relocation.c 112 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2009 Oracle. All rights reserved.
  4. */
  5. #include <linux/sched.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/writeback.h>
  8. #include <linux/blkdev.h>
  9. #include <linux/rbtree.h>
  10. #include <linux/slab.h>
  11. #include "ctree.h"
  12. #include "disk-io.h"
  13. #include "transaction.h"
  14. #include "volumes.h"
  15. #include "locking.h"
  16. #include "btrfs_inode.h"
  17. #include "async-thread.h"
  18. #include "free-space-cache.h"
  19. #include "inode-map.h"
  20. #include "qgroup.h"
  21. #include "print-tree.h"
  22. /*
  23. * backref_node, mapping_node and tree_block start with this
  24. */
  25. struct tree_entry {
  26. struct rb_node rb_node;
  27. u64 bytenr;
  28. };
  29. /*
  30. * present a tree block in the backref cache
  31. */
  32. struct backref_node {
  33. struct rb_node rb_node;
  34. u64 bytenr;
  35. u64 new_bytenr;
  36. /* objectid of tree block owner, can be not uptodate */
  37. u64 owner;
  38. /* link to pending, changed or detached list */
  39. struct list_head list;
  40. /* list of upper level blocks reference this block */
  41. struct list_head upper;
  42. /* list of child blocks in the cache */
  43. struct list_head lower;
  44. /* NULL if this node is not tree root */
  45. struct btrfs_root *root;
  46. /* extent buffer got by COW the block */
  47. struct extent_buffer *eb;
  48. /* level of tree block */
  49. unsigned int level:8;
  50. /* is the block in non-reference counted tree */
  51. unsigned int cowonly:1;
  52. /* 1 if no child node in the cache */
  53. unsigned int lowest:1;
  54. /* is the extent buffer locked */
  55. unsigned int locked:1;
  56. /* has the block been processed */
  57. unsigned int processed:1;
  58. /* have backrefs of this block been checked */
  59. unsigned int checked:1;
  60. /*
  61. * 1 if corresponding block has been cowed but some upper
  62. * level block pointers may not point to the new location
  63. */
  64. unsigned int pending:1;
  65. /*
  66. * 1 if the backref node isn't connected to any other
  67. * backref node.
  68. */
  69. unsigned int detached:1;
  70. };
  71. /*
  72. * present a block pointer in the backref cache
  73. */
  74. struct backref_edge {
  75. struct list_head list[2];
  76. struct backref_node *node[2];
  77. };
  78. #define LOWER 0
  79. #define UPPER 1
  80. #define RELOCATION_RESERVED_NODES 256
  81. struct backref_cache {
  82. /* red black tree of all backref nodes in the cache */
  83. struct rb_root rb_root;
  84. /* for passing backref nodes to btrfs_reloc_cow_block */
  85. struct backref_node *path[BTRFS_MAX_LEVEL];
  86. /*
  87. * list of blocks that have been cowed but some block
  88. * pointers in upper level blocks may not reflect the
  89. * new location
  90. */
  91. struct list_head pending[BTRFS_MAX_LEVEL];
  92. /* list of backref nodes with no child node */
  93. struct list_head leaves;
  94. /* list of blocks that have been cowed in current transaction */
  95. struct list_head changed;
  96. /* list of detached backref node. */
  97. struct list_head detached;
  98. u64 last_trans;
  99. int nr_nodes;
  100. int nr_edges;
  101. };
  102. /*
  103. * map address of tree root to tree
  104. */
  105. struct mapping_node {
  106. struct rb_node rb_node;
  107. u64 bytenr;
  108. void *data;
  109. };
  110. struct mapping_tree {
  111. struct rb_root rb_root;
  112. spinlock_t lock;
  113. };
  114. /*
  115. * present a tree block to process
  116. */
  117. struct tree_block {
  118. struct rb_node rb_node;
  119. u64 bytenr;
  120. struct btrfs_key key;
  121. unsigned int level:8;
  122. unsigned int key_ready:1;
  123. };
  124. #define MAX_EXTENTS 128
  125. struct file_extent_cluster {
  126. u64 start;
  127. u64 end;
  128. u64 boundary[MAX_EXTENTS];
  129. unsigned int nr;
  130. };
  131. struct reloc_control {
  132. /* block group to relocate */
  133. struct btrfs_block_group_cache *block_group;
  134. /* extent tree */
  135. struct btrfs_root *extent_root;
  136. /* inode for moving data */
  137. struct inode *data_inode;
  138. struct btrfs_block_rsv *block_rsv;
  139. struct backref_cache backref_cache;
  140. struct file_extent_cluster cluster;
  141. /* tree blocks have been processed */
  142. struct extent_io_tree processed_blocks;
  143. /* map start of tree root to corresponding reloc tree */
  144. struct mapping_tree reloc_root_tree;
  145. /* list of reloc trees */
  146. struct list_head reloc_roots;
  147. /* size of metadata reservation for merging reloc trees */
  148. u64 merging_rsv_size;
  149. /* size of relocated tree nodes */
  150. u64 nodes_relocated;
  151. /* reserved size for block group relocation*/
  152. u64 reserved_bytes;
  153. u64 search_start;
  154. u64 extents_found;
  155. unsigned int stage:8;
  156. unsigned int create_reloc_tree:1;
  157. unsigned int merge_reloc_tree:1;
  158. unsigned int found_file_extent:1;
  159. };
  160. /* stages of data relocation */
  161. #define MOVE_DATA_EXTENTS 0
  162. #define UPDATE_DATA_PTRS 1
  163. static void remove_backref_node(struct backref_cache *cache,
  164. struct backref_node *node);
  165. static void __mark_block_processed(struct reloc_control *rc,
  166. struct backref_node *node);
  167. static void mapping_tree_init(struct mapping_tree *tree)
  168. {
  169. tree->rb_root = RB_ROOT;
  170. spin_lock_init(&tree->lock);
  171. }
  172. static void backref_cache_init(struct backref_cache *cache)
  173. {
  174. int i;
  175. cache->rb_root = RB_ROOT;
  176. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  177. INIT_LIST_HEAD(&cache->pending[i]);
  178. INIT_LIST_HEAD(&cache->changed);
  179. INIT_LIST_HEAD(&cache->detached);
  180. INIT_LIST_HEAD(&cache->leaves);
  181. }
  182. static void backref_cache_cleanup(struct backref_cache *cache)
  183. {
  184. struct backref_node *node;
  185. int i;
  186. while (!list_empty(&cache->detached)) {
  187. node = list_entry(cache->detached.next,
  188. struct backref_node, list);
  189. remove_backref_node(cache, node);
  190. }
  191. while (!list_empty(&cache->leaves)) {
  192. node = list_entry(cache->leaves.next,
  193. struct backref_node, lower);
  194. remove_backref_node(cache, node);
  195. }
  196. cache->last_trans = 0;
  197. for (i = 0; i < BTRFS_MAX_LEVEL; i++)
  198. ASSERT(list_empty(&cache->pending[i]));
  199. ASSERT(list_empty(&cache->changed));
  200. ASSERT(list_empty(&cache->detached));
  201. ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
  202. ASSERT(!cache->nr_nodes);
  203. ASSERT(!cache->nr_edges);
  204. }
  205. static struct backref_node *alloc_backref_node(struct backref_cache *cache)
  206. {
  207. struct backref_node *node;
  208. node = kzalloc(sizeof(*node), GFP_NOFS);
  209. if (node) {
  210. INIT_LIST_HEAD(&node->list);
  211. INIT_LIST_HEAD(&node->upper);
  212. INIT_LIST_HEAD(&node->lower);
  213. RB_CLEAR_NODE(&node->rb_node);
  214. cache->nr_nodes++;
  215. }
  216. return node;
  217. }
  218. static void free_backref_node(struct backref_cache *cache,
  219. struct backref_node *node)
  220. {
  221. if (node) {
  222. cache->nr_nodes--;
  223. kfree(node);
  224. }
  225. }
  226. static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
  227. {
  228. struct backref_edge *edge;
  229. edge = kzalloc(sizeof(*edge), GFP_NOFS);
  230. if (edge)
  231. cache->nr_edges++;
  232. return edge;
  233. }
  234. static void free_backref_edge(struct backref_cache *cache,
  235. struct backref_edge *edge)
  236. {
  237. if (edge) {
  238. cache->nr_edges--;
  239. kfree(edge);
  240. }
  241. }
  242. static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
  243. struct rb_node *node)
  244. {
  245. struct rb_node **p = &root->rb_node;
  246. struct rb_node *parent = NULL;
  247. struct tree_entry *entry;
  248. while (*p) {
  249. parent = *p;
  250. entry = rb_entry(parent, struct tree_entry, rb_node);
  251. if (bytenr < entry->bytenr)
  252. p = &(*p)->rb_left;
  253. else if (bytenr > entry->bytenr)
  254. p = &(*p)->rb_right;
  255. else
  256. return parent;
  257. }
  258. rb_link_node(node, parent, p);
  259. rb_insert_color(node, root);
  260. return NULL;
  261. }
  262. static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
  263. {
  264. struct rb_node *n = root->rb_node;
  265. struct tree_entry *entry;
  266. while (n) {
  267. entry = rb_entry(n, struct tree_entry, rb_node);
  268. if (bytenr < entry->bytenr)
  269. n = n->rb_left;
  270. else if (bytenr > entry->bytenr)
  271. n = n->rb_right;
  272. else
  273. return n;
  274. }
  275. return NULL;
  276. }
  277. static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
  278. {
  279. struct btrfs_fs_info *fs_info = NULL;
  280. struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
  281. rb_node);
  282. if (bnode->root)
  283. fs_info = bnode->root->fs_info;
  284. btrfs_panic(fs_info, errno,
  285. "Inconsistency in backref cache found at offset %llu",
  286. bytenr);
  287. }
  288. /*
  289. * walk up backref nodes until reach node presents tree root
  290. */
  291. static struct backref_node *walk_up_backref(struct backref_node *node,
  292. struct backref_edge *edges[],
  293. int *index)
  294. {
  295. struct backref_edge *edge;
  296. int idx = *index;
  297. while (!list_empty(&node->upper)) {
  298. edge = list_entry(node->upper.next,
  299. struct backref_edge, list[LOWER]);
  300. edges[idx++] = edge;
  301. node = edge->node[UPPER];
  302. }
  303. BUG_ON(node->detached);
  304. *index = idx;
  305. return node;
  306. }
  307. /*
  308. * walk down backref nodes to find start of next reference path
  309. */
  310. static struct backref_node *walk_down_backref(struct backref_edge *edges[],
  311. int *index)
  312. {
  313. struct backref_edge *edge;
  314. struct backref_node *lower;
  315. int idx = *index;
  316. while (idx > 0) {
  317. edge = edges[idx - 1];
  318. lower = edge->node[LOWER];
  319. if (list_is_last(&edge->list[LOWER], &lower->upper)) {
  320. idx--;
  321. continue;
  322. }
  323. edge = list_entry(edge->list[LOWER].next,
  324. struct backref_edge, list[LOWER]);
  325. edges[idx - 1] = edge;
  326. *index = idx;
  327. return edge->node[UPPER];
  328. }
  329. *index = 0;
  330. return NULL;
  331. }
  332. static void unlock_node_buffer(struct backref_node *node)
  333. {
  334. if (node->locked) {
  335. btrfs_tree_unlock(node->eb);
  336. node->locked = 0;
  337. }
  338. }
  339. static void drop_node_buffer(struct backref_node *node)
  340. {
  341. if (node->eb) {
  342. unlock_node_buffer(node);
  343. free_extent_buffer(node->eb);
  344. node->eb = NULL;
  345. }
  346. }
  347. static void drop_backref_node(struct backref_cache *tree,
  348. struct backref_node *node)
  349. {
  350. BUG_ON(!list_empty(&node->upper));
  351. drop_node_buffer(node);
  352. list_del(&node->list);
  353. list_del(&node->lower);
  354. if (!RB_EMPTY_NODE(&node->rb_node))
  355. rb_erase(&node->rb_node, &tree->rb_root);
  356. free_backref_node(tree, node);
  357. }
  358. /*
  359. * remove a backref node from the backref cache
  360. */
  361. static void remove_backref_node(struct backref_cache *cache,
  362. struct backref_node *node)
  363. {
  364. struct backref_node *upper;
  365. struct backref_edge *edge;
  366. if (!node)
  367. return;
  368. BUG_ON(!node->lowest && !node->detached);
  369. while (!list_empty(&node->upper)) {
  370. edge = list_entry(node->upper.next, struct backref_edge,
  371. list[LOWER]);
  372. upper = edge->node[UPPER];
  373. list_del(&edge->list[LOWER]);
  374. list_del(&edge->list[UPPER]);
  375. free_backref_edge(cache, edge);
  376. if (RB_EMPTY_NODE(&upper->rb_node)) {
  377. BUG_ON(!list_empty(&node->upper));
  378. drop_backref_node(cache, node);
  379. node = upper;
  380. node->lowest = 1;
  381. continue;
  382. }
  383. /*
  384. * add the node to leaf node list if no other
  385. * child block cached.
  386. */
  387. if (list_empty(&upper->lower)) {
  388. list_add_tail(&upper->lower, &cache->leaves);
  389. upper->lowest = 1;
  390. }
  391. }
  392. drop_backref_node(cache, node);
  393. }
  394. static void update_backref_node(struct backref_cache *cache,
  395. struct backref_node *node, u64 bytenr)
  396. {
  397. struct rb_node *rb_node;
  398. rb_erase(&node->rb_node, &cache->rb_root);
  399. node->bytenr = bytenr;
  400. rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
  401. if (rb_node)
  402. backref_tree_panic(rb_node, -EEXIST, bytenr);
  403. }
  404. /*
  405. * update backref cache after a transaction commit
  406. */
  407. static int update_backref_cache(struct btrfs_trans_handle *trans,
  408. struct backref_cache *cache)
  409. {
  410. struct backref_node *node;
  411. int level = 0;
  412. if (cache->last_trans == 0) {
  413. cache->last_trans = trans->transid;
  414. return 0;
  415. }
  416. if (cache->last_trans == trans->transid)
  417. return 0;
  418. /*
  419. * detached nodes are used to avoid unnecessary backref
  420. * lookup. transaction commit changes the extent tree.
  421. * so the detached nodes are no longer useful.
  422. */
  423. while (!list_empty(&cache->detached)) {
  424. node = list_entry(cache->detached.next,
  425. struct backref_node, list);
  426. remove_backref_node(cache, node);
  427. }
  428. while (!list_empty(&cache->changed)) {
  429. node = list_entry(cache->changed.next,
  430. struct backref_node, list);
  431. list_del_init(&node->list);
  432. BUG_ON(node->pending);
  433. update_backref_node(cache, node, node->new_bytenr);
  434. }
  435. /*
  436. * some nodes can be left in the pending list if there were
  437. * errors during processing the pending nodes.
  438. */
  439. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  440. list_for_each_entry(node, &cache->pending[level], list) {
  441. BUG_ON(!node->pending);
  442. if (node->bytenr == node->new_bytenr)
  443. continue;
  444. update_backref_node(cache, node, node->new_bytenr);
  445. }
  446. }
  447. cache->last_trans = 0;
  448. return 1;
  449. }
  450. static int should_ignore_root(struct btrfs_root *root)
  451. {
  452. struct btrfs_root *reloc_root;
  453. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  454. return 0;
  455. reloc_root = root->reloc_root;
  456. if (!reloc_root)
  457. return 0;
  458. if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
  459. root->fs_info->running_transaction->transid - 1)
  460. return 0;
  461. /*
  462. * if there is reloc tree and it was created in previous
  463. * transaction backref lookup can find the reloc tree,
  464. * so backref node for the fs tree root is useless for
  465. * relocation.
  466. */
  467. return 1;
  468. }
  469. /*
  470. * find reloc tree by address of tree root
  471. */
  472. static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
  473. u64 bytenr)
  474. {
  475. struct rb_node *rb_node;
  476. struct mapping_node *node;
  477. struct btrfs_root *root = NULL;
  478. spin_lock(&rc->reloc_root_tree.lock);
  479. rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
  480. if (rb_node) {
  481. node = rb_entry(rb_node, struct mapping_node, rb_node);
  482. root = (struct btrfs_root *)node->data;
  483. }
  484. spin_unlock(&rc->reloc_root_tree.lock);
  485. return root;
  486. }
  487. static int is_cowonly_root(u64 root_objectid)
  488. {
  489. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
  490. root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
  491. root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
  492. root_objectid == BTRFS_DEV_TREE_OBJECTID ||
  493. root_objectid == BTRFS_TREE_LOG_OBJECTID ||
  494. root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
  495. root_objectid == BTRFS_UUID_TREE_OBJECTID ||
  496. root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
  497. root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  498. return 1;
  499. return 0;
  500. }
  501. static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
  502. u64 root_objectid)
  503. {
  504. struct btrfs_key key;
  505. key.objectid = root_objectid;
  506. key.type = BTRFS_ROOT_ITEM_KEY;
  507. if (is_cowonly_root(root_objectid))
  508. key.offset = 0;
  509. else
  510. key.offset = (u64)-1;
  511. return btrfs_get_fs_root(fs_info, &key, false);
  512. }
  513. static noinline_for_stack
  514. int find_inline_backref(struct extent_buffer *leaf, int slot,
  515. unsigned long *ptr, unsigned long *end)
  516. {
  517. struct btrfs_key key;
  518. struct btrfs_extent_item *ei;
  519. struct btrfs_tree_block_info *bi;
  520. u32 item_size;
  521. btrfs_item_key_to_cpu(leaf, &key, slot);
  522. item_size = btrfs_item_size_nr(leaf, slot);
  523. if (item_size < sizeof(*ei)) {
  524. btrfs_print_v0_err(leaf->fs_info);
  525. btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
  526. return 1;
  527. }
  528. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  529. WARN_ON(!(btrfs_extent_flags(leaf, ei) &
  530. BTRFS_EXTENT_FLAG_TREE_BLOCK));
  531. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  532. item_size <= sizeof(*ei) + sizeof(*bi)) {
  533. WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
  534. return 1;
  535. }
  536. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  537. item_size <= sizeof(*ei)) {
  538. WARN_ON(item_size < sizeof(*ei));
  539. return 1;
  540. }
  541. if (key.type == BTRFS_EXTENT_ITEM_KEY) {
  542. bi = (struct btrfs_tree_block_info *)(ei + 1);
  543. *ptr = (unsigned long)(bi + 1);
  544. } else {
  545. *ptr = (unsigned long)(ei + 1);
  546. }
  547. *end = (unsigned long)ei + item_size;
  548. return 0;
  549. }
  550. /*
  551. * build backref tree for a given tree block. root of the backref tree
  552. * corresponds the tree block, leaves of the backref tree correspond
  553. * roots of b-trees that reference the tree block.
