  1492. pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
  1493. mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
  1494. ksize(ext));
  1495. }
  1496. this_cpu_inc(nr_dentry);
  1497. return dentry;
  1498. }
  1499. /**
  1500. * d_alloc - allocate a dcache entry
  1501. * @parent: parent of entry to allocate
  1502. * @name: qstr of the name
  1503. *
  1504. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1505. * available. On a success the dentry is returned. The name passed in is
  1506. * copied and the copy passed in may be reused after this call.
  1507. */
  1508. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1509. {
  1510. struct dentry *dentry = __d_alloc(parent->d_sb, name);
  1511. if (!dentry)
  1512. return NULL;
  1513. spin_lock(&parent->d_lock);
  1514. /*
  1515. * don't need child lock because it is not subject
  1516. * to concurrency here
  1517. */
  1518. __dget_dlock(parent);
  1519. dentry->d_parent = parent;
  1520. list_add(&dentry->d_child, &parent->d_subdirs);
  1521. spin_unlock(&parent->d_lock);
  1522. return dentry;
  1523. }
  1524. EXPORT_SYMBOL(d_alloc);
  1525. struct dentry *d_alloc_anon(struct super_block *sb)
  1526. {
  1527. return __d_alloc(sb, NULL);
  1528. }
  1529. EXPORT_SYMBOL(d_alloc_anon);
  1530. struct dentry *d_alloc_cursor(struct dentry * parent)
  1531. {
  1532. struct dentry *dentry = d_alloc_anon(parent->d_sb);
  1533. if (dentry) {
  1534. dentry->d_flags |= DCACHE_DENTRY_CURSOR;
  1535. dentry->d_parent = dget(parent);
  1536. }
  1537. return dentry;
  1538. }
  1539. /**
  1540. * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
  1541. * @sb: the superblock
  1542. * @name: qstr of the name
  1543. *
  1544. * For a filesystem that just pins its dentries in memory and never
  1545. * performs lookups at all, return an unhashed IS_ROOT dentry.
  1546. * This is used for pipes, sockets et.al. - the stuff that should
  1547. * never be anyone's children or parents. Unlike all other
  1548. * dentries, these will not have RCU delay between dropping the
  1549. * last reference and freeing them.
  1550. */
  1551. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1552. {
  1553. struct dentry *dentry = __d_alloc(sb, name);
  1554. if (likely(dentry))
  1555. dentry->d_flags |= DCACHE_NORCU;
  1556. return dentry;
  1557. }
  1558. EXPORT_SYMBOL(d_alloc_pseudo);
  1559. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1560. {
  1561. struct qstr q;
  1562. q.name = name;
  1563. q.hash_len = hashlen_string(parent, name);
  1564. return d_alloc(parent, &q);
  1565. }
  1566. EXPORT_SYMBOL(d_alloc_name);
  1567. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1568. {
  1569. WARN_ON_ONCE(dentry->d_op);
  1570. WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
  1571. DCACHE_OP_COMPARE |
  1572. DCACHE_OP_REVALIDATE |
  1573. DCACHE_OP_WEAK_REVALIDATE |
  1574. DCACHE_OP_DELETE |
  1575. DCACHE_OP_REAL));
  1576. dentry->d_op = op;
  1577. if (!op)
  1578. return;
  1579. if (op->d_hash)
  1580. dentry->d_flags |= DCACHE_OP_HASH;
  1581. if (op->d_compare)
  1582. dentry->d_flags |= DCACHE_OP_COMPARE;
  1583. if (op->d_revalidate)
  1584. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1585. if (op->d_weak_revalidate)
  1586. dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
  1587. if (op->d_delete)
  1588. dentry->d_flags |= DCACHE_OP_DELETE;
  1589. if (op->d_prune)
  1590. dentry->d_flags |= DCACHE_OP_PRUNE;
  1591. if (op->d_real)
  1592. dentry->d_flags |= DCACHE_OP_REAL;
  1593. }
  1594. EXPORT_SYMBOL(d_set_d_op);
  1595. /*
  1596. * d_set_fallthru - Mark a dentry as falling through to a lower layer
  1597. * @dentry - The dentry to mark
  1598. *
  1599. * Mark a dentry as falling through to the lower layer (as set with
  1600. * d_pin_lower()). This flag may be recorded on the medium.
  1601. */
  1602. void d_set_fallthru(struct dentry *dentry)
  1603. {
  1604. spin_lock(&dentry->d_lock);
  1605. dentry->d_flags |= DCACHE_FALLTHRU;
  1606. spin_unlock(&dentry->d_lock);
  1607. }
  1608. EXPORT_SYMBOL(d_set_fallthru);
  1609. static unsigned d_flags_for_inode(struct inode *inode)
  1610. {
  1611. unsigned add_flags = DCACHE_REGULAR_TYPE;
  1612. if (!inode)
  1613. return DCACHE_MISS_TYPE;
  1614. if (S_ISDIR(inode->i_mode)) {
  1615. add_flags = DCACHE_DIRECTORY_TYPE;
  1616. if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
  1617. if (unlikely(!inode->i_op->lookup))
  1618. add_flags = DCACHE_AUTODIR_TYPE;
  1619. else
  1620. inode->i_opflags |= IOP_LOOKUP;
  1621. }
  1622. goto type_determined;
  1623. }
  1624. if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
  1625. if (unlikely(inode->i_op->get_link)) {
  1626. add_flags = DCACHE_SYMLINK_TYPE;
  1627. goto type_determined;
  1628. }
  1629. inode->i_opflags |= IOP_NOFOLLOW;
  1630. }
  1631. if (unlikely(!S_ISREG(inode->i_mode)))
  1632. add_flags = DCACHE_SPECIAL_TYPE;
  1633. type_determined:
  1634. if (unlikely(IS_AUTOMOUNT(inode)))
  1635. add_flags |= DCACHE_NEED_AUTOMOUNT;
  1636. return add_flags;
  1637. }
  1638. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1639. {
  1640. unsigned add_flags = d_flags_for_inode(inode);
  1641. WARN_ON(d_in_lookup(dentry));
  1642. spin_lock(&dentry->d_lock);
  1643. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  1644. raw_write_seqcount_begin(&dentry->d_seq);
  1645. __d_set_inode_and_type(dentry, inode, add_flags);
  1646. raw_write_seqcount_end(&dentry->d_seq);
  1647. fsnotify_update_flags(dentry);
  1648. spin_unlock(&dentry->d_lock);
  1649. }
  1650. /**
  1651. * d_instantiate - fill in inode information for a dentry
  1652. * @entry: dentry to complete
  1653. * @inode: inode to attach to this dentry
  1654. *
  1655. * Fill in inode information in the entry.
