delayed-inode.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 Fujitsu. All rights reserved.
  4. * Written by Miao Xie <miaox@cn.fujitsu.com>
  5. */
  6. #include <linux/slab.h>
  7. #include <linux/iversion.h>
  8. #include "delayed-inode.h"
  9. #include "disk-io.h"
  10. #include "transaction.h"
  11. #include "ctree.h"
  12. #include "qgroup.h"
  13. #define BTRFS_DELAYED_WRITEBACK 512
  14. #define BTRFS_DELAYED_BACKGROUND 128
  15. #define BTRFS_DELAYED_BATCH 16
  16. static struct kmem_cache *delayed_node_cache;
  17. int __init btrfs_delayed_inode_init(void)
  18. {
  19. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  20. sizeof(struct btrfs_delayed_node),
  21. 0,
  22. SLAB_MEM_SPREAD,
  23. NULL);
  24. if (!delayed_node_cache)
  25. return -ENOMEM;
  26. return 0;
  27. }
  28. void __cold btrfs_delayed_inode_exit(void)
  29. {
  30. kmem_cache_destroy(delayed_node_cache);
  31. }
  32. static inline void btrfs_init_delayed_node(
  33. struct btrfs_delayed_node *delayed_node,
  34. struct btrfs_root *root, u64 inode_id)
  35. {
  36. delayed_node->root = root;
  37. delayed_node->inode_id = inode_id;
  38. refcount_set(&delayed_node->refs, 0);
  39. delayed_node->ins_root = RB_ROOT;
  40. delayed_node->del_root = RB_ROOT;
  41. mutex_init(&delayed_node->mutex);
  42. INIT_LIST_HEAD(&delayed_node->n_list);
  43. INIT_LIST_HEAD(&delayed_node->p_list);
  44. }
  45. static inline int btrfs_is_continuous_delayed_item(
  46. struct btrfs_delayed_item *item1,
  47. struct btrfs_delayed_item *item2)
  48. {
  49. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  50. item1->key.objectid == item2->key.objectid &&
  51. item1->key.type == item2->key.type &&
  52. item1->key.offset + 1 == item2->key.offset)
  53. return 1;
  54. return 0;
  55. }
  56. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  57. struct btrfs_inode *btrfs_inode)
  58. {
  59. struct btrfs_root *root = btrfs_inode->root;
  60. u64 ino = btrfs_ino(btrfs_inode);
  61. struct btrfs_delayed_node *node;
  62. node = READ_ONCE(btrfs_inode->delayed_node);
  63. if (node) {
  64. refcount_inc(&node->refs);
  65. return node;
  66. }
  67. spin_lock(&root->inode_lock);
  68. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  69. if (node) {
  70. if (btrfs_inode->delayed_node) {
  71. refcount_inc(&node->refs); /* can be accessed */
  72. BUG_ON(btrfs_inode->delayed_node != node);
  73. spin_unlock(&root->inode_lock);
  74. return node;
  75. }
  76. /*
  77. * It's possible that we're racing into the middle of removing
  78. * this node from the radix tree. In this case, the refcount
  79. * was zero and it should never go back to one. Just return
  80. * NULL like it was never in the radix at all; our release
  81. * function is in the process of removing it.
  82. *
  83. * Some implementations of refcount_inc refuse to bump the
  84. * refcount once it has hit zero. If we don't do this dance
  85. * here, refcount_inc() may decide to just WARN_ONCE() instead
  86. * of actually bumping the refcount.
  87. *
  88. * If this node is properly in the radix, we want to bump the
  89. * refcount twice, once for the inode and once for this get
  90. * operation.
  91. */
  92. if (refcount_inc_not_zero(&node->refs)) {
  93. refcount_inc(&node->refs);
  94. btrfs_inode->delayed_node = node;
  95. } else {
  96. node = NULL;
  97. }
  98. spin_unlock(&root->inode_lock);
  99. return node;
  100. }
  101. spin_unlock(&root->inode_lock);
  102. return NULL;
  103. }
  104. /* Will return either the node or PTR_ERR(-ENOMEM) */
  105. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  106. struct btrfs_inode *btrfs_inode)
  107. {
  108. struct btrfs_delayed_node *node;
  109. struct btrfs_root *root = btrfs_inode->root;
  110. u64 ino = btrfs_ino(btrfs_inode);
  111. int ret;
  112. again:
  113. node = btrfs_get_delayed_node(btrfs_inode);
  114. if (node)
  115. return node;
  116. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  117. if (!node)
  118. return ERR_PTR(-ENOMEM);
  119. btrfs_init_delayed_node(node, root, ino);
  120. /* cached in the btrfs inode and can be accessed */
  121. refcount_set(&node->refs, 2);
  122. ret = radix_tree_preload(GFP_NOFS);
  123. if (ret) {
  124. kmem_cache_free(delayed_node_cache, node);
  125. return ERR_PTR(ret);
  126. }
  127. spin_lock(&root->inode_lock);
  128. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  129. if (ret == -EEXIST) {
  130. spin_unlock(&root->inode_lock);
  131. kmem_cache_free(delayed_node_cache, node);
  132. radix_tree_preload_end();
  133. goto again;
  134. }
  135. btrfs_inode->delayed_node = node;
  136. spin_unlock(&root->inode_lock);
  137. radix_tree_preload_end();
  138. return node;
  139. }
  140. /*
  141. * Call it when holding delayed_node->mutex
  142. *
  143. * If mod = 1, add this node into the prepared list.