  554. *
  555. * the basic idea of this function is check backrefs of a given block
  556. * to find upper level blocks that reference the block, and then check
  557. * backrefs of these upper level blocks recursively. the recursion stop
  558. * when tree root is reached or backrefs for the block is cached.
  559. *
  560. * NOTE: if we find backrefs for a block are cached, we know backrefs
  561. * for all upper level blocks that directly/indirectly reference the
  562. * block are also cached.
  563. */
  564. static noinline_for_stack
  565. struct backref_node *build_backref_tree(struct reloc_control *rc,
  566. struct btrfs_key *node_key,
  567. int level, u64 bytenr)
  568. {
  569. struct backref_cache *cache = &rc->backref_cache;
  570. struct btrfs_path *path1;
  571. struct btrfs_path *path2;
  572. struct extent_buffer *eb;
  573. struct btrfs_root *root;
  574. struct backref_node *cur;
  575. struct backref_node *upper;
  576. struct backref_node *lower;
  577. struct backref_node *node = NULL;
  578. struct backref_node *exist = NULL;
  579. struct backref_edge *edge;
  580. struct rb_node *rb_node;
  581. struct btrfs_key key;
  582. unsigned long end;
  583. unsigned long ptr;
  584. LIST_HEAD(list);
  585. LIST_HEAD(useless);
  586. int cowonly;
  587. int ret;
  588. int err = 0;
  589. bool need_check = true;
  590. path1 = btrfs_alloc_path();
  591. path2 = btrfs_alloc_path();
  592. if (!path1 || !path2) {
  593. err = -ENOMEM;
  594. goto out;
  595. }
  596. path1->reada = READA_FORWARD;
  597. path2->reada = READA_FORWARD;
  598. node = alloc_backref_node(cache);
  599. if (!node) {
  600. err = -ENOMEM;
  601. goto out;
  602. }
  603. node->bytenr = bytenr;
  604. node->level = level;
  605. node->lowest = 1;
  606. cur = node;
  607. again:
  608. end = 0;
  609. ptr = 0;
  610. key.objectid = cur->bytenr;
  611. key.type = BTRFS_METADATA_ITEM_KEY;
  612. key.offset = (u64)-1;
  613. path1->search_commit_root = 1;
  614. path1->skip_locking = 1;
  615. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
  616. 0, 0);
  617. if (ret < 0) {
  618. err = ret;
  619. goto out;
  620. }
  621. ASSERT(ret);
  622. ASSERT(path1->slots[0]);
  623. path1->slots[0]--;
  624. WARN_ON(cur->checked);
  625. if (!list_empty(&cur->upper)) {
  626. /*
  627. * the backref was added previously when processing
  628. * backref of type BTRFS_TREE_BLOCK_REF_KEY
  629. */
  630. ASSERT(list_is_singular(&cur->upper));
  631. edge = list_entry(cur->upper.next, struct backref_edge,
  632. list[LOWER]);
  633. ASSERT(list_empty(&edge->list[UPPER]));
  634. exist = edge->node[UPPER];
  635. /*
  636. * add the upper level block to pending list if we need
  637. * check its backrefs
  638. */
  639. if (!exist->checked)
  640. list_add_tail(&edge->list[UPPER], &list);
  641. } else {
  642. exist = NULL;
  643. }
  644. while (1) {
  645. cond_resched();
  646. eb = path1->nodes[0];
  647. if (ptr >= end) {
  648. if (path1->slots[0] >= btrfs_header_nritems(eb)) {
  649. ret = btrfs_next_leaf(rc->extent_root, path1);
  650. if (ret < 0) {
  651. err = ret;
  652. goto out;
  653. }
  654. if (ret > 0)
  655. break;
  656. eb = path1->nodes[0];
  657. }
  658. btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
  659. if (key.objectid != cur->bytenr) {
  660. WARN_ON(exist);
  661. break;
  662. }
  663. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  664. key.type == BTRFS_METADATA_ITEM_KEY) {
  665. ret = find_inline_backref(eb, path1->slots[0],
  666. &ptr, &end);
  667. if (ret)
  668. goto next;
  669. }
  670. }
  671. if (ptr < end) {
  672. /* update key for inline back ref */
  673. struct btrfs_extent_inline_ref *iref;
  674. int type;
  675. iref = (struct btrfs_extent_inline_ref *)ptr;
  676. type = btrfs_get_extent_inline_ref_type(eb, iref,
  677. BTRFS_REF_TYPE_BLOCK);
  678. if (type == BTRFS_REF_TYPE_INVALID) {
  679. err = -EUCLEAN;
  680. goto out;
  681. }
  682. key.type = type;
  683. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  684. WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
  685. key.type != BTRFS_SHARED_BLOCK_REF_KEY);
  686. }
  687. if (exist &&
  688. ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
  689. exist->owner == key.offset) ||
  690. (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
  691. exist->bytenr == key.offset))) {
  692. exist = NULL;
  693. goto next;
  694. }
  695. if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
  696. if (key.objectid == key.offset) {
  697. /*
  698. * only root blocks of reloc trees use
  699. * backref of this type.
  700. */
  701. root = find_reloc_root(rc, cur->bytenr);
  702. ASSERT(root);
  703. cur->root = root;
  704. break;
  705. }
  706. edge = alloc_backref_edge(cache);
  707. if (!edge) {
  708. err = -ENOMEM;
  709. goto out;
  710. }
  711. rb_node = tree_search(&cache->rb_root, key.offset);
  712. if (!rb_node) {
  713. upper = alloc_backref_node(cache);
  714. if (!upper) {
  715. free_backref_edge(cache, edge);
  716. err = -ENOMEM;
  717. goto out;
  718. }
  719. upper->bytenr = key.offset;
  720. upper->level = cur->level + 1;
  721. /*
  722. * backrefs for the upper level block isn't
  723. * cached, add the block to pending list
  724. */
  725. list_add_tail(&edge->list[UPPER], &list);
  726. } else {
  727. upper = rb_entry(rb_node, struct backref_node,
  728. rb_node);
  729. ASSERT(upper->checked);
  730. INIT_LIST_HEAD(&edge->list[UPPER]);
  731. }
  732. list_add_tail(&edge->list[LOWER], &cur->upper);
  733. edge->node[LOWER] = cur;
  734. edge->node[UPPER] = upper;
  735. goto next;
  736. } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
  737. err = -EINVAL;
  738. btrfs_print_v0_err(rc->extent_root->fs_info);
  739. btrfs_handle_fs_error(rc->extent_root->fs_info, err,
  740. NULL);
  741. goto out;
  742. } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
  743. goto next;
  744. }
  745. /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
  746. root = read_fs_root(rc->extent_root->fs_info, key.offset);
  747. if (IS_ERR(root)) {
  748. err = PTR_ERR(root);
  749. goto out;
  750. }
  751. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  752. cur->cowonly = 1;
  753. if (btrfs_root_level(&root->root_item) == cur->level) {
  754. /* tree root */
  755. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  756. cur->bytenr);
  757. if (should_ignore_root(root))
  758. list_add(&cur->list, &useless);
  759. else
  760. cur->root = root;
  761. break;
  762. }
  763. level = cur->level + 1;
  764. /*
  765. * searching the tree to find upper level blocks
  766. * reference the block.
  767. */
  768. path2->search_commit_root = 1;
  769. path2->skip_locking = 1;
  770. path2->lowest_level = level;
  771. ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
  772. path2->lowest_level = 0;
  773. if (ret < 0) {
  774. err = ret;
  775. goto out;
  776. }
  777. if (ret > 0 && path2->slots[level] > 0)
  778. path2->slots[level]--;
  779. eb = path2->nodes[level];
  780. if (btrfs_node_blockptr(eb, path2->slots[level]) !=
  781. cur->bytenr) {
  782. btrfs_err(root->fs_info,
  783. "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
  784. cur->bytenr, level - 1, root->objectid,
  785. node_key->objectid, node_key->type,
  786. node_key->offset);
  787. err = -ENOENT;
  788. goto out;
  789. }
  790. lower = cur;
  791. need_check = true;
  792. for (; level < BTRFS_MAX_LEVEL; level++) {
  793. if (!path2->nodes[level]) {
  794. ASSERT(btrfs_root_bytenr(&root->root_item) ==
  795. lower->bytenr);
  796. if (should_ignore_root(root))
  797. list_add(&lower->list, &useless);
  798. else
  799. lower->root = root;
  800. break;
  801. }
  802. edge = alloc_backref_edge(cache);
  803. if (!edge) {
  804. err = -ENOMEM;
  805. goto out;
  806. }
  807. eb = path2->nodes[level];
  808. rb_node = tree_search(&cache->rb_root, eb->start);
  809. if (!rb_node) {
  810. upper = alloc_backref_node(cache);
  811. if (!upper) {
  812. free_backref_edge(cache, edge);
  813. err = -ENOMEM;
  814. goto out;
  815. }
  816. upper->bytenr = eb->start;
  817. upper->owner = btrfs_header_owner(eb);
  818. upper->level = lower->level + 1;
  819. if (!test_bit(BTRFS_ROOT_REF_COWS,
  820. &root->state))
  821. upper->cowonly = 1;
  822. /*
  823. * if we know the block isn't shared
  824. * we can void checking its backrefs.
  825. */
  826. if (btrfs_block_can_be_shared(root, eb))
  827. upper->checked = 0;
  828. else
  829. upper->checked = 1;
  830. /*
  831. * add the block to pending list if we
  832. * need check its backrefs, we only do this once
  833. * while walking up a tree as we will catch
  834. * anything else later on.
  835. */
  836. if (!upper->checked && need_check) {
  837. need_check = false;
  838. list_add_tail(&edge->list[UPPER],
  839. &list);
  840. } else {
  841. if (upper->checked)
  842. need_check = true;
  843. INIT_LIST_HEAD(&edge->list[UPPER]);
  844. }
  845. } else {
  846. upper = rb_entry(rb_node, struct backref_node,
  847. rb_node);
  848. ASSERT(upper->checked);
  849. INIT_LIST_HEAD(&edge->list[UPPER]);
  850. if (!upper->owner)
  851. upper->owner = btrfs_header_owner(eb);
  852. }
  853. list_add_tail(&edge->list[LOWER], &lower->upper);
  854. edge->node[LOWER] = lower;
  855. edge->node[UPPER] = upper;
  856. if (rb_node)
  857. break;
  858. lower = upper;
  859. upper = NULL;
  860. }
  861. btrfs_release_path(path2);
  862. next:
  863. if (ptr < end) {
  864. ptr += btrfs_extent_inline_ref_size(key.type);
  865. if (ptr >= end) {
  866. WARN_ON(ptr > end);
  867. ptr = 0;
  868. end = 0;
  869. }
  870. }
  871. if (ptr >= end)
  872. path1->slots[0]++;
  873. }
  874. btrfs_release_path(path1);
  875. cur->checked = 1;
  876. WARN_ON(exist);
  877. /* the pending list isn't empty, take the first block to process */
  878. if (!list_empty(&list)) {
  879. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  880. list_del_init(&edge->list[UPPER]);
  881. cur = edge->node[UPPER];
  882. goto again;
  883. }
  884. /*
  885. * everything goes well, connect backref nodes and insert backref nodes
  886. * into the cache.
  887. */
  888. ASSERT(node->checked);
  889. cowonly = node->cowonly;
  890. if (!cowonly) {
  891. rb_node = tree_insert(&cache->rb_root, node->bytenr,
  892. &node->rb_node);
  893. if (rb_node)
  894. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  895. list_add_tail(&node->lower, &cache->leaves);
  896. }
  897. list_for_each_entry(edge, &node->upper, list[LOWER])
  898. list_add_tail(&edge->list[UPPER], &list);
  899. while (!list_empty(&list)) {
  900. edge = list_entry(list.next, struct backref_edge, list[UPPER]);
  901. list_del_init(&edge->list[UPPER]);
  902. upper = edge->node[UPPER];
  903. if (upper->detached) {
  904. list_del(&edge->list[LOWER]);
  905. lower = edge->node[LOWER];
  906. free_backref_edge(cache, edge);
  907. if (list_empty(&lower->upper))
  908. list_add(&lower->list, &useless);
  909. continue;
  910. }
  911. if (!RB_EMPTY_NODE(&upper->rb_node)) {
  912. if (upper->lowest) {
  913. list_del_init(&upper->lower);
  914. upper->lowest = 0;
  915. }
  916. list_add_tail(&edge->list[UPPER], &upper->lower);
  917. continue;
  918. }
  919. if (!upper->checked) {
  920. /*
  921. * Still want to blow up for developers since this is a
  922. * logic bug.
  923. */
  924. ASSERT(0);
  925. err = -EINVAL;
  926. goto out;
  927. }
  928. if (cowonly != upper->cowonly) {
  929. ASSERT(0);
  930. err = -EINVAL;
  931. goto out;
  932. }
  933. if (!cowonly) {
  934. rb_node = tree_insert(&cache->rb_root, upper->bytenr,
  935. &upper->rb_node);
  936. if (rb_node)
  937. backref_tree_panic(rb_node, -EEXIST,
  938. upper->bytenr);
  939. }
  940. list_add_tail(&edge->list[UPPER], &upper->lower);
  941. list_for_each_entry(edge, &upper->upper, list[LOWER])
  942. list_add_tail(&edge->list[UPPER], &list);
  943. }
  944. /*
  945. * process useless backref nodes. backref nodes for tree leaves
  946. * are deleted from the cache. backref nodes for upper level
  947. * tree blocks are left in the cache to avoid unnecessary backref
  948. * lookup.
  949. */
  950. while (!list_empty(&useless)) {
  951. upper = list_entry(useless.next, struct backref_node, list);
  952. list_del_init(&upper->list);
  953. ASSERT(list_empty(&upper->upper));
  954. if (upper == node)
  955. node = NULL;
  956. if (upper->lowest) {
  957. list_del_init(&upper->lower);
  958. upper->lowest = 0;
  959. }
  960. while (!list_empty(&upper->lower)) {
  961. edge = list_entry(upper->lower.next,
  962. struct backref_edge, list[UPPER]);
  963. list_del(&edge->list[UPPER]);
  964. list_del(&edge->list[LOWER]);
  965. lower = edge->node[LOWER];
  966. free_backref_edge(cache, edge);
  967. if (list_empty(&lower->upper))
  968. list_add(&lower->list, &useless);
  969. }
  970. __mark_block_processed(rc, upper);
  971. if (upper->level > 0) {
  972. list_add(&upper->list, &cache->detached);
  973. upper->detached = 1;
  974. } else {
  975. rb_erase(&upper->rb_node, &cache->rb_root);
  976. free_backref_node(cache, upper);
  977. }
  978. }
  979. out:
  980. btrfs_free_path(path1);
  981. btrfs_free_path(path2);
  982. if (err) {
  983. while (!list_empty(&useless)) {
  984. lower = list_entry(useless.next,
  985. struct backref_node, list);
  986. list_del_init(&lower->list);
  987. }
  988. while (!list_empty(&list)) {
  989. edge = list_first_entry(&list, struct backref_edge,
  990. list[UPPER]);
  991. list_del(&edge->list[UPPER]);
  992. list_del(&edge->list[LOWER]);
  993. lower = edge->node[LOWER];
  994. upper = edge->node[UPPER];
  995. free_backref_edge(cache, edge);
  996. /*
  997. * Lower is no longer linked to any upper backref nodes
  998. * and isn't in the cache, we can free it ourselves.
  999. */
  1000. if (list_empty(&lower->upper) &&
  1001. RB_EMPTY_NODE(&lower->rb_node))
  1002. list_add(&lower->list, &useless);
  1003. if (!RB_EMPTY_NODE(&upper->rb_node))
  1004. continue;
  1005. /* Add this guy's upper edges to the list to process */
  1006. list_for_each_entry(edge, &upper->upper, list[LOWER])
  1007. list_add_tail(&edge->list[UPPER], &list);
  1008. if (list_empty(&upper->upper))
  1009. list_add(&upper->list, &useless);
  1010. }
  1011. while (!list_empty(&useless)) {
  1012. lower = list_entry(useless.next,
  1013. struct backref_node, list);
  1014. list_del_init(&lower->list);
  1015. if (lower == node)
  1016. node = NULL;
  1017. free_backref_node(cache, lower);
  1018. }
  1019. free_backref_node(cache, node);
  1020. return ERR_PTR(err);
  1021. }
  1022. ASSERT(!node || !node->detached);
  1023. return node;
  1024. }
  1025. /*
  1026. * helper to add backref node for the newly created snapshot.