  1656. *
  1657. * This turns negative dentries into productive full members
  1658. * of society.
  1659. *
  1660. * NOTE! This assumes that the inode count has been incremented
  1661. * (or otherwise set) by the caller to indicate that it is now
  1662. * in use by the dcache.
  1663. */
  1664. void d_instantiate(struct dentry *entry, struct inode * inode)
  1665. {
  1666. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1667. if (inode) {
  1668. security_d_instantiate(entry, inode);
  1669. spin_lock(&inode->i_lock);
  1670. __d_instantiate(entry, inode);
  1671. spin_unlock(&inode->i_lock);
  1672. }
  1673. }
  1674. EXPORT_SYMBOL(d_instantiate);
  1675. /*
  1676. * This should be equivalent to d_instantiate() + unlock_new_inode(),
  1677. * with lockdep-related part of unlock_new_inode() done before
  1678. * anything else. Use that instead of open-coding d_instantiate()/
  1679. * unlock_new_inode() combinations.
  1680. */
  1681. void d_instantiate_new(struct dentry *entry, struct inode *inode)
  1682. {
  1683. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1684. BUG_ON(!inode);
  1685. lockdep_annotate_inode_mutex_key(inode);
  1686. security_d_instantiate(entry, inode);
  1687. spin_lock(&inode->i_lock);
  1688. __d_instantiate(entry, inode);
  1689. WARN_ON(!(inode->i_state & I_NEW));
  1690. inode->i_state &= ~I_NEW & ~I_CREATING;
  1691. smp_mb();
  1692. wake_up_bit(&inode->i_state, __I_NEW);
  1693. spin_unlock(&inode->i_lock);
  1694. }
  1695. EXPORT_SYMBOL(d_instantiate_new);
  1696. struct dentry *d_make_root(struct inode *root_inode)
  1697. {
  1698. struct dentry *res = NULL;
  1699. if (root_inode) {
  1700. res = d_alloc_anon(root_inode->i_sb);
  1701. if (res)
  1702. d_instantiate(res, root_inode);
  1703. else
  1704. iput(root_inode);
  1705. }
  1706. return res;
  1707. }
  1708. EXPORT_SYMBOL(d_make_root);
  1709. static struct dentry *__d_instantiate_anon(struct dentry *dentry,
  1710. struct inode *inode,
  1711. bool disconnected)
  1712. {
  1713. struct dentry *res;
  1714. unsigned add_flags;
  1715. security_d_instantiate(dentry, inode);
  1716. spin_lock(&inode->i_lock);
  1717. res = __d_find_any_alias(inode);
  1718. if (res) {
  1719. spin_unlock(&inode->i_lock);
  1720. dput(dentry);
  1721. goto out_iput;
  1722. }
  1723. /* attach a disconnected dentry */
  1724. add_flags = d_flags_for_inode(inode);
  1725. if (disconnected)
  1726. add_flags |= DCACHE_DISCONNECTED;
  1727. spin_lock(&dentry->d_lock);
  1728. __d_set_inode_and_type(dentry, inode, add_flags);
  1729. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  1730. if (!disconnected) {
  1731. hlist_bl_lock(&dentry->d_sb->s_roots);
  1732. hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
  1733. hlist_bl_unlock(&dentry->d_sb->s_roots);
  1734. }
  1735. spin_unlock(&dentry->d_lock);
  1736. spin_unlock(&inode->i_lock);
  1737. return dentry;
  1738. out_iput:
  1739. iput(inode);
  1740. return res;
  1741. }
  1742. struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
  1743. {
  1744. return __d_instantiate_anon(dentry, inode, true);
  1745. }
  1746. EXPORT_SYMBOL(d_instantiate_anon);
  1747. static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
  1748. {
  1749. struct dentry *tmp;
  1750. struct dentry *res;
  1751. if (!inode)
  1752. return ERR_PTR(-ESTALE);
  1753. if (IS_ERR(inode))
  1754. return ERR_CAST(inode);
  1755. res = d_find_any_alias(inode);
  1756. if (res)
  1757. goto out_iput;
  1758. tmp = d_alloc_anon(inode->i_sb);
  1759. if (!tmp) {
  1760. res = ERR_PTR(-ENOMEM);
  1761. goto out_iput;
  1762. }
  1763. return __d_instantiate_anon(tmp, inode, disconnected);
  1764. out_iput:
  1765. iput(inode);
  1766. return res;
  1767. }
  1768. /**
  1769. * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
  1770. * @inode: inode to allocate the dentry for
  1771. *
  1772. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1773. * similar open by handle operations. The returned dentry may be anonymous,
  1774. * or may have a full name (if the inode was already in the cache).
  1775. *
  1776. * When called on a directory inode, we must ensure that the inode only ever
  1777. * has one dentry. If a dentry is found, that is returned instead of
  1778. * allocating a new one.
  1779. *
  1780. * On successful return, the reference to the inode has been transferred
  1781. * to the dentry. In case of an error the reference on the inode is released.
  1782. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1783. * be passed in and the error will be propagated to the return value,
  1784. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1785. */
  1786. struct dentry *d_obtain_alias(struct inode *inode)
  1787. {
  1788. return __d_obtain_alias(inode, true);
  1789. }
  1790. EXPORT_SYMBOL(d_obtain_alias);
  1791. /**
  1792. * d_obtain_root - find or allocate a dentry for a given inode
  1793. * @inode: inode to allocate the dentry for
  1794. *
  1795. * Obtain an IS_ROOT dentry for the root of a filesystem.
  1796. *
  1797. * We must ensure that directory inodes only ever have one dentry. If a
  1798. * dentry is found, that is returned instead of allocating a new one.
  1799. *
  1800. * On successful return, the reference to the inode has been transferred
  1801. * to the dentry. In case of an error the reference on the inode is
  1802. * released. A %NULL or IS_ERR inode may be passed in and will be the
  1803. * error will be propagate to the return value, with a %NULL @inode
  1804. * replaced by ERR_PTR(-ESTALE).