  144. */
  145. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  146. struct btrfs_delayed_node *node,
  147. int mod)
  148. {
  149. spin_lock(&root->lock);
  150. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  151. if (!list_empty(&node->p_list))
  152. list_move_tail(&node->p_list, &root->prepare_list);
  153. else if (mod)
  154. list_add_tail(&node->p_list, &root->prepare_list);
  155. } else {
  156. list_add_tail(&node->n_list, &root->node_list);
  157. list_add_tail(&node->p_list, &root->prepare_list);
  158. refcount_inc(&node->refs); /* inserted into list */
  159. root->nodes++;
  160. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  161. }
  162. spin_unlock(&root->lock);
  163. }
  164. /* Call it when holding delayed_node->mutex */
  165. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  166. struct btrfs_delayed_node *node)
  167. {
  168. spin_lock(&root->lock);
  169. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  170. root->nodes--;
  171. refcount_dec(&node->refs); /* not in the list */
  172. list_del_init(&node->n_list);
  173. if (!list_empty(&node->p_list))
  174. list_del_init(&node->p_list);
  175. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  176. }
  177. spin_unlock(&root->lock);
  178. }
  179. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  180. struct btrfs_delayed_root *delayed_root)
  181. {
  182. struct list_head *p;
  183. struct btrfs_delayed_node *node = NULL;
  184. spin_lock(&delayed_root->lock);
  185. if (list_empty(&delayed_root->node_list))
  186. goto out;
  187. p = delayed_root->node_list.next;
  188. node = list_entry(p, struct btrfs_delayed_node, n_list);
  189. refcount_inc(&node->refs);
  190. out:
  191. spin_unlock(&delayed_root->lock);
  192. return node;
  193. }
  194. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  195. struct btrfs_delayed_node *node)
  196. {
  197. struct btrfs_delayed_root *delayed_root;
  198. struct list_head *p;
  199. struct btrfs_delayed_node *next = NULL;
  200. delayed_root = node->root->fs_info->delayed_root;
  201. spin_lock(&delayed_root->lock);
  202. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  203. /* not in the list */
  204. if (list_empty(&delayed_root->node_list))
  205. goto out;
  206. p = delayed_root->node_list.next;
  207. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  208. goto out;
  209. else
  210. p = node->n_list.next;
  211. next = list_entry(p, struct btrfs_delayed_node, n_list);
  212. refcount_inc(&next->refs);
  213. out:
  214. spin_unlock(&delayed_root->lock);
  215. return next;
  216. }
  217. static void __btrfs_release_delayed_node(
  218. struct btrfs_delayed_node *delayed_node,
  219. int mod)
  220. {
  221. struct btrfs_delayed_root *delayed_root;
  222. if (!delayed_node)
  223. return;
  224. delayed_root = delayed_node->root->fs_info->delayed_root;
  225. mutex_lock(&delayed_node->mutex);
  226. if (delayed_node->count)
  227. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  228. else
  229. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  230. mutex_unlock(&delayed_node->mutex);
  231. if (refcount_dec_and_test(&delayed_node->refs)) {
  232. struct btrfs_root *root = delayed_node->root;
  233. spin_lock(&root->inode_lock);
  234. /*
  235. * Once our refcount goes to zero, nobody is allowed to bump it
  236. * back up. We can delete it now.
  237. */
  238. ASSERT(refcount_read(&delayed_node->refs) == 0);
  239. radix_tree_delete(&root->delayed_nodes_tree,
  240. delayed_node->inode_id);
  241. spin_unlock(&root->inode_lock);
  242. kmem_cache_free(delayed_node_cache, delayed_node);
  243. }
  244. }
  245. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  246. {
  247. __btrfs_release_delayed_node(node, 0);
  248. }
  249. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  250. struct btrfs_delayed_root *delayed_root)
  251. {
  252. struct list_head *p;
  253. struct btrfs_delayed_node *node = NULL;
  254. spin_lock(&delayed_root->lock);
  255. if (list_empty(&delayed_root->prepare_list))
  256. goto out;
  257. p = delayed_root->prepare_list.next;
  258. list_del_init(p);
  259. node = list_entry(p, struct btrfs_delayed_node, p_list);
  260. refcount_inc(&node->refs);
  261. out:
  262. spin_unlock(&delayed_root->lock);
  263. return node;
  264. }
  265. static inline void btrfs_release_prepared_delayed_node(
  266. struct btrfs_delayed_node *node)
  267. {
  268. __btrfs_release_delayed_node(node, 1);
  269. }
  270. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  271. {
  272. struct btrfs_delayed_item *item;
  273. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  274. if (item) {
  275. item->data_len = data_len;
  276. item->ins_or_del = 0;
  277. item->bytes_reserved = 0;
  278. item->delayed_node = NULL;
  279. refcount_set(&item->refs, 1);
  280. }
  281. return item;
  282. }
  283. /*
  284. * __btrfs_lookup_delayed_item - look up the delayed item by key
  285. * @delayed_node: pointer to the delayed node
  286. * @key: the key to look up
  287. * @prev: used to store the prev item if the right item isn't found
  288. * @next: used to store the next item if the right item isn't found
  289. *
  290. * Note: if we don't find the right item, we will return the prev item and
  291. * the next item.