  1027. * the backref node is created by cloning backref node that
  1028. * corresponds to root of source tree
  1029. */
  1030. static int clone_backref_node(struct btrfs_trans_handle *trans,
  1031. struct reloc_control *rc,
  1032. struct btrfs_root *src,
  1033. struct btrfs_root *dest)
  1034. {
  1035. struct btrfs_root *reloc_root = src->reloc_root;
  1036. struct backref_cache *cache = &rc->backref_cache;
  1037. struct backref_node *node = NULL;
  1038. struct backref_node *new_node;
  1039. struct backref_edge *edge;
  1040. struct backref_edge *new_edge;
  1041. struct rb_node *rb_node;
  1042. if (cache->last_trans > 0)
  1043. update_backref_cache(trans, cache);
  1044. rb_node = tree_search(&cache->rb_root, src->commit_root->start);
  1045. if (rb_node) {
  1046. node = rb_entry(rb_node, struct backref_node, rb_node);
  1047. if (node->detached)
  1048. node = NULL;
  1049. else
  1050. BUG_ON(node->new_bytenr != reloc_root->node->start);
  1051. }
  1052. if (!node) {
  1053. rb_node = tree_search(&cache->rb_root,
  1054. reloc_root->commit_root->start);
  1055. if (rb_node) {
  1056. node = rb_entry(rb_node, struct backref_node,
  1057. rb_node);
  1058. BUG_ON(node->detached);
  1059. }
  1060. }
  1061. if (!node)
  1062. return 0;
  1063. new_node = alloc_backref_node(cache);
  1064. if (!new_node)
  1065. return -ENOMEM;
  1066. new_node->bytenr = dest->node->start;
  1067. new_node->level = node->level;
  1068. new_node->lowest = node->lowest;
  1069. new_node->checked = 1;
  1070. new_node->root = dest;
  1071. if (!node->lowest) {
  1072. list_for_each_entry(edge, &node->lower, list[UPPER]) {
  1073. new_edge = alloc_backref_edge(cache);
  1074. if (!new_edge)
  1075. goto fail;
  1076. new_edge->node[UPPER] = new_node;
  1077. new_edge->node[LOWER] = edge->node[LOWER];
  1078. list_add_tail(&new_edge->list[UPPER],
  1079. &new_node->lower);
  1080. }
  1081. } else {
  1082. list_add_tail(&new_node->lower, &cache->leaves);
  1083. }
  1084. rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
  1085. &new_node->rb_node);
  1086. if (rb_node)
  1087. backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
  1088. if (!new_node->lowest) {
  1089. list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
  1090. list_add_tail(&new_edge->list[LOWER],
  1091. &new_edge->node[LOWER]->upper);
  1092. }
  1093. }
  1094. return 0;
  1095. fail:
  1096. while (!list_empty(&new_node->lower)) {
  1097. new_edge = list_entry(new_node->lower.next,
  1098. struct backref_edge, list[UPPER]);
  1099. list_del(&new_edge->list[UPPER]);
  1100. free_backref_edge(cache, new_edge);
  1101. }
  1102. free_backref_node(cache, new_node);
  1103. return -ENOMEM;
  1104. }
  1105. /*
  1106. * helper to add 'address of tree root -> reloc tree' mapping
  1107. */
  1108. static int __must_check __add_reloc_root(struct btrfs_root *root)
  1109. {
  1110. struct btrfs_fs_info *fs_info = root->fs_info;
  1111. struct rb_node *rb_node;
  1112. struct mapping_node *node;
  1113. struct reloc_control *rc = fs_info->reloc_ctl;
  1114. node = kmalloc(sizeof(*node), GFP_NOFS);
  1115. if (!node)
  1116. return -ENOMEM;
  1117. node->bytenr = root->node->start;
  1118. node->data = root;
  1119. spin_lock(&rc->reloc_root_tree.lock);
  1120. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1121. node->bytenr, &node->rb_node);
  1122. spin_unlock(&rc->reloc_root_tree.lock);
  1123. if (rb_node) {
  1124. btrfs_panic(fs_info, -EEXIST,
  1125. "Duplicate root found for start=%llu while inserting into relocation tree",
  1126. node->bytenr);
  1127. }
  1128. list_add_tail(&root->root_list, &rc->reloc_roots);
  1129. return 0;
  1130. }
  1131. /*
  1132. * helper to delete the 'address of tree root -> reloc tree'
  1133. * mapping
  1134. */
  1135. static void __del_reloc_root(struct btrfs_root *root)
  1136. {
  1137. struct btrfs_fs_info *fs_info = root->fs_info;
  1138. struct rb_node *rb_node;
  1139. struct mapping_node *node = NULL;
  1140. struct reloc_control *rc = fs_info->reloc_ctl;
  1141. if (rc && root->node) {
  1142. spin_lock(&rc->reloc_root_tree.lock);
  1143. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1144. root->node->start);
  1145. if (rb_node) {
  1146. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1147. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1148. }
  1149. spin_unlock(&rc->reloc_root_tree.lock);
  1150. if (!node)
  1151. return;
  1152. BUG_ON((struct btrfs_root *)node->data != root);
  1153. }
  1154. spin_lock(&fs_info->trans_lock);
  1155. list_del_init(&root->root_list);
  1156. spin_unlock(&fs_info->trans_lock);
  1157. kfree(node);
  1158. }
  1159. /*
  1160. * helper to update the 'address of tree root -> reloc tree'
  1161. * mapping
  1162. */
  1163. static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
  1164. {
  1165. struct btrfs_fs_info *fs_info = root->fs_info;
  1166. struct rb_node *rb_node;
  1167. struct mapping_node *node = NULL;
  1168. struct reloc_control *rc = fs_info->reloc_ctl;
  1169. spin_lock(&rc->reloc_root_tree.lock);
  1170. rb_node = tree_search(&rc->reloc_root_tree.rb_root,
  1171. root->node->start);
  1172. if (rb_node) {
  1173. node = rb_entry(rb_node, struct mapping_node, rb_node);
  1174. rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
  1175. }
  1176. spin_unlock(&rc->reloc_root_tree.lock);
  1177. if (!node)
  1178. return 0;
  1179. BUG_ON((struct btrfs_root *)node->data != root);
  1180. spin_lock(&rc->reloc_root_tree.lock);
  1181. node->bytenr = new_bytenr;
  1182. rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
  1183. node->bytenr, &node->rb_node);
  1184. spin_unlock(&rc->reloc_root_tree.lock);
  1185. if (rb_node)
  1186. backref_tree_panic(rb_node, -EEXIST, node->bytenr);
  1187. return 0;
  1188. }
  1189. static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
  1190. struct btrfs_root *root, u64 objectid)
  1191. {
  1192. struct btrfs_fs_info *fs_info = root->fs_info;
  1193. struct btrfs_root *reloc_root;
  1194. struct extent_buffer *eb;
  1195. struct btrfs_root_item *root_item;
  1196. struct btrfs_key root_key;
  1197. int ret;
  1198. root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
  1199. BUG_ON(!root_item);
  1200. root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  1201. root_key.type = BTRFS_ROOT_ITEM_KEY;
  1202. root_key.offset = objectid;
  1203. if (root->root_key.objectid == objectid) {
  1204. u64 commit_root_gen;
  1205. /* called by btrfs_init_reloc_root */
  1206. ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
  1207. BTRFS_TREE_RELOC_OBJECTID);
  1208. BUG_ON(ret);
  1209. /*
  1210. * Set the last_snapshot field to the generation of the commit
  1211. * root - like this ctree.c:btrfs_block_can_be_shared() behaves
  1212. * correctly (returns true) when the relocation root is created
  1213. * either inside the critical section of a transaction commit
  1214. * (through transaction.c:qgroup_account_snapshot()) and when
  1215. * it's created before the transaction commit is started.
  1216. */
  1217. commit_root_gen = btrfs_header_generation(root->commit_root);
  1218. btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
  1219. } else {
  1220. /*
  1221. * called by btrfs_reloc_post_snapshot_hook.
  1222. * the source tree is a reloc tree, all tree blocks
  1223. * modified after it was created have RELOC flag
  1224. * set in their headers. so it's OK to not update
  1225. * the 'last_snapshot'.
  1226. */
  1227. ret = btrfs_copy_root(trans, root, root->node, &eb,
  1228. BTRFS_TREE_RELOC_OBJECTID);
  1229. BUG_ON(ret);
  1230. }
  1231. memcpy(root_item, &root->root_item, sizeof(*root_item));
  1232. btrfs_set_root_bytenr(root_item, eb->start);
  1233. btrfs_set_root_level(root_item, btrfs_header_level(eb));
  1234. btrfs_set_root_generation(root_item, trans->transid);
  1235. if (root->root_key.objectid == objectid) {
  1236. btrfs_set_root_refs(root_item, 0);
  1237. memset(&root_item->drop_progress, 0,
  1238. sizeof(struct btrfs_disk_key));
  1239. root_item->drop_level = 0;
  1240. }
  1241. btrfs_tree_unlock(eb);
  1242. free_extent_buffer(eb);
  1243. ret = btrfs_insert_root(trans, fs_info->tree_root,
  1244. &root_key, root_item);
  1245. BUG_ON(ret);
  1246. kfree(root_item);
  1247. reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
  1248. BUG_ON(IS_ERR(reloc_root));
  1249. reloc_root->last_trans = trans->transid;
  1250. return reloc_root;
  1251. }
  1252. /*
  1253. * create reloc tree for a given fs tree. reloc tree is just a
  1254. * snapshot of the fs tree with special root objectid.
  1255. */
  1256. int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
  1257. struct btrfs_root *root)
  1258. {
  1259. struct btrfs_fs_info *fs_info = root->fs_info;
  1260. struct btrfs_root *reloc_root;
  1261. struct reloc_control *rc = fs_info->reloc_ctl;
  1262. struct btrfs_block_rsv *rsv;
  1263. int clear_rsv = 0;
  1264. int ret;
  1265. if (root->reloc_root) {
  1266. reloc_root = root->reloc_root;
  1267. reloc_root->last_trans = trans->transid;
  1268. return 0;
  1269. }
  1270. if (!rc || !rc->create_reloc_tree ||
  1271. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1272. return 0;
  1273. if (!trans->reloc_reserved) {
  1274. rsv = trans->block_rsv;
  1275. trans->block_rsv = rc->block_rsv;
  1276. clear_rsv = 1;
  1277. }
  1278. reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
  1279. if (clear_rsv)
  1280. trans->block_rsv = rsv;
  1281. ret = __add_reloc_root(reloc_root);
  1282. BUG_ON(ret < 0);
  1283. root->reloc_root = reloc_root;
  1284. return 0;
  1285. }
  1286. /*
  1287. * update root item of reloc tree
  1288. */
  1289. int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
  1290. struct btrfs_root *root)
  1291. {
  1292. struct btrfs_fs_info *fs_info = root->fs_info;
  1293. struct btrfs_root *reloc_root;
  1294. struct btrfs_root_item *root_item;
  1295. int ret;
  1296. if (!root->reloc_root)
  1297. goto out;
  1298. reloc_root = root->reloc_root;
  1299. root_item = &reloc_root->root_item;
  1300. if (fs_info->reloc_ctl->merge_reloc_tree &&
  1301. btrfs_root_refs(root_item) == 0) {
  1302. root->reloc_root = NULL;
  1303. __del_reloc_root(reloc_root);
  1304. }
  1305. if (reloc_root->commit_root != reloc_root->node) {
  1306. btrfs_set_root_node(root_item, reloc_root->node);
  1307. free_extent_buffer(reloc_root->commit_root);
  1308. reloc_root->commit_root = btrfs_root_node(reloc_root);
  1309. }
  1310. ret = btrfs_update_root(trans, fs_info->tree_root,
  1311. &reloc_root->root_key, root_item);
  1312. BUG_ON(ret);
  1313. out:
  1314. return 0;
  1315. }
  1316. /*
  1317. * helper to find first cached inode with inode number >= objectid
  1318. * in a subvolume
  1319. */
  1320. static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
  1321. {
  1322. struct rb_node *node;
  1323. struct rb_node *prev;
  1324. struct btrfs_inode *entry;
  1325. struct inode *inode;
  1326. spin_lock(&root->inode_lock);
  1327. again:
  1328. node = root->inode_tree.rb_node;
  1329. prev = NULL;
  1330. while (node) {
  1331. prev = node;
  1332. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1333. if (objectid < btrfs_ino(entry))
  1334. node = node->rb_left;
  1335. else if (objectid > btrfs_ino(entry))
  1336. node = node->rb_right;
  1337. else
  1338. break;
  1339. }
  1340. if (!node) {
  1341. while (prev) {
  1342. entry = rb_entry(prev, struct btrfs_inode, rb_node);
  1343. if (objectid <= btrfs_ino(entry)) {
  1344. node = prev;
  1345. break;
  1346. }
  1347. prev = rb_next(prev);
  1348. }
  1349. }
  1350. while (node) {
  1351. entry = rb_entry(node, struct btrfs_inode, rb_node);
  1352. inode = igrab(&entry->vfs_inode);
  1353. if (inode) {
  1354. spin_unlock(&root->inode_lock);
  1355. return inode;
  1356. }
  1357. objectid = btrfs_ino(entry) + 1;
  1358. if (cond_resched_lock(&root->inode_lock))
  1359. goto again;
  1360. node = rb_next(node);
  1361. }
  1362. spin_unlock(&root->inode_lock);
  1363. return NULL;
  1364. }
  1365. static int in_block_group(u64 bytenr,
  1366. struct btrfs_block_group_cache *block_group)
  1367. {
  1368. if (bytenr >= block_group->key.objectid &&
  1369. bytenr < block_group->key.objectid + block_group->key.offset)
  1370. return 1;
  1371. return 0;
  1372. }
  1373. /*
  1374. * get new location of data
  1375. */
  1376. static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
  1377. u64 bytenr, u64 num_bytes)
  1378. {
  1379. struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
  1380. struct btrfs_path *path;
  1381. struct btrfs_file_extent_item *fi;
  1382. struct extent_buffer *leaf;
  1383. int ret;
  1384. path = btrfs_alloc_path();
  1385. if (!path)
  1386. return -ENOMEM;
  1387. bytenr -= BTRFS_I(reloc_inode)->index_cnt;
  1388. ret = btrfs_lookup_file_extent(NULL, root, path,
  1389. btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
  1390. if (ret < 0)
  1391. goto out;
  1392. if (ret > 0) {
  1393. ret = -ENOENT;
  1394. goto out;
  1395. }
  1396. leaf = path->nodes[0];
  1397. fi = btrfs_item_ptr(leaf, path->slots[0],
  1398. struct btrfs_file_extent_item);
  1399. BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
  1400. btrfs_file_extent_compression(leaf, fi) ||
  1401. btrfs_file_extent_encryption(leaf, fi) ||
  1402. btrfs_file_extent_other_encoding(leaf, fi));
  1403. if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
  1404. ret = -EINVAL;
  1405. goto out;
  1406. }
  1407. *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1408. ret = 0;
  1409. out:
  1410. btrfs_free_path(path);
  1411. return ret;
  1412. }
  1413. /*
  1414. * update file extent items in the tree leaf to point to
  1415. * the new locations.
  1416. */
  1417. static noinline_for_stack
  1418. int replace_file_extents(struct btrfs_trans_handle *trans,
  1419. struct reloc_control *rc,
  1420. struct btrfs_root *root,
  1421. struct extent_buffer *leaf)
  1422. {
  1423. struct btrfs_fs_info *fs_info = root->fs_info;
  1424. struct btrfs_key key;
  1425. struct btrfs_file_extent_item *fi;
  1426. struct inode *inode = NULL;
  1427. u64 parent;
  1428. u64 bytenr;
  1429. u64 new_bytenr = 0;
  1430. u64 num_bytes;
  1431. u64 end;
  1432. u32 nritems;
  1433. u32 i;
  1434. int ret = 0;
  1435. int first = 1;
  1436. int dirty = 0;
  1437. if (rc->stage != UPDATE_DATA_PTRS)
  1438. return 0;
  1439. /* reloc trees always use full backref */
  1440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  1441. parent = leaf->start;
  1442. else
  1443. parent = 0;
  1444. nritems = btrfs_header_nritems(leaf);
  1445. for (i = 0; i < nritems; i++) {
  1446. cond_resched();
  1447. btrfs_item_key_to_cpu(leaf, &key, i);
  1448. if (key.type != BTRFS_EXTENT_DATA_KEY)
  1449. continue;
  1450. fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
  1451. if (btrfs_file_extent_type(leaf, fi) ==
  1452. BTRFS_FILE_EXTENT_INLINE)
  1453. continue;
  1454. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  1455. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  1456. if (bytenr == 0)
  1457. continue;
  1458. if (!in_block_group(bytenr, rc->block_group))
  1459. continue;
  1460. /*
  1461. * if we are modifying block in fs tree, wait for readpage
  1462. * to complete and drop the extent cache
  1463. */
  1464. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  1465. if (first) {
  1466. inode = find_next_inode(root, key.objectid);
  1467. first = 0;
  1468. } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
  1469. btrfs_add_delayed_iput(inode);
  1470. inode = find_next_inode(root, key.objectid);
  1471. }
  1472. if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
  1473. end = key.offset +
  1474. btrfs_file_extent_num_bytes(leaf, fi);
  1475. WARN_ON(!IS_ALIGNED(key.offset,
  1476. fs_info->sectorsize));
  1477. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1478. end--;
  1479. ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
  1480. key.offset, end);
  1481. if (!ret)
  1482. continue;
  1483. btrfs_drop_extent_cache(BTRFS_I(inode),
  1484. key.offset, end, 1);
  1485. unlock_extent(&BTRFS_I(inode)->io_tree,
  1486. key.offset, end);
  1487. }
  1488. }
  1489. ret = get_new_location(rc->data_inode, &new_bytenr,
  1490. bytenr, num_bytes);
  1491. if (ret) {
  1492. /*
  1493. * Don't have to abort since we've not changed anything
  1494. * in the file extent yet.
  1495. */
  1496. break;
  1497. }
  1498. btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
  1499. dirty = 1;
  1500. key.offset -= btrfs_file_extent_offset(leaf, fi);
  1501. ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
  1502. num_bytes, parent,
  1503. btrfs_header_owner(leaf),
  1504. key.objectid, key.offset);
  1505. if (ret) {
  1506. btrfs_abort_transaction(trans, ret);
  1507. break;
  1508. }
  1509. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1510. parent, btrfs_header_owner(leaf),
  1511. key.objectid, key.offset);
  1512. if (ret) {
  1513. btrfs_abort_transaction(trans, ret);
  1514. break;
  1515. }
  1516. }
  1517. if (dirty)
  1518. btrfs_mark_buffer_dirty(leaf);
  1519. if (inode)
  1520. btrfs_add_delayed_iput(inode);
  1521. return ret;
  1522. }
  1523. static noinline_for_stack
  1524. int memcmp_node_keys(struct extent_buffer *eb, int slot,
  1525. struct btrfs_path *path, int level)
  1526. {
  1527. struct btrfs_disk_key key1;
  1528. struct btrfs_disk_key key2;
  1529. btrfs_node_key(eb, &key1, slot);
  1530. btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
  1531. return memcmp(&key1, &key2, sizeof(key1));
  1532. }
  1533. /*
  1534. * try to replace tree blocks in fs tree with the new blocks
  1535. * in reloc tree. tree blocks haven't been modified since the
  1536. * reloc tree was create can be replaced.
  1537. *
  1538. * if a block was replaced, level of the block + 1 is returned.
  1539. * if no block got replaced, 0 is returned. if there are other
  1540. * errors, a negative error number is returned.