  1805. */
  1806. struct dentry *d_obtain_root(struct inode *inode)
  1807. {
  1808. return __d_obtain_alias(inode, false);
  1809. }
  1810. EXPORT_SYMBOL(d_obtain_root);
  1811. /**
  1812. * d_add_ci - lookup or allocate new dentry with case-exact name
  1813. * @inode: the inode case-insensitive lookup has found
  1814. * @dentry: the negative dentry that was passed to the parent's lookup func
  1815. * @name: the case-exact name to be associated with the returned dentry
  1816. *
  1817. * This is to avoid filling the dcache with case-insensitive names to the
  1818. * same inode, only the actual correct case is stored in the dcache for
  1819. * case-insensitive filesystems.
  1820. *
  1821. * For a case-insensitive lookup match and if the the case-exact dentry
  1822. * already exists in in the dcache, use it and return it.
  1823. *
  1824. * If no entry exists with the exact case name, allocate new dentry with
  1825. * the exact case, and return the spliced entry.
  1826. */
  1827. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1828. struct qstr *name)
  1829. {
  1830. struct dentry *found, *res;
  1831. /*
  1832. * First check if a dentry matching the name already exists,
  1833. * if not go ahead and create it now.
  1834. */
  1835. found = d_hash_and_lookup(dentry->d_parent, name);
  1836. if (found) {
  1837. iput(inode);
  1838. return found;
  1839. }
  1840. if (d_in_lookup(dentry)) {
  1841. found = d_alloc_parallel(dentry->d_parent, name,
  1842. dentry->d_wait);
  1843. if (IS_ERR(found) || !d_in_lookup(found)) {
  1844. iput(inode);
  1845. return found;
  1846. }
  1847. } else {
  1848. found = d_alloc(dentry->d_parent, name);
  1849. if (!found) {
  1850. iput(inode);
  1851. return ERR_PTR(-ENOMEM);
  1852. }
  1853. }
  1854. res = d_splice_alias(inode, found);
  1855. if (res) {
  1856. dput(found);
  1857. return res;
  1858. }
  1859. return found;
  1860. }
  1861. EXPORT_SYMBOL(d_add_ci);
  1862. static inline bool d_same_name(const struct dentry *dentry,
  1863. const struct dentry *parent,
  1864. const struct qstr *name)
  1865. {
  1866. if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
  1867. if (dentry->d_name.len != name->len)
  1868. return false;
  1869. return dentry_cmp(dentry, name->name, name->len) == 0;
  1870. }
  1871. return parent->d_op->d_compare(dentry,
  1872. dentry->d_name.len, dentry->d_name.name,
  1873. name) == 0;
  1874. }
  1875. /**
  1876. * __d_lookup_rcu - search for a dentry (racy, store-free)
  1877. * @parent: parent dentry
  1878. * @name: qstr of name we wish to find
  1879. * @seqp: returns d_seq value at the point where the dentry was found
  1880. * Returns: dentry, or NULL
  1881. *
  1882. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  1883. * resolution (store-free path walking) design described in
  1884. * Documentation/filesystems/path-lookup.txt.
  1885. *
  1886. * This is not to be used outside core vfs.
  1887. *
  1888. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  1889. * held, and rcu_read_lock held. The returned dentry must not be stored into
  1890. * without taking d_lock and checking d_seq sequence count against @seq
  1891. * returned here.
  1892. *
  1893. * A refcount may be taken on the found dentry with the d_rcu_to_refcount
  1894. * function.
  1895. *
  1896. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  1897. * the returned dentry, so long as its parent's seqlock is checked after the
  1898. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  1899. * is formed, giving integrity down the path walk.
  1900. *
  1901. * NOTE! The caller *has* to check the resulting dentry against the sequence
  1902. * number we've returned before using any of the resulting dentry state!
  1903. */
  1904. struct dentry *__d_lookup_rcu(const struct dentry *parent,
  1905. const struct qstr *name,
  1906. unsigned *seqp)
  1907. {
  1908. u64 hashlen = name->hash_len;
  1909. const unsigned char *str = name->name;
  1910. struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
  1911. struct hlist_bl_node *node;
  1912. struct dentry *dentry;
  1913. /*
  1914. * Note: There is significant duplication with __d_lookup_rcu which is
  1915. * required to prevent single threaded performance regressions
  1916. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1917. * Keep the two functions in sync.
  1918. */
  1919. /*
  1920. * The hash list is protected using RCU.
  1921. *
  1922. * Carefully use d_seq when comparing a candidate dentry, to avoid
  1923. * races with d_move().
  1924. *
  1925. * It is possible that concurrent renames can mess up our list
  1926. * walk here and result in missing our dentry, resulting in the
  1927. * false-negative result. d_lookup() protects against concurrent
  1928. * renames using rename_lock seqlock.
  1929. *
  1930. * See Documentation/filesystems/path-lookup.txt for more details.
  1931. */
  1932. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1933. unsigned seq;
  1934. seqretry:
  1935. /*
  1936. * The dentry sequence count protects us from concurrent
  1937. * renames, and thus protects parent and name fields.
  1938. *
  1939. * The caller must perform a seqcount check in order
  1940. * to do anything useful with the returned dentry.
  1941. *
  1942. * NOTE! We do a "raw" seqcount_begin here. That means that
  1943. * we don't wait for the sequence count to stabilize if it
  1944. * is in the middle of a sequence change. If we do the slow
  1945. * dentry compare, we will do seqretries until it is stable,
  1946. * and if we end up with a successful lookup, we actually
  1947. * want to exit RCU lookup anyway.
  1948. *
  1949. * Note that raw_seqcount_begin still *does* smp_rmb(), so
  1950. * we are still guaranteed NUL-termination of ->d_name.name.
  1951. */
  1952. seq = raw_seqcount_begin(&dentry->d_seq);
  1953. if (dentry->d_parent != parent)
  1954. continue;
  1955. if (d_unhashed(dentry))
  1956. continue;
  1957. if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
  1958. int tlen;
  1959. const char *tname;
  1960. if (dentry->d_name.hash != hashlen_hash(hashlen))
  1961. continue;
  1962. tlen = dentry->d_name.len;
  1963. tname = dentry->d_name.name;
  1964. /* we want a consistent (name,len) pair */
  1965. if (read_seqcount_retry(&dentry->d_seq, seq)) {
  1966. cpu_relax();
  1967. goto seqretry;
  1968. }
  1969. if (parent->d_op->d_compare(dentry,
  1970. tlen, tname, name) != 0)
  1971. continue;
  1972. } else {
  1973. if (dentry->d_name.hash_len != hashlen)
  1974. continue;
  1975. if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
  1976. continue;
  1977. }
  1978. *seqp = seq;
  1979. return dentry;
  1980. }
  1981. return NULL;
  1982. }
  1983. /**
  1984. * d_lookup - search for a dentry
  1985. * @parent: parent dentry
  1986. * @name: qstr of name we wish to find
  1987. * Returns: dentry, or NULL
  1988. *
  1989. * d_lookup searches the children of the parent dentry for the name in
  1990. * question. If the dentry is found its reference count is incremented and the
  1991. * dentry is returned. The caller must use dput to free the entry when it has
  1992. * finished using it. %NULL is returned if the dentry does not exist.