  292. */
  293. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  294. struct rb_root *root,
  295. struct btrfs_key *key,
  296. struct btrfs_delayed_item **prev,
  297. struct btrfs_delayed_item **next)
  298. {
  299. struct rb_node *node, *prev_node = NULL;
  300. struct btrfs_delayed_item *delayed_item = NULL;
  301. int ret = 0;
  302. node = root->rb_node;
  303. while (node) {
  304. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  305. rb_node);
  306. prev_node = node;
  307. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  308. if (ret < 0)
  309. node = node->rb_right;
  310. else if (ret > 0)
  311. node = node->rb_left;
  312. else
  313. return delayed_item;
  314. }
  315. if (prev) {
  316. if (!prev_node)
  317. *prev = NULL;
  318. else if (ret < 0)
  319. *prev = delayed_item;
  320. else if ((node = rb_prev(prev_node)) != NULL) {
  321. *prev = rb_entry(node, struct btrfs_delayed_item,
  322. rb_node);
  323. } else
  324. *prev = NULL;
  325. }
  326. if (next) {
  327. if (!prev_node)
  328. *next = NULL;
  329. else if (ret > 0)
  330. *next = delayed_item;
  331. else if ((node = rb_next(prev_node)) != NULL) {
  332. *next = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *next = NULL;
  336. }
  337. return NULL;
  338. }
  339. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  340. struct btrfs_delayed_node *delayed_node,
  341. struct btrfs_key *key)
  342. {
  343. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  344. NULL, NULL);
  345. }
  346. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_delayed_item *ins,
  348. int action)
  349. {
  350. struct rb_node **p, *node;
  351. struct rb_node *parent_node = NULL;
  352. struct rb_root *root;
  353. struct btrfs_delayed_item *item;
  354. int cmp;
  355. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  356. root = &delayed_node->ins_root;
  357. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  358. root = &delayed_node->del_root;
  359. else
  360. BUG();
  361. p = &root->rb_node;
  362. node = &ins->rb_node;
  363. while (*p) {
  364. parent_node = *p;
  365. item = rb_entry(parent_node, struct btrfs_delayed_item,
  366. rb_node);
  367. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  368. if (cmp < 0)
  369. p = &(*p)->rb_right;
  370. else if (cmp > 0)
  371. p = &(*p)->rb_left;
  372. else
  373. return -EEXIST;
  374. }
  375. rb_link_node(node, parent_node, p);
  376. rb_insert_color(node, root);
  377. ins->delayed_node = delayed_node;
  378. ins->ins_or_del = action;
  379. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  380. action == BTRFS_DELAYED_INSERTION_ITEM &&
  381. ins->key.offset >= delayed_node->index_cnt)
  382. delayed_node->index_cnt = ins->key.offset + 1;
  383. delayed_node->count++;
  384. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  385. return 0;
  386. }
  387. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  388. struct btrfs_delayed_item *item)
  389. {
  390. return __btrfs_add_delayed_item(node, item,
  391. BTRFS_DELAYED_INSERTION_ITEM);
  392. }
  393. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  394. struct btrfs_delayed_item *item)
  395. {
  396. return __btrfs_add_delayed_item(node, item,
  397. BTRFS_DELAYED_DELETION_ITEM);
  398. }
  399. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  400. {
  401. int seq = atomic_inc_return(&delayed_root->items_seq);
  402. /* atomic_dec_return implies a barrier */
  403. if ((atomic_dec_return(&delayed_root->items) <
  404. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
  405. cond_wake_up_nomb(&delayed_root->wait);
  406. }
  407. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  408. {
  409. struct rb_root *root;
  410. struct btrfs_delayed_root *delayed_root;
  411. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  412. BUG_ON(!delayed_root);
  413. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  414. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  415. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  416. root = &delayed_item->delayed_node->ins_root;
  417. else
  418. root = &delayed_item->delayed_node->del_root;
  419. rb_erase(&delayed_item->rb_node, root);
  420. delayed_item->delayed_node->count--;
  421. finish_one_item(delayed_root);
  422. }
  423. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  424. {
  425. if (item) {
  426. __btrfs_remove_delayed_item(item);
  427. if (refcount_dec_and_test(&item->refs))
  428. kfree(item);
  429. }
  430. }
  431. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  432. struct btrfs_delayed_node *delayed_node)
  433. {
  434. struct rb_node *p;
  435. struct btrfs_delayed_item *item = NULL;
  436. p = rb_first(&delayed_node->ins_root);
  437. if (p)
  438. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  439. return item;
  440. }
  441. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  442. struct btrfs_delayed_node *delayed_node)
  443. {
  444. struct rb_node *p;
  445. struct btrfs_delayed_item *item = NULL;