  1541. */
  1542. static noinline_for_stack
  1543. int replace_path(struct btrfs_trans_handle *trans,
  1544. struct btrfs_root *dest, struct btrfs_root *src,
  1545. struct btrfs_path *path, struct btrfs_key *next_key,
  1546. int lowest_level, int max_level)
  1547. {
  1548. struct btrfs_fs_info *fs_info = dest->fs_info;
  1549. struct extent_buffer *eb;
  1550. struct extent_buffer *parent;
  1551. struct btrfs_key key;
  1552. u64 old_bytenr;
  1553. u64 new_bytenr;
  1554. u64 old_ptr_gen;
  1555. u64 new_ptr_gen;
  1556. u64 last_snapshot;
  1557. u32 blocksize;
  1558. int cow = 0;
  1559. int level;
  1560. int ret;
  1561. int slot;
  1562. BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  1563. BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
  1564. last_snapshot = btrfs_root_last_snapshot(&src->root_item);
  1565. again:
  1566. slot = path->slots[lowest_level];
  1567. btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
  1568. eb = btrfs_lock_root_node(dest);
  1569. btrfs_set_lock_blocking(eb);
  1570. level = btrfs_header_level(eb);
  1571. if (level < lowest_level) {
  1572. btrfs_tree_unlock(eb);
  1573. free_extent_buffer(eb);
  1574. return 0;
  1575. }
  1576. if (cow) {
  1577. ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
  1578. BUG_ON(ret);
  1579. }
  1580. btrfs_set_lock_blocking(eb);
  1581. if (next_key) {
  1582. next_key->objectid = (u64)-1;
  1583. next_key->type = (u8)-1;
  1584. next_key->offset = (u64)-1;
  1585. }
  1586. parent = eb;
  1587. while (1) {
  1588. struct btrfs_key first_key;
  1589. level = btrfs_header_level(parent);
  1590. BUG_ON(level < lowest_level);
  1591. ret = btrfs_bin_search(parent, &key, level, &slot);
  1592. if (ret && slot > 0)
  1593. slot--;
  1594. if (next_key && slot + 1 < btrfs_header_nritems(parent))
  1595. btrfs_node_key_to_cpu(parent, next_key, slot + 1);
  1596. old_bytenr = btrfs_node_blockptr(parent, slot);
  1597. blocksize = fs_info->nodesize;
  1598. old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
  1599. btrfs_node_key_to_cpu(parent, &first_key, slot);
  1600. if (level <= max_level) {
  1601. eb = path->nodes[level];
  1602. new_bytenr = btrfs_node_blockptr(eb,
  1603. path->slots[level]);
  1604. new_ptr_gen = btrfs_node_ptr_generation(eb,
  1605. path->slots[level]);
  1606. } else {
  1607. new_bytenr = 0;
  1608. new_ptr_gen = 0;
  1609. }
  1610. if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
  1611. ret = level;
  1612. break;
  1613. }
  1614. if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
  1615. memcmp_node_keys(parent, slot, path, level)) {
  1616. if (level <= lowest_level) {
  1617. ret = 0;
  1618. break;
  1619. }
  1620. eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
  1621. level - 1, &first_key);
  1622. if (IS_ERR(eb)) {
  1623. ret = PTR_ERR(eb);
  1624. break;
  1625. } else if (!extent_buffer_uptodate(eb)) {
  1626. ret = -EIO;
  1627. free_extent_buffer(eb);
  1628. break;
  1629. }
  1630. btrfs_tree_lock(eb);
  1631. if (cow) {
  1632. ret = btrfs_cow_block(trans, dest, eb, parent,
  1633. slot, &eb);
  1634. BUG_ON(ret);
  1635. }
  1636. btrfs_set_lock_blocking(eb);
  1637. btrfs_tree_unlock(parent);
  1638. free_extent_buffer(parent);
  1639. parent = eb;
  1640. continue;
  1641. }
  1642. if (!cow) {
  1643. btrfs_tree_unlock(parent);
  1644. free_extent_buffer(parent);
  1645. cow = 1;
  1646. goto again;
  1647. }
  1648. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1649. path->slots[level]);
  1650. btrfs_release_path(path);
  1651. path->lowest_level = level;
  1652. ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
  1653. path->lowest_level = 0;
  1654. BUG_ON(ret);
  1655. /*
  1656. * Info qgroup to trace both subtrees.
  1657. *
  1658. * We must trace both trees.
  1659. * 1) Tree reloc subtree
  1660. * If not traced, we will leak data numbers
  1661. * 2) Fs subtree
  1662. * If not traced, we will double count old data
  1663. * and tree block numbers, if current trans doesn't free
  1664. * data reloc tree inode.
  1665. */
  1666. ret = btrfs_qgroup_trace_subtree(trans, parent,
  1667. btrfs_header_generation(parent),
  1668. btrfs_header_level(parent));
  1669. if (ret < 0)
  1670. break;
  1671. ret = btrfs_qgroup_trace_subtree(trans, path->nodes[level],
  1672. btrfs_header_generation(path->nodes[level]),
  1673. btrfs_header_level(path->nodes[level]));
  1674. if (ret < 0)
  1675. break;
  1676. /*
  1677. * swap blocks in fs tree and reloc tree.
  1678. */
  1679. btrfs_set_node_blockptr(parent, slot, new_bytenr);
  1680. btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
  1681. btrfs_mark_buffer_dirty(parent);
  1682. btrfs_set_node_blockptr(path->nodes[level],
  1683. path->slots[level], old_bytenr);
  1684. btrfs_set_node_ptr_generation(path->nodes[level],
  1685. path->slots[level], old_ptr_gen);
  1686. btrfs_mark_buffer_dirty(path->nodes[level]);
  1687. ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
  1688. blocksize, path->nodes[level]->start,
  1689. src->root_key.objectid, level - 1, 0);
  1690. BUG_ON(ret);
  1691. ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
  1692. blocksize, 0, dest->root_key.objectid,
  1693. level - 1, 0);
  1694. BUG_ON(ret);
  1695. ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
  1696. path->nodes[level]->start,
  1697. src->root_key.objectid, level - 1, 0);
  1698. BUG_ON(ret);
  1699. ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
  1700. 0, dest->root_key.objectid, level - 1,
  1701. 0);
  1702. BUG_ON(ret);
  1703. btrfs_unlock_up_safe(path, 0);
  1704. ret = level;
  1705. break;
  1706. }
  1707. btrfs_tree_unlock(parent);
  1708. free_extent_buffer(parent);
  1709. return ret;
  1710. }
  1711. /*
  1712. * helper to find next relocated block in reloc tree
  1713. */
  1714. static noinline_for_stack
  1715. int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1716. int *level)
  1717. {
  1718. struct extent_buffer *eb;
  1719. int i;
  1720. u64 last_snapshot;
  1721. u32 nritems;
  1722. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1723. for (i = 0; i < *level; i++) {
  1724. free_extent_buffer(path->nodes[i]);
  1725. path->nodes[i] = NULL;
  1726. }
  1727. for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
  1728. eb = path->nodes[i];
  1729. nritems = btrfs_header_nritems(eb);
  1730. while (path->slots[i] + 1 < nritems) {
  1731. path->slots[i]++;
  1732. if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
  1733. last_snapshot)
  1734. continue;
  1735. *level = i;
  1736. return 0;
  1737. }
  1738. free_extent_buffer(path->nodes[i]);
  1739. path->nodes[i] = NULL;
  1740. }
  1741. return 1;
  1742. }
  1743. /*
  1744. * walk down reloc tree to find relocated block of lowest level
  1745. */
  1746. static noinline_for_stack
  1747. int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
  1748. int *level)
  1749. {
  1750. struct btrfs_fs_info *fs_info = root->fs_info;
  1751. struct extent_buffer *eb = NULL;
  1752. int i;
  1753. u64 bytenr;
  1754. u64 ptr_gen = 0;
  1755. u64 last_snapshot;
  1756. u32 nritems;
  1757. last_snapshot = btrfs_root_last_snapshot(&root->root_item);
  1758. for (i = *level; i > 0; i--) {
  1759. struct btrfs_key first_key;
  1760. eb = path->nodes[i];
  1761. nritems = btrfs_header_nritems(eb);
  1762. while (path->slots[i] < nritems) {
  1763. ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
  1764. if (ptr_gen > last_snapshot)
  1765. break;
  1766. path->slots[i]++;
  1767. }
  1768. if (path->slots[i] >= nritems) {
  1769. if (i == *level)
  1770. break;
  1771. *level = i + 1;
  1772. return 0;
  1773. }
  1774. if (i == 1) {
  1775. *level = i;
  1776. return 0;
  1777. }
  1778. bytenr = btrfs_node_blockptr(eb, path->slots[i]);
  1779. btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
  1780. eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
  1781. &first_key);
  1782. if (IS_ERR(eb)) {
  1783. return PTR_ERR(eb);
  1784. } else if (!extent_buffer_uptodate(eb)) {
  1785. free_extent_buffer(eb);
  1786. return -EIO;
  1787. }
  1788. BUG_ON(btrfs_header_level(eb) != i - 1);
  1789. path->nodes[i - 1] = eb;
  1790. path->slots[i - 1] = 0;
  1791. }
  1792. return 1;
  1793. }
  1794. /*
  1795. * invalidate extent cache for file extents whose key in range of
  1796. * [min_key, max_key)
  1797. */
  1798. static int invalidate_extent_cache(struct btrfs_root *root,
  1799. struct btrfs_key *min_key,
  1800. struct btrfs_key *max_key)
  1801. {
  1802. struct btrfs_fs_info *fs_info = root->fs_info;
  1803. struct inode *inode = NULL;
  1804. u64 objectid;
  1805. u64 start, end;
  1806. u64 ino;
  1807. objectid = min_key->objectid;
  1808. while (1) {
  1809. cond_resched();
  1810. iput(inode);
  1811. if (objectid > max_key->objectid)
  1812. break;
  1813. inode = find_next_inode(root, objectid);
  1814. if (!inode)
  1815. break;
  1816. ino = btrfs_ino(BTRFS_I(inode));
  1817. if (ino > max_key->objectid) {
  1818. iput(inode);
  1819. break;
  1820. }
  1821. objectid = ino + 1;
  1822. if (!S_ISREG(inode->i_mode))
  1823. continue;
  1824. if (unlikely(min_key->objectid == ino)) {
  1825. if (min_key->type > BTRFS_EXTENT_DATA_KEY)
  1826. continue;
  1827. if (min_key->type < BTRFS_EXTENT_DATA_KEY)
  1828. start = 0;
  1829. else {
  1830. start = min_key->offset;
  1831. WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
  1832. }
  1833. } else {
  1834. start = 0;
  1835. }
  1836. if (unlikely(max_key->objectid == ino)) {
  1837. if (max_key->type < BTRFS_EXTENT_DATA_KEY)
  1838. continue;
  1839. if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
  1840. end = (u64)-1;
  1841. } else {
  1842. if (max_key->offset == 0)
  1843. continue;
  1844. end = max_key->offset;
  1845. WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
  1846. end--;
  1847. }
  1848. } else {
  1849. end = (u64)-1;
  1850. }
  1851. /* the lock_extent waits for readpage to complete */
  1852. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1853. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
  1854. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  1855. }
  1856. return 0;
  1857. }
  1858. static int find_next_key(struct btrfs_path *path, int level,
  1859. struct btrfs_key *key)
  1860. {
  1861. while (level < BTRFS_MAX_LEVEL) {
  1862. if (!path->nodes[level])
  1863. break;
  1864. if (path->slots[level] + 1 <
  1865. btrfs_header_nritems(path->nodes[level])) {
  1866. btrfs_node_key_to_cpu(path->nodes[level], key,
  1867. path->slots[level] + 1);
  1868. return 0;
  1869. }
  1870. level++;
  1871. }
  1872. return 1;
  1873. }
  1874. /*
  1875. * merge the relocated tree blocks in reloc tree with corresponding
  1876. * fs tree.
  1877. */
  1878. static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
  1879. struct btrfs_root *root)
  1880. {
  1881. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  1882. LIST_HEAD(inode_list);
  1883. struct btrfs_key key;
  1884. struct btrfs_key next_key;
  1885. struct btrfs_trans_handle *trans = NULL;
  1886. struct btrfs_root *reloc_root;
  1887. struct btrfs_root_item *root_item;
  1888. struct btrfs_path *path;
  1889. struct extent_buffer *leaf;
  1890. int level;
  1891. int max_level;
  1892. int replaced = 0;
  1893. int ret;
  1894. int err = 0;
  1895. u32 min_reserved;
  1896. path = btrfs_alloc_path();
  1897. if (!path)
  1898. return -ENOMEM;
  1899. path->reada = READA_FORWARD;
  1900. reloc_root = root->reloc_root;
  1901. root_item = &reloc_root->root_item;
  1902. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  1903. level = btrfs_root_level(root_item);
  1904. extent_buffer_get(reloc_root->node);
  1905. path->nodes[level] = reloc_root->node;
  1906. path->slots[level] = 0;
  1907. } else {
  1908. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  1909. level = root_item->drop_level;
  1910. BUG_ON(level == 0);
  1911. path->lowest_level = level;
  1912. ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
  1913. path->lowest_level = 0;
  1914. if (ret < 0) {
  1915. btrfs_free_path(path);
  1916. return ret;
  1917. }
  1918. btrfs_node_key_to_cpu(path->nodes[level], &next_key,
  1919. path->slots[level]);
  1920. WARN_ON(memcmp(&key, &next_key, sizeof(key)));
  1921. btrfs_unlock_up_safe(path, 0);
  1922. }
  1923. min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  1924. memset(&next_key, 0, sizeof(next_key));
  1925. while (1) {
  1926. ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
  1927. BTRFS_RESERVE_FLUSH_ALL);
  1928. if (ret) {
  1929. err = ret;
  1930. goto out;
  1931. }
  1932. trans = btrfs_start_transaction(root, 0);
  1933. if (IS_ERR(trans)) {
  1934. err = PTR_ERR(trans);
  1935. trans = NULL;
  1936. goto out;
  1937. }
  1938. trans->block_rsv = rc->block_rsv;
  1939. replaced = 0;
  1940. max_level = level;
  1941. ret = walk_down_reloc_tree(reloc_root, path, &level);
  1942. if (ret < 0) {
  1943. err = ret;
  1944. goto out;
  1945. }
  1946. if (ret > 0)
  1947. break;
  1948. if (!find_next_key(path, level, &key) &&
  1949. btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
  1950. ret = 0;
  1951. } else {
  1952. ret = replace_path(trans, root, reloc_root, path,
  1953. &next_key, level, max_level);
  1954. }
  1955. if (ret < 0) {
  1956. err = ret;
  1957. goto out;
  1958. }
  1959. if (ret > 0) {
  1960. level = ret;
  1961. btrfs_node_key_to_cpu(path->nodes[level], &key,
  1962. path->slots[level]);
  1963. replaced = 1;
  1964. }
  1965. ret = walk_up_reloc_tree(reloc_root, path, &level);
  1966. if (ret > 0)
  1967. break;
  1968. BUG_ON(level == 0);
  1969. /*
  1970. * save the merging progress in the drop_progress.
  1971. * this is OK since root refs == 1 in this case.
  1972. */
  1973. btrfs_node_key(path->nodes[level], &root_item->drop_progress,
  1974. path->slots[level]);
  1975. root_item->drop_level = level;
  1976. btrfs_end_transaction_throttle(trans);
  1977. trans = NULL;
  1978. btrfs_btree_balance_dirty(fs_info);
  1979. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  1980. invalidate_extent_cache(root, &key, &next_key);
  1981. }
  1982. /*
  1983. * handle the case only one block in the fs tree need to be
  1984. * relocated and the block is tree root.