  1993. */
  1994. struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
  1995. {
  1996. struct dentry *dentry;
  1997. unsigned seq;
  1998. do {
  1999. seq = read_seqbegin(&rename_lock);
  2000. dentry = __d_lookup(parent, name);
  2001. if (dentry)
  2002. break;
  2003. } while (read_seqretry(&rename_lock, seq));
  2004. return dentry;
  2005. }
  2006. EXPORT_SYMBOL(d_lookup);
  2007. /**
  2008. * __d_lookup - search for a dentry (racy)
  2009. * @parent: parent dentry
  2010. * @name: qstr of name we wish to find
  2011. * Returns: dentry, or NULL
  2012. *
  2013. * __d_lookup is like d_lookup, however it may (rarely) return a
  2014. * false-negative result due to unrelated rename activity.
  2015. *
  2016. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  2017. * however it must be used carefully, eg. with a following d_lookup in
  2018. * the case of failure.
  2019. *
  2020. * __d_lookup callers must be commented.
  2021. */
  2022. struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
  2023. {
  2024. unsigned int hash = name->hash;
  2025. struct hlist_bl_head *b = d_hash(hash);
  2026. struct hlist_bl_node *node;
  2027. struct dentry *found = NULL;
  2028. struct dentry *dentry;
  2029. /*
  2030. * Note: There is significant duplication with __d_lookup_rcu which is
  2031. * required to prevent single threaded performance regressions
  2032. * especially on architectures where smp_rmb (in seqcounts) are costly.
  2033. * Keep the two functions in sync.
  2034. */
  2035. /*
  2036. * The hash list is protected using RCU.
  2037. *
  2038. * Take d_lock when comparing a candidate dentry, to avoid races
  2039. * with d_move().
  2040. *
  2041. * It is possible that concurrent renames can mess up our list
  2042. * walk here and result in missing our dentry, resulting in the
  2043. * false-negative result. d_lookup() protects against concurrent
  2044. * renames using rename_lock seqlock.
  2045. *
  2046. * See Documentation/filesystems/path-lookup.txt for more details.
  2047. */
  2048. rcu_read_lock();
  2049. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  2050. if (dentry->d_name.hash != hash)
  2051. continue;
  2052. spin_lock(&dentry->d_lock);
  2053. if (dentry->d_parent != parent)
  2054. goto next;
  2055. if (d_unhashed(dentry))
  2056. goto next;
  2057. if (!d_same_name(dentry, parent, name))
  2058. goto next;
  2059. dentry->d_lockref.count++;
  2060. found = dentry;
  2061. spin_unlock(&dentry->d_lock);
  2062. break;
  2063. next:
  2064. spin_unlock(&dentry->d_lock);
  2065. }
  2066. rcu_read_unlock();
  2067. return found;
  2068. }
  2069. /**
  2070. * d_hash_and_lookup - hash the qstr then search for a dentry
  2071. * @dir: Directory to search in
  2072. * @name: qstr of name we wish to find
  2073. *
  2074. * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
  2075. */
  2076. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  2077. {
  2078. /*
  2079. * Check for a fs-specific hash function. Note that we must
  2080. * calculate the standard hash first, as the d_op->d_hash()
  2081. * routine may choose to leave the hash value unchanged.
  2082. */
  2083. name->hash = full_name_hash(dir, name->name, name->len);
  2084. if (dir->d_flags & DCACHE_OP_HASH) {
  2085. int err = dir->d_op->d_hash(dir, name);
  2086. if (unlikely(err < 0))
  2087. return ERR_PTR(err);
  2088. }
  2089. return d_lookup(dir, name);
  2090. }
  2091. EXPORT_SYMBOL(d_hash_and_lookup);
  2092. /*
  2093. * When a file is deleted, we have two options:
  2094. * - turn this dentry into a negative dentry
  2095. * - unhash this dentry and free it.
  2096. *
  2097. * Usually, we want to just turn this into
  2098. * a negative dentry, but if anybody else is
  2099. * currently using the dentry or the inode
  2100. * we can't do that and we fall back on removing
  2101. * it from the hash queues and waiting for
  2102. * it to be deleted later when it has no users
  2103. */
  2104. /**
  2105. * d_delete - delete a dentry
  2106. * @dentry: The dentry to delete
  2107. *
  2108. * Turn the dentry into a negative dentry if possible, otherwise
  2109. * remove it from the hash queues so it can be deleted later
  2110. */
  2111. void d_delete(struct dentry * dentry)
  2112. {
  2113. struct inode *inode = dentry->d_inode;
  2114. int isdir = d_is_dir(dentry);
  2115. spin_lock(&inode->i_lock);
  2116. spin_lock(&dentry->d_lock);
  2117. /*
  2118. * Are we the only user?
  2119. */
  2120. if (dentry->d_lockref.count == 1) {
  2121. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  2122. dentry_unlink_inode(dentry);
  2123. } else {
  2124. __d_drop(dentry);
  2125. spin_unlock(&dentry->d_lock);
  2126. spin_unlock(&inode->i_lock);
  2127. }
  2128. fsnotify_nameremove(dentry, isdir);
  2129. }
  2130. EXPORT_SYMBOL(d_delete);
  2131. static void __d_rehash(struct dentry *entry)
  2132. {
  2133. struct hlist_bl_head *b = d_hash(entry->d_name.hash);
  2134. hlist_bl_lock(b);
  2135. hlist_bl_add_head_rcu(&entry->d_hash, b);
  2136. hlist_bl_unlock(b);
  2137. }
  2138. /**
  2139. * d_rehash - add an entry back to the hash
  2140. * @entry: dentry to add to the hash
  2141. *
  2142. * Adds a dentry to the hash according to its name.