  446. p = rb_first(&delayed_node->del_root);
  447. if (p)
  448. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  449. return item;
  450. }
  451. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  452. struct btrfs_delayed_item *item)
  453. {
  454. struct rb_node *p;
  455. struct btrfs_delayed_item *next = NULL;
  456. p = rb_next(&item->rb_node);
  457. if (p)
  458. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  459. return next;
  460. }
  461. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  462. struct btrfs_root *root,
  463. struct btrfs_delayed_item *item)
  464. {
  465. struct btrfs_block_rsv *src_rsv;
  466. struct btrfs_block_rsv *dst_rsv;
  467. struct btrfs_fs_info *fs_info = root->fs_info;
  468. u64 num_bytes;
  469. int ret;
  470. if (!trans->bytes_reserved)
  471. return 0;
  472. src_rsv = trans->block_rsv;
  473. dst_rsv = &fs_info->delayed_block_rsv;
  474. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  475. /*
  476. * Here we migrate space rsv from transaction rsv, since have already
  477. * reserved space when starting a transaction. So no need to reserve
  478. * qgroup space here.
  479. */
  480. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  481. if (!ret) {
  482. trace_btrfs_space_reservation(fs_info, "delayed_item",
  483. item->key.objectid,
  484. num_bytes, 1);
  485. item->bytes_reserved = num_bytes;
  486. }
  487. return ret;
  488. }
  489. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  490. struct btrfs_delayed_item *item)
  491. {
  492. struct btrfs_block_rsv *rsv;
  493. struct btrfs_fs_info *fs_info = root->fs_info;
  494. if (!item->bytes_reserved)
  495. return;
  496. rsv = &fs_info->delayed_block_rsv;
  497. /*
  498. * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
  499. * to release/reserve qgroup space.
  500. */
  501. trace_btrfs_space_reservation(fs_info, "delayed_item",
  502. item->key.objectid, item->bytes_reserved,
  503. 0);
  504. btrfs_block_rsv_release(fs_info, rsv,
  505. item->bytes_reserved);
  506. }
  507. static int btrfs_delayed_inode_reserve_metadata(
  508. struct btrfs_trans_handle *trans,
  509. struct btrfs_root *root,
  510. struct btrfs_inode *inode,
  511. struct btrfs_delayed_node *node)
  512. {
  513. struct btrfs_fs_info *fs_info = root->fs_info;
  514. struct btrfs_block_rsv *src_rsv;
  515. struct btrfs_block_rsv *dst_rsv;
  516. u64 num_bytes;
  517. int ret;
  518. src_rsv = trans->block_rsv;
  519. dst_rsv = &fs_info->delayed_block_rsv;
  520. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  521. /*
  522. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  523. * which doesn't reserve space for speed. This is a problem since we
  524. * still need to reserve space for this update, so try to reserve the
  525. * space.
  526. *
  527. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  528. * we always reserve enough to update the inode item.
  529. */
  530. if (!src_rsv || (!trans->bytes_reserved &&
  531. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  532. ret = btrfs_qgroup_reserve_meta_prealloc(root,
  533. fs_info->nodesize, true);
  534. if (ret < 0)
  535. return ret;
  536. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  537. BTRFS_RESERVE_NO_FLUSH);
  538. /*
  539. * Since we're under a transaction reserve_metadata_bytes could
  540. * try to commit the transaction which will make it return
  541. * EAGAIN to make us stop the transaction we have, so return
  542. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  543. */
  544. if (ret == -EAGAIN) {
  545. ret = -ENOSPC;
  546. btrfs_qgroup_free_meta_prealloc(root, num_bytes);
  547. }
  548. if (!ret) {
  549. node->bytes_reserved = num_bytes;
  550. trace_btrfs_space_reservation(fs_info,
  551. "delayed_inode",
  552. btrfs_ino(inode),
  553. num_bytes, 1);
  554. } else {
  555. btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
  556. }
  557. return ret;
  558. }
  559. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  560. if (!ret) {
  561. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  562. btrfs_ino(inode), num_bytes, 1);
  563. node->bytes_reserved = num_bytes;
  564. }
  565. return ret;
  566. }
  567. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  568. struct btrfs_delayed_node *node,
  569. bool qgroup_free)
  570. {
  571. struct btrfs_block_rsv *rsv;
  572. if (!node->bytes_reserved)
  573. return;
  574. rsv = &fs_info->delayed_block_rsv;
  575. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  576. node->inode_id, node->bytes_reserved, 0);
  577. btrfs_block_rsv_release(fs_info, rsv,
  578. node->bytes_reserved);
  579. if (qgroup_free)
  580. btrfs_qgroup_free_meta_prealloc(node->root,
  581. node->bytes_reserved);
  582. else
  583. btrfs_qgroup_convert_reserved_meta(node->root,
  584. node->bytes_reserved);
  585. node->bytes_reserved = 0;
  586. }
  587. /*
  588. * This helper will insert some continuous items into the same leaf according
  589. * to the free space of the leaf.