  1985. */
  1986. leaf = btrfs_lock_root_node(root);
  1987. ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
  1988. btrfs_tree_unlock(leaf);
  1989. free_extent_buffer(leaf);
  1990. if (ret < 0)
  1991. err = ret;
  1992. out:
  1993. btrfs_free_path(path);
  1994. if (err == 0) {
  1995. memset(&root_item->drop_progress, 0,
  1996. sizeof(root_item->drop_progress));
  1997. root_item->drop_level = 0;
  1998. btrfs_set_root_refs(root_item, 0);
  1999. btrfs_update_reloc_root(trans, root);
  2000. }
  2001. if (trans)
  2002. btrfs_end_transaction_throttle(trans);
  2003. btrfs_btree_balance_dirty(fs_info);
  2004. if (replaced && rc->stage == UPDATE_DATA_PTRS)
  2005. invalidate_extent_cache(root, &key, &next_key);
  2006. return err;
  2007. }
  2008. static noinline_for_stack
  2009. int prepare_to_merge(struct reloc_control *rc, int err)
  2010. {
  2011. struct btrfs_root *root = rc->extent_root;
  2012. struct btrfs_fs_info *fs_info = root->fs_info;
  2013. struct btrfs_root *reloc_root;
  2014. struct btrfs_trans_handle *trans;
  2015. LIST_HEAD(reloc_roots);
  2016. u64 num_bytes = 0;
  2017. int ret;
  2018. mutex_lock(&fs_info->reloc_mutex);
  2019. rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
  2020. rc->merging_rsv_size += rc->nodes_relocated * 2;
  2021. mutex_unlock(&fs_info->reloc_mutex);
  2022. again:
  2023. if (!err) {
  2024. num_bytes = rc->merging_rsv_size;
  2025. ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
  2026. BTRFS_RESERVE_FLUSH_ALL);
  2027. if (ret)
  2028. err = ret;
  2029. }
  2030. trans = btrfs_join_transaction(rc->extent_root);
  2031. if (IS_ERR(trans)) {
  2032. if (!err)
  2033. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2034. num_bytes);
  2035. return PTR_ERR(trans);
  2036. }
  2037. if (!err) {
  2038. if (num_bytes != rc->merging_rsv_size) {
  2039. btrfs_end_transaction(trans);
  2040. btrfs_block_rsv_release(fs_info, rc->block_rsv,
  2041. num_bytes);
  2042. goto again;
  2043. }
  2044. }
  2045. rc->merge_reloc_tree = 1;
  2046. while (!list_empty(&rc->reloc_roots)) {
  2047. reloc_root = list_entry(rc->reloc_roots.next,
  2048. struct btrfs_root, root_list);
  2049. list_del_init(&reloc_root->root_list);
  2050. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2051. BUG_ON(IS_ERR(root));
  2052. BUG_ON(root->reloc_root != reloc_root);
  2053. /*
  2054. * set reference count to 1, so btrfs_recover_relocation
  2055. * knows it should resumes merging
  2056. */
  2057. if (!err)
  2058. btrfs_set_root_refs(&reloc_root->root_item, 1);
  2059. btrfs_update_reloc_root(trans, root);
  2060. list_add(&reloc_root->root_list, &reloc_roots);
  2061. }
  2062. list_splice(&reloc_roots, &rc->reloc_roots);
  2063. if (!err)
  2064. btrfs_commit_transaction(trans);
  2065. else
  2066. btrfs_end_transaction(trans);
  2067. return err;
  2068. }
  2069. static noinline_for_stack
  2070. void free_reloc_roots(struct list_head *list)
  2071. {
  2072. struct btrfs_root *reloc_root;
  2073. while (!list_empty(list)) {
  2074. reloc_root = list_entry(list->next, struct btrfs_root,
  2075. root_list);
  2076. __del_reloc_root(reloc_root);
  2077. free_extent_buffer(reloc_root->node);
  2078. free_extent_buffer(reloc_root->commit_root);
  2079. reloc_root->node = NULL;
  2080. reloc_root->commit_root = NULL;
  2081. }
  2082. }
  2083. static noinline_for_stack
  2084. void merge_reloc_roots(struct reloc_control *rc)
  2085. {
  2086. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2087. struct btrfs_root *root;
  2088. struct btrfs_root *reloc_root;
  2089. LIST_HEAD(reloc_roots);
  2090. int found = 0;
  2091. int ret = 0;
  2092. again:
  2093. root = rc->extent_root;
  2094. /*
  2095. * this serializes us with btrfs_record_root_in_transaction,
  2096. * we have to make sure nobody is in the middle of
  2097. * adding their roots to the list while we are
  2098. * doing this splice
  2099. */
  2100. mutex_lock(&fs_info->reloc_mutex);
  2101. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2102. mutex_unlock(&fs_info->reloc_mutex);
  2103. while (!list_empty(&reloc_roots)) {
  2104. found = 1;
  2105. reloc_root = list_entry(reloc_roots.next,
  2106. struct btrfs_root, root_list);
  2107. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  2108. root = read_fs_root(fs_info,
  2109. reloc_root->root_key.offset);
  2110. BUG_ON(IS_ERR(root));
  2111. BUG_ON(root->reloc_root != reloc_root);
  2112. ret = merge_reloc_root(rc, root);
  2113. if (ret) {
  2114. if (list_empty(&reloc_root->root_list))
  2115. list_add_tail(&reloc_root->root_list,
  2116. &reloc_roots);
  2117. goto out;
  2118. }
  2119. } else {
  2120. list_del_init(&reloc_root->root_list);
  2121. }
  2122. ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
  2123. if (ret < 0) {
  2124. if (list_empty(&reloc_root->root_list))
  2125. list_add_tail(&reloc_root->root_list,
  2126. &reloc_roots);
  2127. goto out;
  2128. }
  2129. }
  2130. if (found) {
  2131. found = 0;
  2132. goto again;
  2133. }
  2134. out:
  2135. if (ret) {
  2136. btrfs_handle_fs_error(fs_info, ret, NULL);
  2137. if (!list_empty(&reloc_roots))
  2138. free_reloc_roots(&reloc_roots);
  2139. /* new reloc root may be added */
  2140. mutex_lock(&fs_info->reloc_mutex);
  2141. list_splice_init(&rc->reloc_roots, &reloc_roots);
  2142. mutex_unlock(&fs_info->reloc_mutex);
  2143. if (!list_empty(&reloc_roots))
  2144. free_reloc_roots(&reloc_roots);
  2145. }
  2146. BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
  2147. }
  2148. static void free_block_list(struct rb_root *blocks)
  2149. {
  2150. struct tree_block *block;
  2151. struct rb_node *rb_node;
  2152. while ((rb_node = rb_first(blocks))) {
  2153. block = rb_entry(rb_node, struct tree_block, rb_node);
  2154. rb_erase(rb_node, blocks);
  2155. kfree(block);
  2156. }
  2157. }
  2158. static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
  2159. struct btrfs_root *reloc_root)
  2160. {
  2161. struct btrfs_fs_info *fs_info = reloc_root->fs_info;
  2162. struct btrfs_root *root;
  2163. if (reloc_root->last_trans == trans->transid)
  2164. return 0;
  2165. root = read_fs_root(fs_info, reloc_root->root_key.offset);
  2166. BUG_ON(IS_ERR(root));
  2167. BUG_ON(root->reloc_root != reloc_root);
  2168. return btrfs_record_root_in_trans(trans, root);
  2169. }
  2170. static noinline_for_stack
  2171. struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
  2172. struct reloc_control *rc,
  2173. struct backref_node *node,
  2174. struct backref_edge *edges[])
  2175. {
  2176. struct backref_node *next;
  2177. struct btrfs_root *root;
  2178. int index = 0;
  2179. next = node;
  2180. while (1) {
  2181. cond_resched();
  2182. next = walk_up_backref(next, edges, &index);
  2183. root = next->root;
  2184. BUG_ON(!root);
  2185. BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
  2186. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  2187. record_reloc_root_in_trans(trans, root);
  2188. break;
  2189. }
  2190. btrfs_record_root_in_trans(trans, root);
  2191. root = root->reloc_root;
  2192. if (next->new_bytenr != root->node->start) {
  2193. BUG_ON(next->new_bytenr);
  2194. BUG_ON(!list_empty(&next->list));
  2195. next->new_bytenr = root->node->start;
  2196. next->root = root;
  2197. list_add_tail(&next->list,
  2198. &rc->backref_cache.changed);
  2199. __mark_block_processed(rc, next);
  2200. break;
  2201. }
  2202. WARN_ON(1);
  2203. root = NULL;
  2204. next = walk_down_backref(edges, &index);
  2205. if (!next || next->level <= node->level)
  2206. break;
  2207. }
  2208. if (!root)
  2209. return NULL;
  2210. next = node;
  2211. /* setup backref node path for btrfs_reloc_cow_block */
  2212. while (1) {
  2213. rc->backref_cache.path[next->level] = next;
  2214. if (--index < 0)
  2215. break;
  2216. next = edges[index]->node[UPPER];
  2217. }
  2218. return root;
  2219. }
  2220. /*
  2221. * select a tree root for relocation. return NULL if the block
  2222. * is reference counted. we should use do_relocation() in this
  2223. * case. return a tree root pointer if the block isn't reference
  2224. * counted. return -ENOENT if the block is root of reloc tree.
  2225. */
  2226. static noinline_for_stack
  2227. struct btrfs_root *select_one_root(struct backref_node *node)
  2228. {
  2229. struct backref_node *next;
  2230. struct btrfs_root *root;
  2231. struct btrfs_root *fs_root = NULL;
  2232. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2233. int index = 0;
  2234. next = node;
  2235. while (1) {
  2236. cond_resched();
  2237. next = walk_up_backref(next, edges, &index);
  2238. root = next->root;
  2239. BUG_ON(!root);
  2240. /* no other choice for non-references counted tree */
  2241. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
  2242. return root;
  2243. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
  2244. fs_root = root;
  2245. if (next != node)
  2246. return NULL;
  2247. next = walk_down_backref(edges, &index);
  2248. if (!next || next->level <= node->level)
  2249. break;
  2250. }
  2251. if (!fs_root)
  2252. return ERR_PTR(-ENOENT);
  2253. return fs_root;
  2254. }
  2255. static noinline_for_stack
  2256. u64 calcu_metadata_size(struct reloc_control *rc,
  2257. struct backref_node *node, int reserve)
  2258. {
  2259. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2260. struct backref_node *next = node;
  2261. struct backref_edge *edge;
  2262. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2263. u64 num_bytes = 0;
  2264. int index = 0;
  2265. BUG_ON(reserve && node->processed);
  2266. while (next) {
  2267. cond_resched();
  2268. while (1) {
  2269. if (next->processed && (reserve || next != node))
  2270. break;
  2271. num_bytes += fs_info->nodesize;
  2272. if (list_empty(&next->upper))
  2273. break;
  2274. edge = list_entry(next->upper.next,
  2275. struct backref_edge, list[LOWER]);
  2276. edges[index++] = edge;
  2277. next = edge->node[UPPER];
  2278. }
  2279. next = walk_down_backref(edges, &index);
  2280. }
  2281. return num_bytes;
  2282. }
  2283. static int reserve_metadata_space(struct btrfs_trans_handle *trans,
  2284. struct reloc_control *rc,
  2285. struct backref_node *node)
  2286. {
  2287. struct btrfs_root *root = rc->extent_root;
  2288. struct btrfs_fs_info *fs_info = root->fs_info;
  2289. u64 num_bytes;
  2290. int ret;
  2291. u64 tmp;
  2292. num_bytes = calcu_metadata_size(rc, node, 1) * 2;
  2293. trans->block_rsv = rc->block_rsv;
  2294. rc->reserved_bytes += num_bytes;
  2295. /*
  2296. * We are under a transaction here so we can only do limited flushing.
  2297. * If we get an enospc just kick back -EAGAIN so we know to drop the
  2298. * transaction and try to refill when we can flush all the things.
  2299. */
  2300. ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
  2301. BTRFS_RESERVE_FLUSH_LIMIT);
  2302. if (ret) {
  2303. tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
  2304. while (tmp <= rc->reserved_bytes)
  2305. tmp <<= 1;
  2306. /*
  2307. * only one thread can access block_rsv at this point,
  2308. * so we don't need hold lock to protect block_rsv.
  2309. * we expand more reservation size here to allow enough
  2310. * space for relocation and we will return eailer in
  2311. * enospc case.
  2312. */
  2313. rc->block_rsv->size = tmp + fs_info->nodesize *
  2314. RELOCATION_RESERVED_NODES;
  2315. return -EAGAIN;
  2316. }
  2317. return 0;
  2318. }
  2319. /*
  2320. * relocate a block tree, and then update pointers in upper level
  2321. * blocks that reference the block to point to the new location.
  2322. *
  2323. * if called by link_to_upper, the block has already been relocated.
  2324. * in that case this function just updates pointers.
  2325. */
  2326. static int do_relocation(struct btrfs_trans_handle *trans,
  2327. struct reloc_control *rc,
  2328. struct backref_node *node,
  2329. struct btrfs_key *key,
  2330. struct btrfs_path *path, int lowest)
  2331. {
  2332. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2333. struct backref_node *upper;
  2334. struct backref_edge *edge;
  2335. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2336. struct btrfs_root *root;
  2337. struct extent_buffer *eb;
  2338. u32 blocksize;
  2339. u64 bytenr;
  2340. u64 generation;
  2341. int slot;
  2342. int ret;
  2343. int err = 0;
  2344. BUG_ON(lowest && node->eb);
  2345. path->lowest_level = node->level + 1;
  2346. rc->backref_cache.path[node->level] = node;
  2347. list_for_each_entry(edge, &node->upper, list[LOWER]) {
  2348. struct btrfs_key first_key;
  2349. cond_resched();
  2350. upper = edge->node[UPPER];
  2351. root = select_reloc_root(trans, rc, upper, edges);
  2352. BUG_ON(!root);
  2353. if (upper->eb && !upper->locked) {
  2354. if (!lowest) {
  2355. ret = btrfs_bin_search(upper->eb, key,
  2356. upper->level, &slot);
  2357. BUG_ON(ret);
  2358. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2359. if (node->eb->start == bytenr)
  2360. goto next;
  2361. }
  2362. drop_node_buffer(upper);
  2363. }
  2364. if (!upper->eb) {
  2365. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2366. if (ret) {
  2367. if (ret < 0)
  2368. err = ret;
  2369. else
  2370. err = -ENOENT;
  2371. btrfs_release_path(path);
  2372. break;
  2373. }
  2374. if (!upper->eb) {
  2375. upper->eb = path->nodes[upper->level];
  2376. path->nodes[upper->level] = NULL;
  2377. } else {
  2378. BUG_ON(upper->eb != path->nodes[upper->level]);
  2379. }
  2380. upper->locked = 1;
  2381. path->locks[upper->level] = 0;
  2382. slot = path->slots[upper->level];
  2383. btrfs_release_path(path);
  2384. } else {
  2385. ret = btrfs_bin_search(upper->eb, key, upper->level,
  2386. &slot);
  2387. BUG_ON(ret);
  2388. }
  2389. bytenr = btrfs_node_blockptr(upper->eb, slot);
  2390. if (lowest) {
  2391. if (bytenr != node->bytenr) {
  2392. btrfs_err(root->fs_info,
  2393. "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
  2394. bytenr, node->bytenr, slot,
  2395. upper->eb->start);
  2396. err = -EIO;
  2397. goto next;
  2398. }
  2399. } else {
  2400. if (node->eb->start == bytenr)
  2401. goto next;
  2402. }
  2403. blocksize = root->fs_info->nodesize;
  2404. generation = btrfs_node_ptr_generation(upper->eb, slot);
  2405. btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
  2406. eb = read_tree_block(fs_info, bytenr, generation,
  2407. upper->level - 1, &first_key);
  2408. if (IS_ERR(eb)) {
  2409. err = PTR_ERR(eb);
  2410. goto next;
  2411. } else if (!extent_buffer_uptodate(eb)) {
  2412. free_extent_buffer(eb);
  2413. err = -EIO;
  2414. goto next;
  2415. }
  2416. btrfs_tree_lock(eb);
  2417. btrfs_set_lock_blocking(eb);
  2418. if (!node->eb) {
  2419. ret = btrfs_cow_block(trans, root, eb, upper->eb,
  2420. slot, &eb);
  2421. btrfs_tree_unlock(eb);
  2422. free_extent_buffer(eb);
  2423. if (ret < 0) {
  2424. err = ret;
  2425. goto next;
  2426. }
  2427. BUG_ON(node->eb != eb);
  2428. } else {
  2429. btrfs_set_node_blockptr(upper->eb, slot,
  2430. node->eb->start);
  2431. btrfs_set_node_ptr_generation(upper->eb, slot,
  2432. trans->transid);
  2433. btrfs_mark_buffer_dirty(upper->eb);
  2434. ret = btrfs_inc_extent_ref(trans, root,
  2435. node->eb->start, blocksize,
  2436. upper->eb->start,
  2437. btrfs_header_owner(upper->eb),
  2438. node->level, 0);
  2439. BUG_ON(ret);
  2440. ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
  2441. BUG_ON(ret);
  2442. }
  2443. next:
  2444. if (!upper->pending)
  2445. drop_node_buffer(upper);
  2446. else
  2447. unlock_node_buffer(upper);
  2448. if (err)
  2449. break;
  2450. }
  2451. if (!err && node->pending) {
  2452. drop_node_buffer(node);
  2453. list_move_tail(&node->list, &rc->backref_cache.changed);
  2454. node->pending = 0;
  2455. }
  2456. path->lowest_level = 0;
  2457. BUG_ON(err == -ENOSPC);
  2458. return err;
  2459. }
  2460. static int link_to_upper(struct btrfs_trans_handle *trans,
  2461. struct reloc_control *rc,
  2462. struct backref_node *node,
  2463. struct btrfs_path *path)
  2464. {
  2465. struct btrfs_key key;
  2466. btrfs_node_key_to_cpu(node->eb, &key, 0);
  2467. return do_relocation(trans, rc, node, &key, path, 0);
  2468. }
  2469. static int finish_pending_nodes(struct btrfs_trans_handle *trans,
  2470. struct reloc_control *rc,
  2471. struct btrfs_path *path, int err)
  2472. {
  2473. LIST_HEAD(list);
  2474. struct backref_cache *cache = &rc->backref_cache;
  2475. struct backref_node *node;
  2476. int level;
  2477. int ret;
  2478. for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
  2479. while (!list_empty(&cache->pending[level])) {
  2480. node = list_entry(cache->pending[level].next,
  2481. struct backref_node, list);
  2482. list_move_tail(&node->list, &list);
  2483. BUG_ON(!node->pending);
  2484. if (!err) {
  2485. ret = link_to_upper(trans, rc, node, path);
  2486. if (ret < 0)
  2487. err = ret;
  2488. }
  2489. }
  2490. list_splice_init(&list, &cache->pending[level]);
  2491. }
  2492. return err;
  2493. }
  2494. static void mark_block_processed(struct reloc_control *rc,
  2495. u64 bytenr, u32 blocksize)
  2496. {
  2497. set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
  2498. EXTENT_DIRTY);
  2499. }
  2500. static void __mark_block_processed(struct reloc_control *rc,
  2501. struct backref_node *node)
  2502. {
  2503. u32 blocksize;
  2504. if (node->level == 0 ||
  2505. in_block_group(node->bytenr, rc->block_group)) {
  2506. blocksize = rc->extent_root->fs_info->nodesize;
  2507. mark_block_processed(rc, node->bytenr, blocksize);
  2508. }
  2509. node->processed = 1;
  2510. }
  2511. /*
  2512. * mark a block and all blocks directly/indirectly reference the block
  2513. * as processed.