  2143. */
  2144. void d_rehash(struct dentry * entry)
  2145. {
  2146. spin_lock(&entry->d_lock);
  2147. __d_rehash(entry);
  2148. spin_unlock(&entry->d_lock);
  2149. }
  2150. EXPORT_SYMBOL(d_rehash);
  2151. static inline unsigned start_dir_add(struct inode *dir)
  2152. {
  2153. for (;;) {
  2154. unsigned n = dir->i_dir_seq;
  2155. if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
  2156. return n;
  2157. cpu_relax();
  2158. }
  2159. }
  2160. static inline void end_dir_add(struct inode *dir, unsigned n)
  2161. {
  2162. smp_store_release(&dir->i_dir_seq, n + 2);
  2163. }
  2164. static void d_wait_lookup(struct dentry *dentry)
  2165. {
  2166. if (d_in_lookup(dentry)) {
  2167. DECLARE_WAITQUEUE(wait, current);
  2168. add_wait_queue(dentry->d_wait, &wait);
  2169. do {
  2170. set_current_state(TASK_UNINTERRUPTIBLE);
  2171. spin_unlock(&dentry->d_lock);
  2172. schedule();
  2173. spin_lock(&dentry->d_lock);
  2174. } while (d_in_lookup(dentry));
  2175. }
  2176. }
  2177. struct dentry *d_alloc_parallel(struct dentry *parent,
  2178. const struct qstr *name,
  2179. wait_queue_head_t *wq)
  2180. {
  2181. unsigned int hash = name->hash;
  2182. struct hlist_bl_head *b = in_lookup_hash(parent, hash);
  2183. struct hlist_bl_node *node;
  2184. struct dentry *new = d_alloc(parent, name);
  2185. struct dentry *dentry;
  2186. unsigned seq, r_seq, d_seq;
  2187. if (unlikely(!new))
  2188. return ERR_PTR(-ENOMEM);
  2189. retry:
  2190. rcu_read_lock();
  2191. seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
  2192. r_seq = read_seqbegin(&rename_lock);
  2193. dentry = __d_lookup_rcu(parent, name, &d_seq);
  2194. if (unlikely(dentry)) {
  2195. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2196. rcu_read_unlock();
  2197. goto retry;
  2198. }
  2199. if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
  2200. rcu_read_unlock();
  2201. dput(dentry);
  2202. goto retry;
  2203. }
  2204. rcu_read_unlock();
  2205. dput(new);
  2206. return dentry;
  2207. }
  2208. if (unlikely(read_seqretry(&rename_lock, r_seq))) {
  2209. rcu_read_unlock();
  2210. goto retry;
  2211. }
  2212. if (unlikely(seq & 1)) {
  2213. rcu_read_unlock();
  2214. goto retry;
  2215. }
  2216. hlist_bl_lock(b);
  2217. if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
  2218. hlist_bl_unlock(b);
  2219. rcu_read_unlock();
  2220. goto retry;
  2221. }
  2222. /*
  2223. * No changes for the parent since the beginning of d_lookup().
  2224. * Since all removals from the chain happen with hlist_bl_lock(),
  2225. * any potential in-lookup matches are going to stay here until
  2226. * we unlock the chain. All fields are stable in everything
  2227. * we encounter.
  2228. */
  2229. hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
  2230. if (dentry->d_name.hash != hash)
  2231. continue;
  2232. if (dentry->d_parent != parent)
  2233. continue;
  2234. if (!d_same_name(dentry, parent, name))
  2235. continue;
  2236. hlist_bl_unlock(b);
  2237. /* now we can try to grab a reference */
  2238. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2239. rcu_read_unlock();
  2240. goto retry;
  2241. }
  2242. rcu_read_unlock();
  2243. /*
  2244. * somebody is likely to be still doing lookup for it;
  2245. * wait for them to finish
  2246. */
  2247. spin_lock(&dentry->d_lock);
  2248. d_wait_lookup(dentry);
  2249. /*
  2250. * it's not in-lookup anymore; in principle we should repeat
  2251. * everything from dcache lookup, but it's likely to be what
  2252. * d_lookup() would've found anyway. If it is, just return it;
  2253. * otherwise we really have to repeat the whole thing.
  2254. */
  2255. if (unlikely(dentry->d_name.hash != hash))
  2256. goto mismatch;
  2257. if (unlikely(dentry->d_parent != parent))
  2258. goto mismatch;
  2259. if (unlikely(d_unhashed(dentry)))
  2260. goto mismatch;
  2261. if (unlikely(!d_same_name(dentry, parent, name)))
  2262. goto mismatch;
  2263. /* OK, it *is* a hashed match; return it */
  2264. spin_unlock(&dentry->d_lock);
  2265. dput(new);
  2266. return dentry;
  2267. }
  2268. rcu_read_unlock();
  2269. /* we can't take ->d_lock here; it's OK, though. */
  2270. new->d_flags |= DCACHE_PAR_LOOKUP;
  2271. new->d_wait = wq;
  2272. hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
  2273. hlist_bl_unlock(b);
  2274. return new;
  2275. mismatch:
  2276. spin_unlock(&dentry->d_lock);
  2277. dput(dentry);
  2278. goto retry;
  2279. }
  2280. EXPORT_SYMBOL(d_alloc_parallel);
  2281. void __d_lookup_done(struct dentry *dentry)
  2282. {
  2283. struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
  2284. dentry->d_name.hash);
  2285. hlist_bl_lock(b);
  2286. dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
  2287. __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
  2288. wake_up_all(dentry->d_wait);
  2289. dentry->d_wait = NULL;
  2290. hlist_bl_unlock(b);
  2291. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  2292. INIT_LIST_HEAD(&dentry->d_lru);
  2293. }
  2294. EXPORT_SYMBOL(__d_lookup_done);
  2295. /* inode->i_lock held if inode is non-NULL */
  2296. static inline void __d_add(struct dentry *dentry, struct inode *inode)
  2297. {
  2298. struct inode *dir = NULL;
  2299. unsigned n;
  2300. spin_lock(&dentry->d_lock);
  2301. if (unlikely(d_in_lookup(dentry))) {
  2302. dir = dentry->d_parent->d_inode;
  2303. n = start_dir_add(dir);
  2304. __d_lookup_done(dentry);
  2305. }
  2306. if (inode) {
  2307. unsigned add_flags = d_flags_for_inode(inode);
  2308. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  2309. raw_write_seqcount_begin(&dentry->d_seq);
  2310. __d_set_inode_and_type(dentry, inode, add_flags);
  2311. raw_write_seqcount_end(&dentry->d_seq);
  2312. fsnotify_update_flags(dentry);
  2313. }
  2314. __d_rehash(dentry);
  2315. if (dir)
  2316. end_dir_add(dir, n);
  2317. spin_unlock(&dentry->d_lock);
  2318. if (inode)
  2319. spin_unlock(&inode->i_lock);
  2320. }
  2321. /**
  2322. * d_add - add dentry to hash queues
  2323. * @entry: dentry to add
  2324. * @inode: The inode to attach to this dentry
  2325. *
  2326. * This adds the entry to the hash queues and initializes @inode.