  590. */
  591. static int btrfs_batch_insert_items(struct btrfs_root *root,
  592. struct btrfs_path *path,
  593. struct btrfs_delayed_item *item)
  594. {
  595. struct btrfs_fs_info *fs_info = root->fs_info;
  596. struct btrfs_delayed_item *curr, *next;
  597. int free_space;
  598. int total_data_size = 0, total_size = 0;
  599. struct extent_buffer *leaf;
  600. char *data_ptr;
  601. struct btrfs_key *keys;
  602. u32 *data_size;
  603. struct list_head head;
  604. int slot;
  605. int nitems;
  606. int i;
  607. int ret = 0;
  608. BUG_ON(!path->nodes[0]);
  609. leaf = path->nodes[0];
  610. free_space = btrfs_leaf_free_space(fs_info, leaf);
  611. INIT_LIST_HEAD(&head);
  612. next = item;
  613. nitems = 0;
  614. /*
  615. * count the number of the continuous items that we can insert in batch
  616. */
  617. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  618. free_space) {
  619. total_data_size += next->data_len;
  620. total_size += next->data_len + sizeof(struct btrfs_item);
  621. list_add_tail(&next->tree_list, &head);
  622. nitems++;
  623. curr = next;
  624. next = __btrfs_next_delayed_item(curr);
  625. if (!next)
  626. break;
  627. if (!btrfs_is_continuous_delayed_item(curr, next))
  628. break;
  629. }
  630. if (!nitems) {
  631. ret = 0;
  632. goto out;
  633. }
  634. /*
  635. * we need allocate some memory space, but it might cause the task
  636. * to sleep, so we set all locked nodes in the path to blocking locks
  637. * first.
  638. */
  639. btrfs_set_path_blocking(path);
  640. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  641. if (!keys) {
  642. ret = -ENOMEM;
  643. goto out;
  644. }
  645. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  646. if (!data_size) {
  647. ret = -ENOMEM;
  648. goto error;
  649. }
  650. /* get keys of all the delayed items */
  651. i = 0;
  652. list_for_each_entry(next, &head, tree_list) {
  653. keys[i] = next->key;
  654. data_size[i] = next->data_len;
  655. i++;
  656. }
  657. /* reset all the locked nodes in the patch to spinning locks. */
  658. btrfs_clear_path_blocking(path, NULL, 0);
  659. /* insert the keys of the items */
  660. setup_items_for_insert(root, path, keys, data_size,
  661. total_data_size, total_size, nitems);
  662. /* insert the dir index items */
  663. slot = path->slots[0];
  664. list_for_each_entry_safe(curr, next, &head, tree_list) {
  665. data_ptr = btrfs_item_ptr(leaf, slot, char);
  666. write_extent_buffer(leaf, &curr->data,
  667. (unsigned long)data_ptr,
  668. curr->data_len);
  669. slot++;
  670. btrfs_delayed_item_release_metadata(root, curr);
  671. list_del(&curr->tree_list);
  672. btrfs_release_delayed_item(curr);
  673. }
  674. error:
  675. kfree(data_size);
  676. kfree(keys);
  677. out:
  678. return ret;
  679. }
  680. /*
  681. * This helper can just do simple insertion that needn't extend item for new
  682. * data, such as directory name index insertion, inode insertion.
  683. */
  684. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  685. struct btrfs_root *root,
  686. struct btrfs_path *path,
  687. struct btrfs_delayed_item *delayed_item)
  688. {
  689. struct extent_buffer *leaf;
  690. char *ptr;
  691. int ret;
  692. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  693. delayed_item->data_len);
  694. if (ret < 0 && ret != -EEXIST)
  695. return ret;
  696. leaf = path->nodes[0];
  697. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  698. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  699. delayed_item->data_len);
  700. btrfs_mark_buffer_dirty(leaf);
  701. btrfs_delayed_item_release_metadata(root, delayed_item);
  702. return 0;
  703. }
  704. /*
  705. * we insert an item first, then if there are some continuous items, we try
  706. * to insert those items into the same leaf.