  2514. */
  2515. static void update_processed_blocks(struct reloc_control *rc,
  2516. struct backref_node *node)
  2517. {
  2518. struct backref_node *next = node;
  2519. struct backref_edge *edge;
  2520. struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
  2521. int index = 0;
  2522. while (next) {
  2523. cond_resched();
  2524. while (1) {
  2525. if (next->processed)
  2526. break;
  2527. __mark_block_processed(rc, next);
  2528. if (list_empty(&next->upper))
  2529. break;
  2530. edge = list_entry(next->upper.next,
  2531. struct backref_edge, list[LOWER]);
  2532. edges[index++] = edge;
  2533. next = edge->node[UPPER];
  2534. }
  2535. next = walk_down_backref(edges, &index);
  2536. }
  2537. }
  2538. static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
  2539. {
  2540. u32 blocksize = rc->extent_root->fs_info->nodesize;
  2541. if (test_range_bit(&rc->processed_blocks, bytenr,
  2542. bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
  2543. return 1;
  2544. return 0;
  2545. }
  2546. static int get_tree_block_key(struct btrfs_fs_info *fs_info,
  2547. struct tree_block *block)
  2548. {
  2549. struct extent_buffer *eb;
  2550. BUG_ON(block->key_ready);
  2551. eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
  2552. block->level, NULL);
  2553. if (IS_ERR(eb)) {
  2554. return PTR_ERR(eb);
  2555. } else if (!extent_buffer_uptodate(eb)) {
  2556. free_extent_buffer(eb);
  2557. return -EIO;
  2558. }
  2559. WARN_ON(btrfs_header_level(eb) != block->level);
  2560. if (block->level == 0)
  2561. btrfs_item_key_to_cpu(eb, &block->key, 0);
  2562. else
  2563. btrfs_node_key_to_cpu(eb, &block->key, 0);
  2564. free_extent_buffer(eb);
  2565. block->key_ready = 1;
  2566. return 0;
  2567. }
  2568. /*
  2569. * helper function to relocate a tree block
  2570. */
  2571. static int relocate_tree_block(struct btrfs_trans_handle *trans,
  2572. struct reloc_control *rc,
  2573. struct backref_node *node,
  2574. struct btrfs_key *key,
  2575. struct btrfs_path *path)
  2576. {
  2577. struct btrfs_root *root;
  2578. int ret = 0;
  2579. if (!node)
  2580. return 0;
  2581. BUG_ON(node->processed);
  2582. root = select_one_root(node);
  2583. if (root == ERR_PTR(-ENOENT)) {
  2584. update_processed_blocks(rc, node);
  2585. goto out;
  2586. }
  2587. if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2588. ret = reserve_metadata_space(trans, rc, node);
  2589. if (ret)
  2590. goto out;
  2591. }
  2592. if (root) {
  2593. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
  2594. BUG_ON(node->new_bytenr);
  2595. BUG_ON(!list_empty(&node->list));
  2596. btrfs_record_root_in_trans(trans, root);
  2597. root = root->reloc_root;
  2598. node->new_bytenr = root->node->start;
  2599. node->root = root;
  2600. list_add_tail(&node->list, &rc->backref_cache.changed);
  2601. } else {
  2602. path->lowest_level = node->level;
  2603. ret = btrfs_search_slot(trans, root, key, path, 0, 1);
  2604. btrfs_release_path(path);
  2605. if (ret > 0)
  2606. ret = 0;
  2607. }
  2608. if (!ret)
  2609. update_processed_blocks(rc, node);
  2610. } else {
  2611. ret = do_relocation(trans, rc, node, key, path, 1);
  2612. }
  2613. out:
  2614. if (ret || node->level == 0 || node->cowonly)
  2615. remove_backref_node(&rc->backref_cache, node);
  2616. return ret;
  2617. }
  2618. /*
  2619. * relocate a list of blocks
  2620. */
  2621. static noinline_for_stack
  2622. int relocate_tree_blocks(struct btrfs_trans_handle *trans,
  2623. struct reloc_control *rc, struct rb_root *blocks)
  2624. {
  2625. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2626. struct backref_node *node;
  2627. struct btrfs_path *path;
  2628. struct tree_block *block;
  2629. struct rb_node *rb_node;
  2630. int ret;
  2631. int err = 0;
  2632. path = btrfs_alloc_path();
  2633. if (!path) {
  2634. err = -ENOMEM;
  2635. goto out_free_blocks;
  2636. }
  2637. rb_node = rb_first(blocks);
  2638. while (rb_node) {
  2639. block = rb_entry(rb_node, struct tree_block, rb_node);
  2640. if (!block->key_ready)
  2641. readahead_tree_block(fs_info, block->bytenr);
  2642. rb_node = rb_next(rb_node);
  2643. }
  2644. rb_node = rb_first(blocks);
  2645. while (rb_node) {
  2646. block = rb_entry(rb_node, struct tree_block, rb_node);
  2647. if (!block->key_ready) {
  2648. err = get_tree_block_key(fs_info, block);
  2649. if (err)
  2650. goto out_free_path;
  2651. }
  2652. rb_node = rb_next(rb_node);
  2653. }
  2654. rb_node = rb_first(blocks);
  2655. while (rb_node) {
  2656. block = rb_entry(rb_node, struct tree_block, rb_node);
  2657. node = build_backref_tree(rc, &block->key,
  2658. block->level, block->bytenr);
  2659. if (IS_ERR(node)) {
  2660. err = PTR_ERR(node);
  2661. goto out;
  2662. }
  2663. ret = relocate_tree_block(trans, rc, node, &block->key,
  2664. path);
  2665. if (ret < 0) {
  2666. if (ret != -EAGAIN || rb_node == rb_first(blocks))
  2667. err = ret;
  2668. goto out;
  2669. }
  2670. rb_node = rb_next(rb_node);
  2671. }
  2672. out:
  2673. err = finish_pending_nodes(trans, rc, path, err);
  2674. out_free_path:
  2675. btrfs_free_path(path);
  2676. out_free_blocks:
  2677. free_block_list(blocks);
  2678. return err;
  2679. }
  2680. static noinline_for_stack
  2681. int prealloc_file_extent_cluster(struct inode *inode,
  2682. struct file_extent_cluster *cluster)
  2683. {
  2684. u64 alloc_hint = 0;
  2685. u64 start;
  2686. u64 end;
  2687. u64 offset = BTRFS_I(inode)->index_cnt;
  2688. u64 num_bytes;
  2689. int nr = 0;
  2690. int ret = 0;
  2691. u64 prealloc_start = cluster->start - offset;
  2692. u64 prealloc_end = cluster->end - offset;
  2693. u64 cur_offset;
  2694. struct extent_changeset *data_reserved = NULL;
  2695. BUG_ON(cluster->start != cluster->boundary[0]);
  2696. inode_lock(inode);
  2697. ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
  2698. prealloc_end + 1 - prealloc_start);
  2699. if (ret)
  2700. goto out;
  2701. cur_offset = prealloc_start;
  2702. while (nr < cluster->nr) {
  2703. start = cluster->boundary[nr] - offset;
  2704. if (nr + 1 < cluster->nr)
  2705. end = cluster->boundary[nr + 1] - 1 - offset;
  2706. else
  2707. end = cluster->end - offset;
  2708. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2709. num_bytes = end + 1 - start;
  2710. if (cur_offset < start)
  2711. btrfs_free_reserved_data_space(inode, data_reserved,
  2712. cur_offset, start - cur_offset);
  2713. ret = btrfs_prealloc_file_range(inode, 0, start,
  2714. num_bytes, num_bytes,
  2715. end + 1, &alloc_hint);
  2716. cur_offset = end + 1;
  2717. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2718. if (ret)
  2719. break;
  2720. nr++;
  2721. }
  2722. if (cur_offset < prealloc_end)
  2723. btrfs_free_reserved_data_space(inode, data_reserved,
  2724. cur_offset, prealloc_end + 1 - cur_offset);
  2725. out:
  2726. inode_unlock(inode);
  2727. extent_changeset_free(data_reserved);
  2728. return ret;
  2729. }
  2730. static noinline_for_stack
  2731. int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
  2732. u64 block_start)
  2733. {
  2734. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2735. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  2736. struct extent_map *em;
  2737. int ret = 0;
  2738. em = alloc_extent_map();
  2739. if (!em)
  2740. return -ENOMEM;
  2741. em->start = start;
  2742. em->len = end + 1 - start;
  2743. em->block_len = em->len;
  2744. em->block_start = block_start;
  2745. em->bdev = fs_info->fs_devices->latest_bdev;
  2746. set_bit(EXTENT_FLAG_PINNED, &em->flags);
  2747. lock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2748. while (1) {
  2749. write_lock(&em_tree->lock);
  2750. ret = add_extent_mapping(em_tree, em, 0);
  2751. write_unlock(&em_tree->lock);
  2752. if (ret != -EEXIST) {
  2753. free_extent_map(em);
  2754. break;
  2755. }
  2756. btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
  2757. }
  2758. unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
  2759. return ret;
  2760. }
  2761. static int relocate_file_extent_cluster(struct inode *inode,
  2762. struct file_extent_cluster *cluster)
  2763. {
  2764. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  2765. u64 page_start;
  2766. u64 page_end;
  2767. u64 offset = BTRFS_I(inode)->index_cnt;
  2768. unsigned long index;
  2769. unsigned long last_index;
  2770. struct page *page;
  2771. struct file_ra_state *ra;
  2772. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  2773. int nr = 0;
  2774. int ret = 0;
  2775. if (!cluster->nr)
  2776. return 0;
  2777. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  2778. if (!ra)
  2779. return -ENOMEM;
  2780. ret = prealloc_file_extent_cluster(inode, cluster);
  2781. if (ret)
  2782. goto out;
  2783. file_ra_state_init(ra, inode->i_mapping);
  2784. ret = setup_extent_mapping(inode, cluster->start - offset,
  2785. cluster->end - offset, cluster->start);
  2786. if (ret)
  2787. goto out;
  2788. index = (cluster->start - offset) >> PAGE_SHIFT;
  2789. last_index = (cluster->end - offset) >> PAGE_SHIFT;
  2790. while (index <= last_index) {
  2791. ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
  2792. PAGE_SIZE);
  2793. if (ret)
  2794. goto out;
  2795. page = find_lock_page(inode->i_mapping, index);
  2796. if (!page) {
  2797. page_cache_sync_readahead(inode->i_mapping,
  2798. ra, NULL, index,
  2799. last_index + 1 - index);
  2800. page = find_or_create_page(inode->i_mapping, index,
  2801. mask);
  2802. if (!page) {
  2803. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2804. PAGE_SIZE, true);
  2805. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2806. PAGE_SIZE);
  2807. ret = -ENOMEM;
  2808. goto out;
  2809. }
  2810. }
  2811. if (PageReadahead(page)) {
  2812. page_cache_async_readahead(inode->i_mapping,
  2813. ra, NULL, page, index,
  2814. last_index + 1 - index);
  2815. }
  2816. if (!PageUptodate(page)) {
  2817. btrfs_readpage(NULL, page);
  2818. lock_page(page);
  2819. if (!PageUptodate(page)) {
  2820. unlock_page(page);
  2821. put_page(page);
  2822. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2823. PAGE_SIZE, true);
  2824. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2825. PAGE_SIZE);
  2826. ret = -EIO;
  2827. goto out;
  2828. }
  2829. }
  2830. page_start = page_offset(page);
  2831. page_end = page_start + PAGE_SIZE - 1;
  2832. lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
  2833. set_page_extent_mapped(page);
  2834. if (nr < cluster->nr &&
  2835. page_start + offset == cluster->boundary[nr]) {
  2836. set_extent_bits(&BTRFS_I(inode)->io_tree,
  2837. page_start, page_end,
  2838. EXTENT_BOUNDARY);
  2839. nr++;
  2840. }
  2841. ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
  2842. NULL, 0);
  2843. if (ret) {
  2844. unlock_page(page);
  2845. put_page(page);
  2846. btrfs_delalloc_release_metadata(BTRFS_I(inode),
  2847. PAGE_SIZE, true);
  2848. btrfs_delalloc_release_extents(BTRFS_I(inode),
  2849. PAGE_SIZE);
  2850. clear_extent_bits(&BTRFS_I(inode)->io_tree,
  2851. page_start, page_end,
  2852. EXTENT_LOCKED | EXTENT_BOUNDARY);
  2853. goto out;
  2854. }
  2855. set_page_dirty(page);
  2856. unlock_extent(&BTRFS_I(inode)->io_tree,
  2857. page_start, page_end);
  2858. unlock_page(page);
  2859. put_page(page);
  2860. index++;
  2861. btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
  2862. balance_dirty_pages_ratelimited(inode->i_mapping);
  2863. btrfs_throttle(fs_info);
  2864. }
  2865. WARN_ON(nr != cluster->nr);
  2866. out:
  2867. kfree(ra);
  2868. return ret;
  2869. }
  2870. static noinline_for_stack
  2871. int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
  2872. struct file_extent_cluster *cluster)
  2873. {
  2874. int ret;
  2875. if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
  2876. ret = relocate_file_extent_cluster(inode, cluster);
  2877. if (ret)
  2878. return ret;
  2879. cluster->nr = 0;
  2880. }
  2881. if (!cluster->nr)
  2882. cluster->start = extent_key->objectid;
  2883. else
  2884. BUG_ON(cluster->nr >= MAX_EXTENTS);
  2885. cluster->end = extent_key->objectid + extent_key->offset - 1;
  2886. cluster->boundary[cluster->nr] = extent_key->objectid;
  2887. cluster->nr++;
  2888. if (cluster->nr >= MAX_EXTENTS) {
  2889. ret = relocate_file_extent_cluster(inode, cluster);
  2890. if (ret)
  2891. return ret;
  2892. cluster->nr = 0;
  2893. }
  2894. return 0;
  2895. }
  2896. /*
  2897. * helper to add a tree block to the list.
  2898. * the major work is getting the generation and level of the block
  2899. */
  2900. static int add_tree_block(struct reloc_control *rc,
  2901. struct btrfs_key *extent_key,
  2902. struct btrfs_path *path,
  2903. struct rb_root *blocks)
  2904. {
  2905. struct extent_buffer *eb;
  2906. struct btrfs_extent_item *ei;
  2907. struct btrfs_tree_block_info *bi;
  2908. struct tree_block *block;
  2909. struct rb_node *rb_node;
  2910. u32 item_size;
  2911. int level = -1;
  2912. u64 generation;
  2913. eb = path->nodes[0];
  2914. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  2915. if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
  2916. item_size >= sizeof(*ei) + sizeof(*bi)) {
  2917. ei = btrfs_item_ptr(eb, path->slots[0],
  2918. struct btrfs_extent_item);
  2919. if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
  2920. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2921. level = btrfs_tree_block_level(eb, bi);
  2922. } else {
  2923. level = (int)extent_key->offset;
  2924. }
  2925. generation = btrfs_extent_generation(eb, ei);
  2926. } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
  2927. btrfs_print_v0_err(eb->fs_info);
  2928. btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
  2929. return -EINVAL;
  2930. } else {
  2931. BUG();
  2932. }
  2933. btrfs_release_path(path);
  2934. BUG_ON(level == -1);
  2935. block = kmalloc(sizeof(*block), GFP_NOFS);
  2936. if (!block)
  2937. return -ENOMEM;
  2938. block->bytenr = extent_key->objectid;
  2939. block->key.objectid = rc->extent_root->fs_info->nodesize;
  2940. block->key.offset = generation;
  2941. block->level = level;
  2942. block->key_ready = 0;
  2943. rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
  2944. if (rb_node)
  2945. backref_tree_panic(rb_node, -EEXIST, block->bytenr);
  2946. return 0;
  2947. }
  2948. /*
  2949. * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
  2950. */
  2951. static int __add_tree_block(struct reloc_control *rc,
  2952. u64 bytenr, u32 blocksize,
  2953. struct rb_root *blocks)
  2954. {
  2955. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  2956. struct btrfs_path *path;
  2957. struct btrfs_key key;
  2958. int ret;
  2959. bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
  2960. if (tree_block_processed(bytenr, rc))
  2961. return 0;
  2962. if (tree_search(blocks, bytenr))
  2963. return 0;
  2964. path = btrfs_alloc_path();
  2965. if (!path)
  2966. return -ENOMEM;
  2967. again:
  2968. key.objectid = bytenr;
  2969. if (skinny) {
  2970. key.type = BTRFS_METADATA_ITEM_KEY;
  2971. key.offset = (u64)-1;
  2972. } else {
  2973. key.type = BTRFS_EXTENT_ITEM_KEY;
  2974. key.offset = blocksize;
  2975. }
  2976. path->search_commit_root = 1;
  2977. path->skip_locking = 1;
  2978. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
  2979. if (ret < 0)
  2980. goto out;
  2981. if (ret > 0 && skinny) {
  2982. if (path->slots[0]) {
  2983. path->slots[0]--;
  2984. btrfs_item_key_to_cpu(path->nodes[0], &key,
  2985. path->slots[0]);
  2986. if (key.objectid == bytenr &&
  2987. (key.type == BTRFS_METADATA_ITEM_KEY ||
  2988. (key.type == BTRFS_EXTENT_ITEM_KEY &&
  2989. key.offset == blocksize)))
  2990. ret = 0;
  2991. }
  2992. if (ret) {
  2993. skinny = false;
  2994. btrfs_release_path(path);
  2995. goto again;
  2996. }
  2997. }
  2998. if (ret) {
  2999. ASSERT(ret == 1);
  3000. btrfs_print_leaf(path->nodes[0]);
  3001. btrfs_err(fs_info,
  3002. "tree block extent item (%llu) is not found in extent tree",
  3003. bytenr);
  3004. WARN_ON(1);
  3005. ret = -EINVAL;
  3006. goto out;
  3007. }
  3008. ret = add_tree_block(rc, &key, path, blocks);
  3009. out:
  3010. btrfs_free_path(path);
  3011. return ret;
  3012. }
  3013. /*
  3014. * helper to check if the block use full backrefs for pointers in it
  3015. */
  3016. static int block_use_full_backref(struct reloc_control *rc,
  3017. struct extent_buffer *eb)
  3018. {
  3019. u64 flags;
  3020. int ret;
  3021. if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
  3022. btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
  3023. return 1;
  3024. ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
  3025. eb->start, btrfs_header_level(eb), 1,
  3026. NULL, &flags);
  3027. BUG_ON(ret);
  3028. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  3029. ret = 1;
  3030. else
  3031. ret = 0;
  3032. return ret;
  3033. }
  3034. static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
  3035. struct btrfs_block_group_cache *block_group,
  3036. struct inode *inode,
  3037. u64 ino)
  3038. {
  3039. struct btrfs_key key;
  3040. struct btrfs_root *root = fs_info->tree_root;
  3041. struct btrfs_trans_handle *trans;
  3042. int ret = 0;
  3043. if (inode)
  3044. goto truncate;
  3045. key.objectid = ino;
  3046. key.type = BTRFS_INODE_ITEM_KEY;
  3047. key.offset = 0;
  3048. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3049. if (IS_ERR(inode))
  3050. return -ENOENT;
  3051. truncate:
  3052. ret = btrfs_check_trunc_cache_free_space(fs_info,
  3053. &fs_info->global_block_rsv);
  3054. if (ret)
  3055. goto out;
  3056. trans = btrfs_join_transaction(root);
  3057. if (IS_ERR(trans)) {
  3058. ret = PTR_ERR(trans);
  3059. goto out;
  3060. }
  3061. ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
  3062. btrfs_end_transaction(trans);
  3063. btrfs_btree_balance_dirty(fs_info);
  3064. out:
  3065. iput(inode);
  3066. return ret;
  3067. }
  3068. /*
  3069. * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
  3070. * this function scans fs tree to find blocks reference the data extent
  3071. */
  3072. static int find_data_references(struct reloc_control *rc,
  3073. struct btrfs_key *extent_key,
  3074. struct extent_buffer *leaf,
  3075. struct btrfs_extent_data_ref *ref,
  3076. struct rb_root *blocks)
  3077. {
  3078. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3079. struct btrfs_path *path;
  3080. struct tree_block *block;
  3081. struct btrfs_root *root;
  3082. struct btrfs_file_extent_item *fi;
  3083. struct rb_node *rb_node;
  3084. struct btrfs_key key;
  3085. u64 ref_root;
  3086. u64 ref_objectid;
  3087. u64 ref_offset;
  3088. u32 ref_count;
  3089. u32 nritems;
  3090. int err = 0;
  3091. int added = 0;
  3092. int counted;
  3093. int ret;
  3094. ref_root = btrfs_extent_data_ref_root(leaf, ref);
  3095. ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
  3096. ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
  3097. ref_count = btrfs_extent_data_ref_count(leaf, ref);
  3098. /*
  3099. * This is an extent belonging to the free space cache, lets just delete
  3100. * it and redo the search.