  2327. * The entry was actually filled in earlier during d_alloc().
  2328. */
  2329. void d_add(struct dentry *entry, struct inode *inode)
  2330. {
  2331. if (inode) {
  2332. security_d_instantiate(entry, inode);
  2333. spin_lock(&inode->i_lock);
  2334. }
  2335. __d_add(entry, inode);
  2336. }
  2337. EXPORT_SYMBOL(d_add);
  2338. /**
  2339. * d_exact_alias - find and hash an exact unhashed alias
  2340. * @entry: dentry to add
  2341. * @inode: The inode to go with this dentry
  2342. *
  2343. * If an unhashed dentry with the same name/parent and desired
  2344. * inode already exists, hash and return it. Otherwise, return
  2345. * NULL.
  2346. *
  2347. * Parent directory should be locked.
  2348. */
  2349. struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
  2350. {
  2351. struct dentry *alias;
  2352. unsigned int hash = entry->d_name.hash;
  2353. spin_lock(&inode->i_lock);
  2354. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  2355. /*
  2356. * Don't need alias->d_lock here, because aliases with
  2357. * d_parent == entry->d_parent are not subject to name or
  2358. * parent changes, because the parent inode i_mutex is held.
  2359. */
  2360. if (alias->d_name.hash != hash)
  2361. continue;
  2362. if (alias->d_parent != entry->d_parent)
  2363. continue;
  2364. if (!d_same_name(alias, entry->d_parent, &entry->d_name))
  2365. continue;
  2366. spin_lock(&alias->d_lock);
  2367. if (!d_unhashed(alias)) {
  2368. spin_unlock(&alias->d_lock);
  2369. alias = NULL;
  2370. } else {
  2371. __dget_dlock(alias);
  2372. __d_rehash(alias);
  2373. spin_unlock(&alias->d_lock);
  2374. }
  2375. spin_unlock(&inode->i_lock);
  2376. return alias;
  2377. }
  2378. spin_unlock(&inode->i_lock);
  2379. return NULL;
  2380. }
  2381. EXPORT_SYMBOL(d_exact_alias);
  2382. static void swap_names(struct dentry *dentry, struct dentry *target)
  2383. {
  2384. if (unlikely(dname_external(target))) {
  2385. if (unlikely(dname_external(dentry))) {
  2386. /*
  2387. * Both external: swap the pointers
  2388. */
  2389. swap(target->d_name.name, dentry->d_name.name);
  2390. } else {
  2391. /*
  2392. * dentry:internal, target:external. Steal target's
  2393. * storage and make target internal.
  2394. */
  2395. memcpy(target->d_iname, dentry->d_name.name,
  2396. dentry->d_name.len + 1);
  2397. dentry->d_name.name = target->d_name.name;
  2398. target->d_name.name = target->d_iname;
  2399. }
  2400. } else {
  2401. if (unlikely(dname_external(dentry))) {
  2402. /*
  2403. * dentry:external, target:internal. Give dentry's
  2404. * storage to target and make dentry internal
  2405. */
  2406. memcpy(dentry->d_iname, target->d_name.name,
  2407. target->d_name.len + 1);
  2408. target->d_name.name = dentry->d_name.name;
  2409. dentry->d_name.name = dentry->d_iname;
  2410. } else {
  2411. /*
  2412. * Both are internal.
  2413. */
  2414. unsigned int i;
  2415. BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
  2416. for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
  2417. swap(((long *) &dentry->d_iname)[i],
  2418. ((long *) &target->d_iname)[i]);
  2419. }
  2420. }
  2421. }
  2422. swap(dentry->d_name.hash_len, target->d_name.hash_len);
  2423. }
  2424. static void copy_name(struct dentry *dentry, struct dentry *target)
  2425. {
  2426. struct external_name *old_name = NULL;
  2427. if (unlikely(dname_external(dentry)))
  2428. old_name = external_name(dentry);
  2429. if (unlikely(dname_external(target))) {
  2430. atomic_inc(&external_name(target)->u.count);
  2431. dentry->d_name = target->d_name;
  2432. } else {
  2433. memcpy(dentry->d_iname, target->d_name.name,
  2434. target->d_name.len + 1);
  2435. dentry->d_name.name = dentry->d_iname;
  2436. dentry->d_name.hash_len = target->d_name.hash_len;
  2437. }
  2438. if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
  2439. call_rcu(&old_name->u.head, __d_free_external_name);
  2440. }
  2441. /*
  2442. * __d_move - move a dentry
  2443. * @dentry: entry to move
  2444. * @target: new dentry
  2445. * @exchange: exchange the two dentries
  2446. *
  2447. * Update the dcache to reflect the move of a file name. Negative
  2448. * dcache entries should not be moved in this way. Caller must hold
  2449. * rename_lock, the i_mutex of the source and target directories,
  2450. * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
  2451. */
  2452. static void __d_move(struct dentry *dentry, struct dentry *target,
  2453. bool exchange)
  2454. {
  2455. struct dentry *old_parent, *p;
  2456. struct inode *dir = NULL;
  2457. unsigned n;
  2458. WARN_ON(!dentry->d_inode);
  2459. if (WARN_ON(dentry == target))
  2460. return;
  2461. BUG_ON(d_ancestor(target, dentry));
  2462. old_parent = dentry->d_parent;
  2463. p = d_ancestor(old_parent, target);
  2464. if (IS_ROOT(dentry)) {
  2465. BUG_ON(p);
  2466. spin_lock(&target->d_parent->d_lock);
  2467. } else if (!p) {
  2468. /* target is not a descendent of dentry->d_parent */
  2469. spin_lock(&target->d_parent->d_lock);
  2470. spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
  2471. } else {
  2472. BUG_ON(p == dentry);
  2473. spin_lock(&old_parent->d_lock);
  2474. if (p != target)
  2475. spin_lock_nested(&target->d_parent->d_lock,
  2476. DENTRY_D_LOCK_NESTED);
  2477. }
  2478. spin_lock_nested(&dentry->d_lock, 2);
  2479. spin_lock_nested(&target->d_lock, 3);
  2480. if (unlikely(d_in_lookup(target))) {