  707. */
  708. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  709. struct btrfs_path *path,
  710. struct btrfs_root *root,
  711. struct btrfs_delayed_node *node)
  712. {
  713. struct btrfs_delayed_item *curr, *prev;
  714. int ret = 0;
  715. do_again:
  716. mutex_lock(&node->mutex);
  717. curr = __btrfs_first_delayed_insertion_item(node);
  718. if (!curr)
  719. goto insert_end;
  720. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  721. if (ret < 0) {
  722. btrfs_release_path(path);
  723. goto insert_end;
  724. }
  725. prev = curr;
  726. curr = __btrfs_next_delayed_item(prev);
  727. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  728. /* insert the continuous items into the same leaf */
  729. path->slots[0]++;
  730. btrfs_batch_insert_items(root, path, curr);
  731. }
  732. btrfs_release_delayed_item(prev);
  733. btrfs_mark_buffer_dirty(path->nodes[0]);
  734. btrfs_release_path(path);
  735. mutex_unlock(&node->mutex);
  736. goto do_again;
  737. insert_end:
  738. mutex_unlock(&node->mutex);
  739. return ret;
  740. }
  741. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  742. struct btrfs_root *root,
  743. struct btrfs_path *path,
  744. struct btrfs_delayed_item *item)
  745. {
  746. struct btrfs_delayed_item *curr, *next;
  747. struct extent_buffer *leaf;
  748. struct btrfs_key key;
  749. struct list_head head;
  750. int nitems, i, last_item;
  751. int ret = 0;
  752. BUG_ON(!path->nodes[0]);
  753. leaf = path->nodes[0];
  754. i = path->slots[0];
  755. last_item = btrfs_header_nritems(leaf) - 1;
  756. if (i > last_item)
  757. return -ENOENT; /* FIXME: Is errno suitable? */
  758. next = item;
  759. INIT_LIST_HEAD(&head);
  760. btrfs_item_key_to_cpu(leaf, &key, i);
  761. nitems = 0;
  762. /*
  763. * count the number of the dir index items that we can delete in batch
  764. */
  765. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  766. list_add_tail(&next->tree_list, &head);
  767. nitems++;
  768. curr = next;
  769. next = __btrfs_next_delayed_item(curr);
  770. if (!next)
  771. break;
  772. if (!btrfs_is_continuous_delayed_item(curr, next))
  773. break;
  774. i++;
  775. if (i > last_item)
  776. break;
  777. btrfs_item_key_to_cpu(leaf, &key, i);
  778. }
  779. if (!nitems)
  780. return 0;
  781. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  782. if (ret)
  783. goto out;
  784. list_for_each_entry_safe(curr, next, &head, tree_list) {
  785. btrfs_delayed_item_release_metadata(root, curr);
  786. list_del(&curr->tree_list);
  787. btrfs_release_delayed_item(curr);
  788. }
  789. out:
  790. return ret;
  791. }
  792. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  793. struct btrfs_path *path,
  794. struct btrfs_root *root,
  795. struct btrfs_delayed_node *node)
  796. {
  797. struct btrfs_delayed_item *curr, *prev;
  798. int ret = 0;
  799. do_again:
  800. mutex_lock(&node->mutex);
  801. curr = __btrfs_first_delayed_deletion_item(node);
  802. if (!curr)
  803. goto delete_fail;
  804. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  805. if (ret < 0)
  806. goto delete_fail;
  807. else if (ret > 0) {
  808. /*
  809. * can't find the item which the node points to, so this node
  810. * is invalid, just drop it.
  811. */
  812. prev = curr;
  813. curr = __btrfs_next_delayed_item(prev);
  814. btrfs_release_delayed_item(prev);
  815. ret = 0;
  816. btrfs_release_path(path);
  817. if (curr) {
  818. mutex_unlock(&node->mutex);
  819. goto do_again;
  820. } else
  821. goto delete_fail;
  822. }
  823. btrfs_batch_delete_items(trans, root, path, curr);
  824. btrfs_release_path(path);
  825. mutex_unlock(&node->mutex);
  826. goto do_again;
  827. delete_fail:
  828. btrfs_release_path(path);
  829. mutex_unlock(&node->mutex);
  830. return ret;
  831. }
  832. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  833. {
  834. struct btrfs_delayed_root *delayed_root;
  835. if (delayed_node &&
  836. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  837. BUG_ON(!delayed_node->root);
  838. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  839. delayed_node->count--;
  840. delayed_root = delayed_node->root->fs_info->delayed_root;
  841. finish_one_item(delayed_root);
  842. }
  843. }
  844. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  845. {
  846. struct btrfs_delayed_root *delayed_root;
  847. ASSERT(delayed_node->root);
  848. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  849. delayed_node->count--;
  850. delayed_root = delayed_node->root->fs_info->delayed_root;
  851. finish_one_item(delayed_root);
  852. }
  853. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  854. struct btrfs_root *root,
  855. struct btrfs_path *path,
  856. struct btrfs_delayed_node *node)
  857. {
  858. struct btrfs_fs_info *fs_info = root->fs_info;
  859. struct btrfs_key key;
  860. struct btrfs_inode_item *inode_item;
  861. struct extent_buffer *leaf;
  862. int mod;
  863. int ret;
  864. key.objectid = node->inode_id;
  865. key.type = BTRFS_INODE_ITEM_KEY;
  866. key.offset = 0;
  867. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  868. mod = -1;
  869. else
  870. mod = 1;
  871. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  872. if (ret > 0) {
  873. btrfs_release_path(path);
  874. return -ENOENT;
  875. } else if (ret < 0) {
  876. return ret;
  877. }
  878. leaf = path->nodes[0];
  879. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  880. struct btrfs_inode_item);
  881. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  882. sizeof(struct btrfs_inode_item));
  883. btrfs_mark_buffer_dirty(leaf);
  884. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  885. goto no_iref;
  886. path->slots[0]++;
  887. if (path->slots[0] >= btrfs_header_nritems(leaf))
  888. goto search;
  889. again:
  890. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  891. if (key.objectid != node->inode_id)
  892. goto out;
  893. if (key.type != BTRFS_INODE_REF_KEY &&
  894. key.type != BTRFS_INODE_EXTREF_KEY)
  895. goto out;
  896. /*
  897. * Delayed iref deletion is for the inode who has only one link,
  898. * so there is only one iref. The case that several irefs are
  899. * in the same item doesn't exist.