  3101. */
  3102. if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
  3103. ret = delete_block_group_cache(fs_info, rc->block_group,
  3104. NULL, ref_objectid);
  3105. if (ret != -ENOENT)
  3106. return ret;
  3107. ret = 0;
  3108. }
  3109. path = btrfs_alloc_path();
  3110. if (!path)
  3111. return -ENOMEM;
  3112. path->reada = READA_FORWARD;
  3113. root = read_fs_root(fs_info, ref_root);
  3114. if (IS_ERR(root)) {
  3115. err = PTR_ERR(root);
  3116. goto out;
  3117. }
  3118. key.objectid = ref_objectid;
  3119. key.type = BTRFS_EXTENT_DATA_KEY;
  3120. if (ref_offset > ((u64)-1 << 32))
  3121. key.offset = 0;
  3122. else
  3123. key.offset = ref_offset;
  3124. path->search_commit_root = 1;
  3125. path->skip_locking = 1;
  3126. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3127. if (ret < 0) {
  3128. err = ret;
  3129. goto out;
  3130. }
  3131. leaf = path->nodes[0];
  3132. nritems = btrfs_header_nritems(leaf);
  3133. /*
  3134. * the references in tree blocks that use full backrefs
  3135. * are not counted in
  3136. */
  3137. if (block_use_full_backref(rc, leaf))
  3138. counted = 0;
  3139. else
  3140. counted = 1;
  3141. rb_node = tree_search(blocks, leaf->start);
  3142. if (rb_node) {
  3143. if (counted)
  3144. added = 1;
  3145. else
  3146. path->slots[0] = nritems;
  3147. }
  3148. while (ref_count > 0) {
  3149. while (path->slots[0] >= nritems) {
  3150. ret = btrfs_next_leaf(root, path);
  3151. if (ret < 0) {
  3152. err = ret;
  3153. goto out;
  3154. }
  3155. if (WARN_ON(ret > 0))
  3156. goto out;
  3157. leaf = path->nodes[0];
  3158. nritems = btrfs_header_nritems(leaf);
  3159. added = 0;
  3160. if (block_use_full_backref(rc, leaf))
  3161. counted = 0;
  3162. else
  3163. counted = 1;
  3164. rb_node = tree_search(blocks, leaf->start);
  3165. if (rb_node) {
  3166. if (counted)
  3167. added = 1;
  3168. else
  3169. path->slots[0] = nritems;
  3170. }
  3171. }
  3172. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3173. if (WARN_ON(key.objectid != ref_objectid ||
  3174. key.type != BTRFS_EXTENT_DATA_KEY))
  3175. break;
  3176. fi = btrfs_item_ptr(leaf, path->slots[0],
  3177. struct btrfs_file_extent_item);
  3178. if (btrfs_file_extent_type(leaf, fi) ==
  3179. BTRFS_FILE_EXTENT_INLINE)
  3180. goto next;
  3181. if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
  3182. extent_key->objectid)
  3183. goto next;
  3184. key.offset -= btrfs_file_extent_offset(leaf, fi);
  3185. if (key.offset != ref_offset)
  3186. goto next;
  3187. if (counted)
  3188. ref_count--;
  3189. if (added)
  3190. goto next;
  3191. if (!tree_block_processed(leaf->start, rc)) {
  3192. block = kmalloc(sizeof(*block), GFP_NOFS);
  3193. if (!block) {
  3194. err = -ENOMEM;
  3195. break;
  3196. }
  3197. block->bytenr = leaf->start;
  3198. btrfs_item_key_to_cpu(leaf, &block->key, 0);
  3199. block->level = 0;
  3200. block->key_ready = 1;
  3201. rb_node = tree_insert(blocks, block->bytenr,
  3202. &block->rb_node);
  3203. if (rb_node)
  3204. backref_tree_panic(rb_node, -EEXIST,
  3205. block->bytenr);
  3206. }
  3207. if (counted)
  3208. added = 1;
  3209. else
  3210. path->slots[0] = nritems;
  3211. next:
  3212. path->slots[0]++;
  3213. }
  3214. out:
  3215. btrfs_free_path(path);
  3216. return err;
  3217. }
  3218. /*
  3219. * helper to find all tree blocks that reference a given data extent
  3220. */
  3221. static noinline_for_stack
  3222. int add_data_references(struct reloc_control *rc,
  3223. struct btrfs_key *extent_key,
  3224. struct btrfs_path *path,
  3225. struct rb_root *blocks)
  3226. {
  3227. struct btrfs_key key;
  3228. struct extent_buffer *eb;
  3229. struct btrfs_extent_data_ref *dref;
  3230. struct btrfs_extent_inline_ref *iref;
  3231. unsigned long ptr;
  3232. unsigned long end;
  3233. u32 blocksize = rc->extent_root->fs_info->nodesize;
  3234. int ret = 0;
  3235. int err = 0;
  3236. eb = path->nodes[0];
  3237. ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
  3238. end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
  3239. ptr += sizeof(struct btrfs_extent_item);
  3240. while (ptr < end) {
  3241. iref = (struct btrfs_extent_inline_ref *)ptr;
  3242. key.type = btrfs_get_extent_inline_ref_type(eb, iref,
  3243. BTRFS_REF_TYPE_DATA);
  3244. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3245. key.offset = btrfs_extent_inline_ref_offset(eb, iref);
  3246. ret = __add_tree_block(rc, key.offset, blocksize,
  3247. blocks);
  3248. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3249. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  3250. ret = find_data_references(rc, extent_key,
  3251. eb, dref, blocks);
  3252. } else {
  3253. ret = -EUCLEAN;
  3254. btrfs_err(rc->extent_root->fs_info,
  3255. "extent %llu slot %d has an invalid inline ref type",
  3256. eb->start, path->slots[0]);
  3257. }
  3258. if (ret) {
  3259. err = ret;
  3260. goto out;
  3261. }
  3262. ptr += btrfs_extent_inline_ref_size(key.type);
  3263. }
  3264. WARN_ON(ptr > end);
  3265. while (1) {
  3266. cond_resched();
  3267. eb = path->nodes[0];
  3268. if (path->slots[0] >= btrfs_header_nritems(eb)) {
  3269. ret = btrfs_next_leaf(rc->extent_root, path);
  3270. if (ret < 0) {
  3271. err = ret;
  3272. break;
  3273. }
  3274. if (ret > 0)
  3275. break;
  3276. eb = path->nodes[0];
  3277. }
  3278. btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
  3279. if (key.objectid != extent_key->objectid)
  3280. break;
  3281. if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  3282. ret = __add_tree_block(rc, key.offset, blocksize,
  3283. blocks);
  3284. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  3285. dref = btrfs_item_ptr(eb, path->slots[0],
  3286. struct btrfs_extent_data_ref);
  3287. ret = find_data_references(rc, extent_key,
  3288. eb, dref, blocks);
  3289. } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
  3290. btrfs_print_v0_err(eb->fs_info);
  3291. btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
  3292. ret = -EINVAL;
  3293. } else {
  3294. ret = 0;
  3295. }
  3296. if (ret) {
  3297. err = ret;
  3298. break;
  3299. }
  3300. path->slots[0]++;
  3301. }
  3302. out:
  3303. btrfs_release_path(path);
  3304. if (err)
  3305. free_block_list(blocks);
  3306. return err;
  3307. }
  3308. /*
  3309. * helper to find next unprocessed extent
  3310. */
  3311. static noinline_for_stack
  3312. int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
  3313. struct btrfs_key *extent_key)
  3314. {
  3315. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3316. struct btrfs_key key;
  3317. struct extent_buffer *leaf;
  3318. u64 start, end, last;
  3319. int ret;
  3320. last = rc->block_group->key.objectid + rc->block_group->key.offset;
  3321. while (1) {
  3322. cond_resched();
  3323. if (rc->search_start >= last) {
  3324. ret = 1;
  3325. break;
  3326. }
  3327. key.objectid = rc->search_start;
  3328. key.type = BTRFS_EXTENT_ITEM_KEY;
  3329. key.offset = 0;
  3330. path->search_commit_root = 1;
  3331. path->skip_locking = 1;
  3332. ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
  3333. 0, 0);
  3334. if (ret < 0)
  3335. break;
  3336. next:
  3337. leaf = path->nodes[0];
  3338. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  3339. ret = btrfs_next_leaf(rc->extent_root, path);
  3340. if (ret != 0)
  3341. break;
  3342. leaf = path->nodes[0];
  3343. }
  3344. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3345. if (key.objectid >= last) {
  3346. ret = 1;
  3347. break;
  3348. }
  3349. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  3350. key.type != BTRFS_METADATA_ITEM_KEY) {
  3351. path->slots[0]++;
  3352. goto next;
  3353. }
  3354. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  3355. key.objectid + key.offset <= rc->search_start) {
  3356. path->slots[0]++;
  3357. goto next;
  3358. }
  3359. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  3360. key.objectid + fs_info->nodesize <=
  3361. rc->search_start) {
  3362. path->slots[0]++;
  3363. goto next;
  3364. }
  3365. ret = find_first_extent_bit(&rc->processed_blocks,
  3366. key.objectid, &start, &end,
  3367. EXTENT_DIRTY, NULL);
  3368. if (ret == 0 && start <= key.objectid) {
  3369. btrfs_release_path(path);
  3370. rc->search_start = end + 1;
  3371. } else {
  3372. if (key.type == BTRFS_EXTENT_ITEM_KEY)
  3373. rc->search_start = key.objectid + key.offset;
  3374. else
  3375. rc->search_start = key.objectid +
  3376. fs_info->nodesize;
  3377. memcpy(extent_key, &key, sizeof(key));
  3378. return 0;
  3379. }
  3380. }
  3381. btrfs_release_path(path);
  3382. return ret;
  3383. }
  3384. static void set_reloc_control(struct reloc_control *rc)
  3385. {
  3386. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3387. mutex_lock(&fs_info->reloc_mutex);
  3388. fs_info->reloc_ctl = rc;
  3389. mutex_unlock(&fs_info->reloc_mutex);
  3390. }
  3391. static void unset_reloc_control(struct reloc_control *rc)
  3392. {
  3393. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3394. mutex_lock(&fs_info->reloc_mutex);
  3395. fs_info->reloc_ctl = NULL;
  3396. mutex_unlock(&fs_info->reloc_mutex);
  3397. }
  3398. static int check_extent_flags(u64 flags)
  3399. {
  3400. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3401. (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3402. return 1;
  3403. if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
  3404. !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
  3405. return 1;
  3406. if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
  3407. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  3408. return 1;
  3409. return 0;
  3410. }
  3411. static noinline_for_stack
  3412. int prepare_to_relocate(struct reloc_control *rc)
  3413. {
  3414. struct btrfs_trans_handle *trans;
  3415. int ret;
  3416. rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
  3417. BTRFS_BLOCK_RSV_TEMP);
  3418. if (!rc->block_rsv)
  3419. return -ENOMEM;
  3420. memset(&rc->cluster, 0, sizeof(rc->cluster));
  3421. rc->search_start = rc->block_group->key.objectid;
  3422. rc->extents_found = 0;
  3423. rc->nodes_relocated = 0;
  3424. rc->merging_rsv_size = 0;
  3425. rc->reserved_bytes = 0;
  3426. rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
  3427. RELOCATION_RESERVED_NODES;
  3428. ret = btrfs_block_rsv_refill(rc->extent_root,
  3429. rc->block_rsv, rc->block_rsv->size,
  3430. BTRFS_RESERVE_FLUSH_ALL);
  3431. if (ret)
  3432. return ret;
  3433. rc->create_reloc_tree = 1;
  3434. set_reloc_control(rc);
  3435. trans = btrfs_join_transaction(rc->extent_root);
  3436. if (IS_ERR(trans)) {
  3437. unset_reloc_control(rc);
  3438. /*
  3439. * extent tree is not a ref_cow tree and has no reloc_root to
  3440. * cleanup. And callers are responsible to free the above
  3441. * block rsv.
  3442. */
  3443. return PTR_ERR(trans);
  3444. }
  3445. btrfs_commit_transaction(trans);
  3446. return 0;
  3447. }
  3448. static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
  3449. {
  3450. struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
  3451. struct rb_root blocks = RB_ROOT;
  3452. struct btrfs_key key;
  3453. struct btrfs_trans_handle *trans = NULL;
  3454. struct btrfs_path *path;
  3455. struct btrfs_extent_item *ei;
  3456. u64 flags;
  3457. u32 item_size;
  3458. int ret;
  3459. int err = 0;
  3460. int progress = 0;
  3461. path = btrfs_alloc_path();
  3462. if (!path)
  3463. return -ENOMEM;
  3464. path->reada = READA_FORWARD;
  3465. ret = prepare_to_relocate(rc);
  3466. if (ret) {
  3467. err = ret;
  3468. goto out_free;
  3469. }
  3470. while (1) {
  3471. rc->reserved_bytes = 0;
  3472. ret = btrfs_block_rsv_refill(rc->extent_root,
  3473. rc->block_rsv, rc->block_rsv->size,
  3474. BTRFS_RESERVE_FLUSH_ALL);
  3475. if (ret) {
  3476. err = ret;
  3477. break;
  3478. }
  3479. progress++;
  3480. trans = btrfs_start_transaction(rc->extent_root, 0);
  3481. if (IS_ERR(trans)) {
  3482. err = PTR_ERR(trans);
  3483. trans = NULL;
  3484. break;
  3485. }
  3486. restart:
  3487. if (update_backref_cache(trans, &rc->backref_cache)) {
  3488. btrfs_end_transaction(trans);
  3489. trans = NULL;
  3490. continue;
  3491. }
  3492. ret = find_next_extent(rc, path, &key);
  3493. if (ret < 0)
  3494. err = ret;
  3495. if (ret != 0)
  3496. break;
  3497. rc->extents_found++;
  3498. ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
  3499. struct btrfs_extent_item);
  3500. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  3501. if (item_size >= sizeof(*ei)) {
  3502. flags = btrfs_extent_flags(path->nodes[0], ei);
  3503. ret = check_extent_flags(flags);
  3504. BUG_ON(ret);
  3505. } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
  3506. err = -EINVAL;
  3507. btrfs_print_v0_err(trans->fs_info);
  3508. btrfs_abort_transaction(trans, err);
  3509. break;
  3510. } else {
  3511. BUG();
  3512. }
  3513. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  3514. ret = add_tree_block(rc, &key, path, &blocks);
  3515. } else if (rc->stage == UPDATE_DATA_PTRS &&
  3516. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3517. ret = add_data_references(rc, &key, path, &blocks);
  3518. } else {
  3519. btrfs_release_path(path);
  3520. ret = 0;
  3521. }
  3522. if (ret < 0) {
  3523. err = ret;
  3524. break;
  3525. }
  3526. if (!RB_EMPTY_ROOT(&blocks)) {
  3527. ret = relocate_tree_blocks(trans, rc, &blocks);
  3528. if (ret < 0) {
  3529. /*
  3530. * if we fail to relocate tree blocks, force to update
  3531. * backref cache when committing transaction.
  3532. */
  3533. rc->backref_cache.last_trans = trans->transid - 1;
  3534. if (ret != -EAGAIN) {
  3535. err = ret;
  3536. break;
  3537. }
  3538. rc->extents_found--;
  3539. rc->search_start = key.objectid;
  3540. }
  3541. }
  3542. btrfs_end_transaction_throttle(trans);
  3543. btrfs_btree_balance_dirty(fs_info);
  3544. trans = NULL;
  3545. if (rc->stage == MOVE_DATA_EXTENTS &&
  3546. (flags & BTRFS_EXTENT_FLAG_DATA)) {
  3547. rc->found_file_extent = 1;
  3548. ret = relocate_data_extent(rc->data_inode,
  3549. &key, &rc->cluster);
  3550. if (ret < 0) {
  3551. err = ret;
  3552. break;
  3553. }
  3554. }
  3555. }
  3556. if (trans && progress && err == -ENOSPC) {
  3557. ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
  3558. if (ret == 1) {
  3559. err = 0;
  3560. progress = 0;
  3561. goto restart;
  3562. }
  3563. }
  3564. btrfs_release_path(path);
  3565. clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
  3566. if (trans) {
  3567. btrfs_end_transaction_throttle(trans);
  3568. btrfs_btree_balance_dirty(fs_info);
  3569. }
  3570. if (!err) {
  3571. ret = relocate_file_extent_cluster(rc->data_inode,
  3572. &rc->cluster);
  3573. if (ret < 0)
  3574. err = ret;
  3575. }
  3576. rc->create_reloc_tree = 0;
  3577. set_reloc_control(rc);
  3578. backref_cache_cleanup(&rc->backref_cache);
  3579. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3580. err = prepare_to_merge(rc, err);
  3581. merge_reloc_roots(rc);
  3582. rc->merge_reloc_tree = 0;
  3583. unset_reloc_control(rc);
  3584. btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
  3585. /* get rid of pinned extents */
  3586. trans = btrfs_join_transaction(rc->extent_root);
  3587. if (IS_ERR(trans)) {
  3588. err = PTR_ERR(trans);
  3589. goto out_free;
  3590. }
  3591. btrfs_commit_transaction(trans);
  3592. out_free:
  3593. btrfs_free_block_rsv(fs_info, rc->block_rsv);
  3594. btrfs_free_path(path);
  3595. return err;
  3596. }
  3597. static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
  3598. struct btrfs_root *root, u64 objectid)
  3599. {
  3600. struct btrfs_path *path;
  3601. struct btrfs_inode_item *item;
  3602. struct extent_buffer *leaf;
  3603. int ret;
  3604. path = btrfs_alloc_path();
  3605. if (!path)
  3606. return -ENOMEM;
  3607. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  3608. if (ret)
  3609. goto out;
  3610. leaf = path->nodes[0];
  3611. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
  3612. memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
  3613. btrfs_set_inode_generation(leaf, item, 1);
  3614. btrfs_set_inode_size(leaf, item, 0);
  3615. btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
  3616. btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
  3617. BTRFS_INODE_PREALLOC);
  3618. btrfs_mark_buffer_dirty(leaf);
  3619. out:
  3620. btrfs_free_path(path);
  3621. return ret;
  3622. }
  3623. /*
  3624. * helper to create inode for data relocation.