  2481. dir = target->d_parent->d_inode;
  2482. n = start_dir_add(dir);
  2483. __d_lookup_done(target);
  2484. }
  2485. write_seqcount_begin(&dentry->d_seq);
  2486. write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
  2487. /* unhash both */
  2488. if (!d_unhashed(dentry))
  2489. ___d_drop(dentry);
  2490. if (!d_unhashed(target))
  2491. ___d_drop(target);
  2492. /* ... and switch them in the tree */
  2493. dentry->d_parent = target->d_parent;
  2494. if (!exchange) {
  2495. copy_name(dentry, target);
  2496. target->d_hash.pprev = NULL;
  2497. dentry->d_parent->d_lockref.count++;
  2498. if (dentry != old_parent) /* wasn't IS_ROOT */
  2499. WARN_ON(!--old_parent->d_lockref.count);
  2500. } else {
  2501. target->d_parent = old_parent;
  2502. swap_names(dentry, target);
  2503. list_move(&target->d_child, &target->d_parent->d_subdirs);
  2504. __d_rehash(target);
  2505. fsnotify_update_flags(target);
  2506. }
  2507. list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
  2508. __d_rehash(dentry);
  2509. fsnotify_update_flags(dentry);
  2510. write_seqcount_end(&target->d_seq);
  2511. write_seqcount_end(&dentry->d_seq);
  2512. if (dir)
  2513. end_dir_add(dir, n);
  2514. if (dentry->d_parent != old_parent)
  2515. spin_unlock(&dentry->d_parent->d_lock);
  2516. if (dentry != old_parent)
  2517. spin_unlock(&old_parent->d_lock);
  2518. spin_unlock(&target->d_lock);
  2519. spin_unlock(&dentry->d_lock);
  2520. }
  2521. /*
  2522. * d_move - move a dentry
  2523. * @dentry: entry to move
  2524. * @target: new dentry
  2525. *
  2526. * Update the dcache to reflect the move of a file name. Negative
  2527. * dcache entries should not be moved in this way. See the locking
  2528. * requirements for __d_move.
  2529. */
  2530. void d_move(struct dentry *dentry, struct dentry *target)
  2531. {
  2532. write_seqlock(&rename_lock);
  2533. __d_move(dentry, target, false);
  2534. write_sequnlock(&rename_lock);
  2535. }
  2536. EXPORT_SYMBOL(d_move);
  2537. /*
  2538. * d_exchange - exchange two dentries
  2539. * @dentry1: first dentry
  2540. * @dentry2: second dentry
  2541. */
  2542. void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
  2543. {
  2544. write_seqlock(&rename_lock);
  2545. WARN_ON(!dentry1->d_inode);
  2546. WARN_ON(!dentry2->d_inode);
  2547. WARN_ON(IS_ROOT(dentry1));
  2548. WARN_ON(IS_ROOT(dentry2));
  2549. __d_move(dentry1, dentry2, true);
  2550. write_sequnlock(&rename_lock);
  2551. }
  2552. EXPORT_SYMBOL_GPL(d_exchange);
  2553. /**
  2554. * d_ancestor - search for an ancestor
  2555. * @p1: ancestor dentry
  2556. * @p2: child dentry
  2557. *
  2558. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2559. * an ancestor of p2, else NULL.
  2560. */
  2561. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2562. {
  2563. struct dentry *p;
  2564. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2565. if (p->d_parent == p1)
  2566. return p;
  2567. }
  2568. return NULL;
  2569. }
  2570. /*
  2571. * This helper attempts to cope with remotely renamed directories
  2572. *
  2573. * It assumes that the caller is already holding
  2574. * dentry->d_parent->d_inode->i_mutex, and rename_lock
  2575. *
  2576. * Note: If ever the locking in lock_rename() changes, then please
  2577. * remember to update this too...
  2578. */
  2579. static int __d_unalias(struct inode *inode,
  2580. struct dentry *dentry, struct dentry *alias)
  2581. {
  2582. struct mutex *m1 = NULL;
  2583. struct rw_semaphore *m2 = NULL;
  2584. int ret = -ESTALE;
  2585. /* If alias and dentry share a parent, then no extra locks required */
  2586. if (alias->d_parent == dentry->d_parent)
  2587. goto out_unalias;
  2588. /* See lock_rename() */
  2589. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2590. goto out_err;
  2591. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2592. if (!inode_trylock_shared(alias->d_parent->d_inode))
  2593. goto out_err;
  2594. m2 = &alias->d_parent->d_inode->i_rwsem;
  2595. out_unalias:
  2596. __d_move(alias, dentry, false);
  2597. ret = 0;
  2598. out_err:
  2599. if (m2)
  2600. up_read(m2);
  2601. if (m1)
  2602. mutex_unlock(m1);
  2603. return ret;
  2604. }
  2605. /**
  2606. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  2607. * @inode: the inode which may have a disconnected dentry
  2608. * @dentry: a negative dentry which we want to point to the inode.
  2609. *
  2610. * If inode is a directory and has an IS_ROOT alias, then d_move that in
  2611. * place of the given dentry and return it, else simply d_add the inode
  2612. * to the dentry and return NULL.
  2613. *
  2614. * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
  2615. * we should error out: directories can't have multiple aliases.
  2616. *
  2617. * This is needed in the lookup routine of any filesystem that is exportable
  2618. * (via knfsd) so that we can build dcache paths to directories effectively.
  2619. *
  2620. * If a dentry was found and moved, then it is returned. Otherwise NULL
  2621. * is returned. This matches the expected return value of ->lookup.
  2622. *
  2623. * Cluster filesystems may call this function with a negative, hashed dentry.
  2624. * In that case, we know that the inode will be a regular file, and also this
  2625. * will only occur during atomic_open. So we need to check for the dentry
  2626. * being already hashed only in the final case.