  900. */
  901. btrfs_del_item(trans, root, path);
  902. out:
  903. btrfs_release_delayed_iref(node);
  904. no_iref:
  905. btrfs_release_path(path);
  906. err_out:
  907. btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
  908. btrfs_release_delayed_inode(node);
  909. return ret;
  910. search:
  911. btrfs_release_path(path);
  912. key.type = BTRFS_INODE_EXTREF_KEY;
  913. key.offset = -1;
  914. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  915. if (ret < 0)
  916. goto err_out;
  917. ASSERT(ret);
  918. ret = 0;
  919. leaf = path->nodes[0];
  920. path->slots[0]--;
  921. goto again;
  922. }
  923. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  924. struct btrfs_root *root,
  925. struct btrfs_path *path,
  926. struct btrfs_delayed_node *node)
  927. {
  928. int ret;
  929. mutex_lock(&node->mutex);
  930. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  931. mutex_unlock(&node->mutex);
  932. return 0;
  933. }
  934. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  935. mutex_unlock(&node->mutex);
  936. return ret;
  937. }
  938. static inline int
  939. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  940. struct btrfs_path *path,
  941. struct btrfs_delayed_node *node)
  942. {
  943. int ret;
  944. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  945. if (ret)
  946. return ret;
  947. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  948. if (ret)
  949. return ret;
  950. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  951. return ret;
  952. }
  953. /*
  954. * Called when committing the transaction.
  955. * Returns 0 on success.
  956. * Returns < 0 on error and returns with an aborted transaction with any
  957. * outstanding delayed items cleaned up.
  958. */
  959. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
  960. {
  961. struct btrfs_fs_info *fs_info = trans->fs_info;
  962. struct btrfs_delayed_root *delayed_root;
  963. struct btrfs_delayed_node *curr_node, *prev_node;
  964. struct btrfs_path *path;
  965. struct btrfs_block_rsv *block_rsv;
  966. int ret = 0;
  967. bool count = (nr > 0);
  968. if (trans->aborted)
  969. return -EIO;
  970. path = btrfs_alloc_path();
  971. if (!path)
  972. return -ENOMEM;
  973. path->leave_spinning = 1;
  974. block_rsv = trans->block_rsv;
  975. trans->block_rsv = &fs_info->delayed_block_rsv;
  976. delayed_root = fs_info->delayed_root;
  977. curr_node = btrfs_first_delayed_node(delayed_root);
  978. while (curr_node && (!count || (count && nr--))) {
  979. ret = __btrfs_commit_inode_delayed_items(trans, path,
  980. curr_node);
  981. if (ret) {
  982. btrfs_release_delayed_node(curr_node);
  983. curr_node = NULL;
  984. btrfs_abort_transaction(trans, ret);
  985. break;
  986. }
  987. prev_node = curr_node;
  988. curr_node = btrfs_next_delayed_node(curr_node);
  989. btrfs_release_delayed_node(prev_node);
  990. }
  991. if (curr_node)
  992. btrfs_release_delayed_node(curr_node);
  993. btrfs_free_path(path);
  994. trans->block_rsv = block_rsv;
  995. return ret;
  996. }
  997. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
  998. {
  999. return __btrfs_run_delayed_items(trans, -1);
  1000. }
  1001. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
  1002. {
  1003. return __btrfs_run_delayed_items(trans, nr);
  1004. }
  1005. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1006. struct btrfs_inode *inode)
  1007. {
  1008. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1009. struct btrfs_path *path;
  1010. struct btrfs_block_rsv *block_rsv;
  1011. int ret;
  1012. if (!delayed_node)
  1013. return 0;
  1014. mutex_lock(&delayed_node->mutex);
  1015. if (!delayed_node->count) {
  1016. mutex_unlock(&delayed_node->mutex);
  1017. btrfs_release_delayed_node(delayed_node);
  1018. return 0;
  1019. }
  1020. mutex_unlock(&delayed_node->mutex);
  1021. path = btrfs_alloc_path();
  1022. if (!path) {
  1023. btrfs_release_delayed_node(delayed_node);
  1024. return -ENOMEM;
  1025. }
  1026. path->leave_spinning = 1;
  1027. block_rsv = trans->block_rsv;
  1028. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1029. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1030. btrfs_release_delayed_node(delayed_node);