  3625. * the inode is in data relocation tree and its link count is 0
  3626. */
  3627. static noinline_for_stack
  3628. struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
  3629. struct btrfs_block_group_cache *group)
  3630. {
  3631. struct inode *inode = NULL;
  3632. struct btrfs_trans_handle *trans;
  3633. struct btrfs_root *root;
  3634. struct btrfs_key key;
  3635. u64 objectid;
  3636. int err = 0;
  3637. root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3638. if (IS_ERR(root))
  3639. return ERR_CAST(root);
  3640. trans = btrfs_start_transaction(root, 6);
  3641. if (IS_ERR(trans))
  3642. return ERR_CAST(trans);
  3643. err = btrfs_find_free_objectid(root, &objectid);
  3644. if (err)
  3645. goto out;
  3646. err = __insert_orphan_inode(trans, root, objectid);
  3647. BUG_ON(err);
  3648. key.objectid = objectid;
  3649. key.type = BTRFS_INODE_ITEM_KEY;
  3650. key.offset = 0;
  3651. inode = btrfs_iget(fs_info->sb, &key, root, NULL);
  3652. BUG_ON(IS_ERR(inode));
  3653. BTRFS_I(inode)->index_cnt = group->key.objectid;
  3654. err = btrfs_orphan_add(trans, BTRFS_I(inode));
  3655. out:
  3656. btrfs_end_transaction(trans);
  3657. btrfs_btree_balance_dirty(fs_info);
  3658. if (err) {
  3659. if (inode)
  3660. iput(inode);
  3661. inode = ERR_PTR(err);
  3662. }
  3663. return inode;
  3664. }
  3665. static struct reloc_control *alloc_reloc_control(void)
  3666. {
  3667. struct reloc_control *rc;
  3668. rc = kzalloc(sizeof(*rc), GFP_NOFS);
  3669. if (!rc)
  3670. return NULL;
  3671. INIT_LIST_HEAD(&rc->reloc_roots);
  3672. backref_cache_init(&rc->backref_cache);
  3673. mapping_tree_init(&rc->reloc_root_tree);
  3674. extent_io_tree_init(&rc->processed_blocks, NULL);
  3675. return rc;
  3676. }
  3677. /*
  3678. * Print the block group being relocated
  3679. */
  3680. static void describe_relocation(struct btrfs_fs_info *fs_info,
  3681. struct btrfs_block_group_cache *block_group)
  3682. {
  3683. char buf[128]; /* prefixed by a '|' that'll be dropped */
  3684. u64 flags = block_group->flags;
  3685. /* Shouldn't happen */
  3686. if (!flags) {
  3687. strcpy(buf, "|NONE");
  3688. } else {
  3689. char *bp = buf;
  3690. #define DESCRIBE_FLAG(f, d) \
  3691. if (flags & BTRFS_BLOCK_GROUP_##f) { \
  3692. bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
  3693. flags &= ~BTRFS_BLOCK_GROUP_##f; \
  3694. }
  3695. DESCRIBE_FLAG(DATA, "data");
  3696. DESCRIBE_FLAG(SYSTEM, "system");
  3697. DESCRIBE_FLAG(METADATA, "metadata");
  3698. DESCRIBE_FLAG(RAID0, "raid0");
  3699. DESCRIBE_FLAG(RAID1, "raid1");
  3700. DESCRIBE_FLAG(DUP, "dup");
  3701. DESCRIBE_FLAG(RAID10, "raid10");
  3702. DESCRIBE_FLAG(RAID5, "raid5");
  3703. DESCRIBE_FLAG(RAID6, "raid6");
  3704. if (flags)
  3705. snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
  3706. #undef DESCRIBE_FLAG
  3707. }
  3708. btrfs_info(fs_info,
  3709. "relocating block group %llu flags %s",
  3710. block_group->key.objectid, buf + 1);
  3711. }
  3712. /*
  3713. * function to relocate all extents in a block group.
  3714. */
  3715. int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
  3716. {
  3717. struct btrfs_root *extent_root = fs_info->extent_root;
  3718. struct reloc_control *rc;
  3719. struct inode *inode;
  3720. struct btrfs_path *path;
  3721. int ret;
  3722. int rw = 0;
  3723. int err = 0;
  3724. rc = alloc_reloc_control();
  3725. if (!rc)
  3726. return -ENOMEM;
  3727. rc->extent_root = extent_root;
  3728. rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
  3729. BUG_ON(!rc->block_group);
  3730. ret = btrfs_inc_block_group_ro(rc->block_group);
  3731. if (ret) {
  3732. err = ret;
  3733. goto out;
  3734. }
  3735. rw = 1;
  3736. path = btrfs_alloc_path();
  3737. if (!path) {
  3738. err = -ENOMEM;
  3739. goto out;
  3740. }
  3741. inode = lookup_free_space_inode(fs_info, rc->block_group, path);
  3742. btrfs_free_path(path);
  3743. if (!IS_ERR(inode))
  3744. ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
  3745. else
  3746. ret = PTR_ERR(inode);
  3747. if (ret && ret != -ENOENT) {
  3748. err = ret;
  3749. goto out;
  3750. }
  3751. rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
  3752. if (IS_ERR(rc->data_inode)) {
  3753. err = PTR_ERR(rc->data_inode);
  3754. rc->data_inode = NULL;
  3755. goto out;
  3756. }
  3757. describe_relocation(fs_info, rc->block_group);
  3758. btrfs_wait_block_group_reservations(rc->block_group);
  3759. btrfs_wait_nocow_writers(rc->block_group);
  3760. btrfs_wait_ordered_roots(fs_info, U64_MAX,
  3761. rc->block_group->key.objectid,
  3762. rc->block_group->key.offset);
  3763. while (1) {
  3764. mutex_lock(&fs_info->cleaner_mutex);
  3765. ret = relocate_block_group(rc);
  3766. mutex_unlock(&fs_info->cleaner_mutex);
  3767. if (ret < 0)
  3768. err = ret;
  3769. /*
  3770. * We may have gotten ENOSPC after we already dirtied some
  3771. * extents. If writeout happens while we're relocating a
  3772. * different block group we could end up hitting the
  3773. * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
  3774. * btrfs_reloc_cow_block. Make sure we write everything out
  3775. * properly so we don't trip over this problem, and then break
  3776. * out of the loop if we hit an error.
  3777. */
  3778. if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
  3779. ret = btrfs_wait_ordered_range(rc->data_inode, 0,
  3780. (u64)-1);
  3781. if (ret)
  3782. err = ret;
  3783. invalidate_mapping_pages(rc->data_inode->i_mapping,
  3784. 0, -1);
  3785. rc->stage = UPDATE_DATA_PTRS;
  3786. }
  3787. if (err < 0)
  3788. goto out;
  3789. if (rc->extents_found == 0)
  3790. break;
  3791. btrfs_info(fs_info, "found %llu extents", rc->extents_found);
  3792. }
  3793. WARN_ON(rc->block_group->pinned > 0);
  3794. WARN_ON(rc->block_group->reserved > 0);
  3795. WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
  3796. out:
  3797. if (err && rw)
  3798. btrfs_dec_block_group_ro(rc->block_group);
  3799. iput(rc->data_inode);
  3800. btrfs_put_block_group(rc->block_group);
  3801. kfree(rc);
  3802. return err;
  3803. }
  3804. static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
  3805. {
  3806. struct btrfs_fs_info *fs_info = root->fs_info;
  3807. struct btrfs_trans_handle *trans;
  3808. int ret, err;
  3809. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3810. if (IS_ERR(trans))
  3811. return PTR_ERR(trans);
  3812. memset(&root->root_item.drop_progress, 0,
  3813. sizeof(root->root_item.drop_progress));
  3814. root->root_item.drop_level = 0;
  3815. btrfs_set_root_refs(&root->root_item, 0);
  3816. ret = btrfs_update_root(trans, fs_info->tree_root,
  3817. &root->root_key, &root->root_item);
  3818. err = btrfs_end_transaction(trans);
  3819. if (err)
  3820. return err;
  3821. return ret;
  3822. }
  3823. /*
  3824. * recover relocation interrupted by system crash.
  3825. *
  3826. * this function resumes merging reloc trees with corresponding fs trees.
  3827. * this is important for keeping the sharing of tree blocks
  3828. */
  3829. int btrfs_recover_relocation(struct btrfs_root *root)
  3830. {
  3831. struct btrfs_fs_info *fs_info = root->fs_info;
  3832. LIST_HEAD(reloc_roots);
  3833. struct btrfs_key key;
  3834. struct btrfs_root *fs_root;
  3835. struct btrfs_root *reloc_root;
  3836. struct btrfs_path *path;
  3837. struct extent_buffer *leaf;
  3838. struct reloc_control *rc = NULL;
  3839. struct btrfs_trans_handle *trans;
  3840. int ret;
  3841. int err = 0;
  3842. path = btrfs_alloc_path();
  3843. if (!path)
  3844. return -ENOMEM;
  3845. path->reada = READA_BACK;
  3846. key.objectid = BTRFS_TREE_RELOC_OBJECTID;
  3847. key.type = BTRFS_ROOT_ITEM_KEY;
  3848. key.offset = (u64)-1;
  3849. while (1) {
  3850. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
  3851. path, 0, 0);
  3852. if (ret < 0) {
  3853. err = ret;
  3854. goto out;
  3855. }
  3856. if (ret > 0) {
  3857. if (path->slots[0] == 0)
  3858. break;
  3859. path->slots[0]--;
  3860. }
  3861. leaf = path->nodes[0];
  3862. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  3863. btrfs_release_path(path);
  3864. if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
  3865. key.type != BTRFS_ROOT_ITEM_KEY)
  3866. break;
  3867. reloc_root = btrfs_read_fs_root(root, &key);
  3868. if (IS_ERR(reloc_root)) {
  3869. err = PTR_ERR(reloc_root);
  3870. goto out;
  3871. }
  3872. list_add(&reloc_root->root_list, &reloc_roots);
  3873. if (btrfs_root_refs(&reloc_root->root_item) > 0) {
  3874. fs_root = read_fs_root(fs_info,
  3875. reloc_root->root_key.offset);
  3876. if (IS_ERR(fs_root)) {
  3877. ret = PTR_ERR(fs_root);
  3878. if (ret != -ENOENT) {
  3879. err = ret;
  3880. goto out;
  3881. }
  3882. ret = mark_garbage_root(reloc_root);
  3883. if (ret < 0) {
  3884. err = ret;
  3885. goto out;
  3886. }
  3887. }
  3888. }
  3889. if (key.offset == 0)
  3890. break;
  3891. key.offset--;
  3892. }
  3893. btrfs_release_path(path);
  3894. if (list_empty(&reloc_roots))
  3895. goto out;
  3896. rc = alloc_reloc_control();
  3897. if (!rc) {
  3898. err = -ENOMEM;
  3899. goto out;
  3900. }
  3901. rc->extent_root = fs_info->extent_root;
  3902. set_reloc_control(rc);
  3903. trans = btrfs_join_transaction(rc->extent_root);
  3904. if (IS_ERR(trans)) {
  3905. unset_reloc_control(rc);
  3906. err = PTR_ERR(trans);
  3907. goto out_free;
  3908. }
  3909. rc->merge_reloc_tree = 1;
  3910. while (!list_empty(&reloc_roots)) {
  3911. reloc_root = list_entry(reloc_roots.next,
  3912. struct btrfs_root, root_list);
  3913. list_del(&reloc_root->root_list);
  3914. if (btrfs_root_refs(&reloc_root->root_item) == 0) {
  3915. list_add_tail(&reloc_root->root_list,
  3916. &rc->reloc_roots);
  3917. continue;
  3918. }
  3919. fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
  3920. if (IS_ERR(fs_root)) {
  3921. err = PTR_ERR(fs_root);
  3922. list_add_tail(&reloc_root->root_list, &reloc_roots);
  3923. goto out_free;
  3924. }
  3925. err = __add_reloc_root(reloc_root);
  3926. BUG_ON(err < 0); /* -ENOMEM or logic error */
  3927. fs_root->reloc_root = reloc_root;
  3928. }
  3929. err = btrfs_commit_transaction(trans);
  3930. if (err)
  3931. goto out_free;
  3932. merge_reloc_roots(rc);
  3933. unset_reloc_control(rc);
  3934. trans = btrfs_join_transaction(rc->extent_root);
  3935. if (IS_ERR(trans)) {
  3936. err = PTR_ERR(trans);
  3937. goto out_free;
  3938. }
  3939. err = btrfs_commit_transaction(trans);
  3940. out_free:
  3941. kfree(rc);
  3942. out:
  3943. if (!list_empty(&reloc_roots))
  3944. free_reloc_roots(&reloc_roots);
  3945. btrfs_free_path(path);
  3946. if (err == 0) {
  3947. /* cleanup orphan inode in data relocation tree */
  3948. fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
  3949. if (IS_ERR(fs_root))
  3950. err = PTR_ERR(fs_root);
  3951. else
  3952. err = btrfs_orphan_cleanup(fs_root);
  3953. }
  3954. return err;
  3955. }
  3956. /*
  3957. * helper to add ordered checksum for data relocation.
  3958. *
  3959. * cloning checksum properly handles the nodatasum extents.
  3960. * it also saves CPU time to re-calculate the checksum.
  3961. */
  3962. int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
  3963. {
  3964. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  3965. struct btrfs_ordered_sum *sums;
  3966. struct btrfs_ordered_extent *ordered;
  3967. int ret;
  3968. u64 disk_bytenr;
  3969. u64 new_bytenr;
  3970. LIST_HEAD(list);
  3971. ordered = btrfs_lookup_ordered_extent(inode, file_pos);
  3972. BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
  3973. disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
  3974. ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
  3975. disk_bytenr + len - 1, &list, 0);
  3976. if (ret)
  3977. goto out;
  3978. while (!list_empty(&list)) {
  3979. sums = list_entry(list.next, struct btrfs_ordered_sum, list);
  3980. list_del_init(&sums->list);
  3981. /*
  3982. * We need to offset the new_bytenr based on where the csum is.
  3983. * We need to do this because we will read in entire prealloc
  3984. * extents but we may have written to say the middle of the
  3985. * prealloc extent, so we need to make sure the csum goes with
  3986. * the right disk offset.
  3987. *
  3988. * We can do this because the data reloc inode refers strictly
  3989. * to the on disk bytes, so we don't have to worry about
  3990. * disk_len vs real len like with real inodes since it's all
  3991. * disk length.
  3992. */
  3993. new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
  3994. sums->bytenr = new_bytenr;
  3995. btrfs_add_ordered_sum(inode, ordered, sums);
  3996. }
  3997. out:
  3998. btrfs_put_ordered_extent(ordered);
  3999. return ret;
  4000. }
  4001. int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
  4002. struct btrfs_root *root, struct extent_buffer *buf,
  4003. struct extent_buffer *cow)
  4004. {
  4005. struct btrfs_fs_info *fs_info = root->fs_info;
  4006. struct reloc_control *rc;
  4007. struct backref_node *node;
  4008. int first_cow = 0;
  4009. int level;
  4010. int ret = 0;
  4011. rc = fs_info->reloc_ctl;
  4012. if (!rc)
  4013. return 0;
  4014. BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
  4015. root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
  4016. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  4017. if (buf == root->node)
  4018. __update_reloc_root(root, cow->start);
  4019. }
  4020. level = btrfs_header_level(buf);
  4021. if (btrfs_header_generation(buf) <=
  4022. btrfs_root_last_snapshot(&root->root_item))
  4023. first_cow = 1;
  4024. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
  4025. rc->create_reloc_tree) {
  4026. WARN_ON(!first_cow && level == 0);
  4027. node = rc->backref_cache.path[level];
  4028. BUG_ON(node->bytenr != buf->start &&
  4029. node->new_bytenr != buf->start);
  4030. drop_node_buffer(node);
  4031. extent_buffer_get(cow);
  4032. node->eb = cow;
  4033. node->new_bytenr = cow->start;
  4034. if (!node->pending) {
  4035. list_move_tail(&node->list,
  4036. &rc->backref_cache.pending[level]);
  4037. node->pending = 1;
  4038. }
  4039. if (first_cow)
  4040. __mark_block_processed(rc, node);
  4041. if (first_cow && level > 0)
  4042. rc->nodes_relocated += buf->len;
  4043. }
  4044. if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
  4045. ret = replace_file_extents(trans, rc, root, cow);
  4046. return ret;
  4047. }
  4048. /*
  4049. * called before creating snapshot. it calculates metadata reservation
  4050. * required for relocating tree blocks in the snapshot
  4051. */
  4052. void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
  4053. u64 *bytes_to_reserve)
  4054. {
  4055. struct btrfs_root *root;
  4056. struct reloc_control *rc;
  4057. root = pending->root;
  4058. if (!root->reloc_root)
  4059. return;
  4060. rc = root->fs_info->reloc_ctl;
  4061. if (!rc->merge_reloc_tree)
  4062. return;
  4063. root = root->reloc_root;
  4064. BUG_ON(btrfs_root_refs(&root->root_item) == 0);
  4065. /*
  4066. * relocation is in the stage of merging trees. the space
  4067. * used by merging a reloc tree is twice the size of
  4068. * relocated tree nodes in the worst case. half for cowing
  4069. * the reloc tree, half for cowing the fs tree. the space
  4070. * used by cowing the reloc tree will be freed after the
  4071. * tree is dropped. if we create snapshot, cowing the fs
  4072. * tree may use more space than it frees. so we need
  4073. * reserve extra space.
  4074. */
  4075. *bytes_to_reserve += rc->nodes_relocated;
  4076. }
  4077. /*
  4078. * called after snapshot is created. migrate block reservation
  4079. * and create reloc root for the newly created snapshot
  4080. */
  4081. int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
  4082. struct btrfs_pending_snapshot *pending)
  4083. {
  4084. struct btrfs_root *root = pending->root;
  4085. struct btrfs_root *reloc_root;
  4086. struct btrfs_root *new_root;
  4087. struct reloc_control *rc;
  4088. int ret;
  4089. if (!root->reloc_root)
  4090. return 0;
  4091. rc = root->fs_info->reloc_ctl;
  4092. rc->merging_rsv_size += rc->nodes_relocated;
  4093. if (rc->merge_reloc_tree) {
  4094. ret = btrfs_block_rsv_migrate(&pending->block_rsv,
  4095. rc->block_rsv,
  4096. rc->nodes_relocated, 1);
  4097. if (ret)
  4098. return ret;
  4099. }
  4100. new_root = pending->snap;
  4101. reloc_root = create_reloc_root(trans, root->reloc_root,
  4102. new_root->root_key.objectid);
  4103. if (IS_ERR(reloc_root))
  4104. return PTR_ERR(reloc_root);
  4105. ret = __add_reloc_root(reloc_root);
  4106. BUG_ON(ret < 0);
  4107. new_root->reloc_root = reloc_root;
  4108. if (rc->create_reloc_tree)
  4109. ret = clone_backref_node(trans, rc, root, reloc_root);
  4110. return ret;
  4111. }