  2627. */
  2628. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  2629. {
  2630. if (IS_ERR(inode))
  2631. return ERR_CAST(inode);
  2632. BUG_ON(!d_unhashed(dentry));
  2633. if (!inode)
  2634. goto out;
  2635. security_d_instantiate(dentry, inode);
  2636. spin_lock(&inode->i_lock);
  2637. if (S_ISDIR(inode->i_mode)) {
  2638. struct dentry *new = __d_find_any_alias(inode);
  2639. if (unlikely(new)) {
  2640. /* The reference to new ensures it remains an alias */
  2641. spin_unlock(&inode->i_lock);
  2642. write_seqlock(&rename_lock);
  2643. if (unlikely(d_ancestor(new, dentry))) {
  2644. write_sequnlock(&rename_lock);
  2645. dput(new);
  2646. new = ERR_PTR(-ELOOP);
  2647. pr_warn_ratelimited(
  2648. "VFS: Lookup of '%s' in %s %s"
  2649. " would have caused loop\n",
  2650. dentry->d_name.name,
  2651. inode->i_sb->s_type->name,
  2652. inode->i_sb->s_id);
  2653. } else if (!IS_ROOT(new)) {
  2654. struct dentry *old_parent = dget(new->d_parent);
  2655. int err = __d_unalias(inode, dentry, new);
  2656. write_sequnlock(&rename_lock);
  2657. if (err) {
  2658. dput(new);
  2659. new = ERR_PTR(err);
  2660. }
  2661. dput(old_parent);
  2662. } else {
  2663. __d_move(new, dentry, false);
  2664. write_sequnlock(&rename_lock);
  2665. }
  2666. iput(inode);
  2667. return new;
  2668. }
  2669. }
  2670. out:
  2671. __d_add(dentry, inode);
  2672. return NULL;
  2673. }
  2674. EXPORT_SYMBOL(d_splice_alias);
  2675. /*
  2676. * Test whether new_dentry is a subdirectory of old_dentry.
  2677. *
  2678. * Trivially implemented using the dcache structure
  2679. */
  2680. /**
  2681. * is_subdir - is new dentry a subdirectory of old_dentry
  2682. * @new_dentry: new dentry
  2683. * @old_dentry: old dentry
  2684. *
  2685. * Returns true if new_dentry is a subdirectory of the parent (at any depth).
  2686. * Returns false otherwise.
  2687. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  2688. */
  2689. bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  2690. {
  2691. bool result;
  2692. unsigned seq;
  2693. if (new_dentry == old_dentry)
  2694. return true;
  2695. do {
  2696. /* for restarting inner loop in case of seq retry */
  2697. seq = read_seqbegin(&rename_lock);
  2698. /*
  2699. * Need rcu_readlock to protect against the d_parent trashing
  2700. * due to d_move
  2701. */
  2702. rcu_read_lock();
  2703. if (d_ancestor(old_dentry, new_dentry))
  2704. result = true;
  2705. else
  2706. result = false;
  2707. rcu_read_unlock();
  2708. } while (read_seqretry(&rename_lock, seq));
  2709. return result;
  2710. }
  2711. EXPORT_SYMBOL(is_subdir);
  2712. static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
  2713. {
  2714. struct dentry *root = data;
  2715. if (dentry != root) {
  2716. if (d_unhashed(dentry) || !dentry->d_inode)
  2717. return D_WALK_SKIP;
  2718. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  2719. dentry->d_flags |= DCACHE_GENOCIDE;
  2720. dentry->d_lockref.count--;
  2721. }
  2722. }
  2723. return D_WALK_CONTINUE;
  2724. }
  2725. void d_genocide(struct dentry *parent)
  2726. {
  2727. d_walk(parent, parent, d_genocide_kill);
  2728. }
  2729. EXPORT_SYMBOL(d_genocide);
  2730. void d_tmpfile(struct dentry *dentry, struct inode *inode)
  2731. {
  2732. inode_dec_link_count(inode);
  2733. BUG_ON(dentry->d_name.name != dentry->d_iname ||
  2734. !hlist_unhashed(&dentry->d_u.d_alias) ||
  2735. !d_unlinked(dentry));
  2736. spin_lock(&dentry->d_parent->d_lock);
  2737. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  2738. dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
  2739. (unsigned long long)inode->i_ino);
  2740. spin_unlock(&dentry->d_lock);
  2741. spin_unlock(&dentry->d_parent->d_lock);
  2742. d_instantiate(dentry, inode);
  2743. }
  2744. EXPORT_SYMBOL(d_tmpfile);
  2745. static __initdata unsigned long dhash_entries;
  2746. static int __init set_dhash_entries(char *str)
  2747. {
  2748. if (!str)
  2749. return 0;
  2750. dhash_entries = simple_strtoul(str, &str, 0);
  2751. return 1;
  2752. }
  2753. __setup("dhash_entries=", set_dhash_entries);
  2754. static void __init dcache_init_early(void)
  2755. {
  2756. /* If hashes are distributed across NUMA nodes, defer
  2757. * hash allocation until vmalloc space is available.
  2758. */
  2759. if (hashdist)
  2760. return;
  2761. dentry_hashtable =
  2762. alloc_large_system_hash("Dentry cache",
  2763. sizeof(struct hlist_bl_head),
  2764. dhash_entries,
  2765. 13,
  2766. HASH_EARLY | HASH_ZERO,
  2767. &d_hash_shift,
  2768. NULL,
  2769. 0,
  2770. 0);
  2771. d_hash_shift = 32 - d_hash_shift;
  2772. }
  2773. static void __init dcache_init(void)
  2774. {
  2775. /*
  2776. * A constructor could be added for stable state like the lists,
  2777. * but it is probably not worth it because of the cache nature
  2778. * of the dcache.
  2779. */
  2780. dentry_cache = KMEM_CACHE_USERCOPY(dentry,
  2781. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
  2782. d_iname);
  2783. /* Hash may have been set up in dcache_init_early */
  2784. if (!hashdist)
  2785. return;
  2786. dentry_hashtable =
  2787. alloc_large_system_hash("Dentry cache",
  2788. sizeof(struct hlist_bl_head),
  2789. dhash_entries,
  2790. 13,
  2791. HASH_ZERO,
  2792. &d_hash_shift,
  2793. NULL,
  2794. 0,
  2795. 0);
  2796. d_hash_shift = 32 - d_hash_shift;
  2797. }
  2798. /* SLAB cache for __getname() consumers */
  2799. struct kmem_cache *names_cachep __read_mostly;
  2800. EXPORT_SYMBOL(names_cachep);
  2801. void __init vfs_caches_init_early(void)
  2802. {
  2803. int i;
  2804. for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
  2805. INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
  2806. dcache_init_early();
  2807. inode_init_early();
  2808. }
  2809. void __init vfs_caches_init(void)
  2810. {
  2811. names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
  2812. SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
  2813. dcache_init();
  2814. inode_init();
  2815. files_init();
  2816. files_maxfiles_init();
  2817. mnt_init();
  2818. bdev_cache_init();
  2819. chrdev_init();
  2820. }