  1031. btrfs_free_path(path);
  1032. trans->block_rsv = block_rsv;
  1033. return ret;
  1034. }
  1035. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1036. {
  1037. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1038. struct btrfs_trans_handle *trans;
  1039. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1040. struct btrfs_path *path;
  1041. struct btrfs_block_rsv *block_rsv;
  1042. int ret;
  1043. if (!delayed_node)
  1044. return 0;
  1045. mutex_lock(&delayed_node->mutex);
  1046. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1047. mutex_unlock(&delayed_node->mutex);
  1048. btrfs_release_delayed_node(delayed_node);
  1049. return 0;
  1050. }
  1051. mutex_unlock(&delayed_node->mutex);
  1052. trans = btrfs_join_transaction(delayed_node->root);
  1053. if (IS_ERR(trans)) {
  1054. ret = PTR_ERR(trans);
  1055. goto out;
  1056. }
  1057. path = btrfs_alloc_path();
  1058. if (!path) {
  1059. ret = -ENOMEM;
  1060. goto trans_out;
  1061. }
  1062. path->leave_spinning = 1;
  1063. block_rsv = trans->block_rsv;
  1064. trans->block_rsv = &fs_info->delayed_block_rsv;
  1065. mutex_lock(&delayed_node->mutex);
  1066. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1067. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1068. path, delayed_node);
  1069. else
  1070. ret = 0;
  1071. mutex_unlock(&delayed_node->mutex);
  1072. btrfs_free_path(path);
  1073. trans->block_rsv = block_rsv;
  1074. trans_out:
  1075. btrfs_end_transaction(trans);
  1076. btrfs_btree_balance_dirty(fs_info);
  1077. out:
  1078. btrfs_release_delayed_node(delayed_node);
  1079. return ret;
  1080. }
  1081. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1082. {
  1083. struct btrfs_delayed_node *delayed_node;
  1084. delayed_node = READ_ONCE(inode->delayed_node);
  1085. if (!delayed_node)
  1086. return;
  1087. inode->delayed_node = NULL;
  1088. btrfs_release_delayed_node(delayed_node);
  1089. }
  1090. struct btrfs_async_delayed_work {
  1091. struct btrfs_delayed_root *delayed_root;
  1092. int nr;
  1093. struct btrfs_work work;
  1094. };
  1095. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1096. {
  1097. struct btrfs_async_delayed_work *async_work;
  1098. struct btrfs_delayed_root *delayed_root;
  1099. struct btrfs_trans_handle *trans;
  1100. struct btrfs_path *path;
  1101. struct btrfs_delayed_node *delayed_node = NULL;
  1102. struct btrfs_root *root;
  1103. struct btrfs_block_rsv *block_rsv;
  1104. int total_done = 0;
  1105. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1106. delayed_root = async_work->delayed_root;
  1107. path = btrfs_alloc_path();
  1108. if (!path)
  1109. goto out;
  1110. do {
  1111. if (atomic_read(&delayed_root->items) <
  1112. BTRFS_DELAYED_BACKGROUND / 2)
  1113. break;
  1114. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1115. if (!delayed_node)
  1116. break;
  1117. path->leave_spinning = 1;
  1118. root = delayed_node->root;
  1119. trans = btrfs_join_transaction(root);
  1120. if (IS_ERR(trans)) {
  1121. btrfs_release_path(path);
  1122. btrfs_release_prepared_delayed_node(delayed_node);
  1123. total_done++;
  1124. continue;
  1125. }
  1126. block_rsv = trans->block_rsv;
  1127. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1128. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1129. trans->block_rsv = block_rsv;
  1130. btrfs_end_transaction(trans);
  1131. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1132. btrfs_release_path(path);
  1133. btrfs_release_prepared_delayed_node(delayed_node);
  1134. total_done++;
  1135. } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
  1136. || total_done < async_work->nr);
  1137. btrfs_free_path(path);
  1138. out:
  1139. wake_up(&delayed_root->wait);
  1140. kfree(async_work);
  1141. }
  1142. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1143. struct btrfs_fs_info *fs_info, int nr)
  1144. {
  1145. struct btrfs_async_delayed_work *async_work;
  1146. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1147. if (!async_work)
  1148. return -ENOMEM;
  1149. async_work->delayed_root = delayed_root;
  1150. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1151. btrfs_async_run_delayed_root, NULL, NULL);
  1152. async_work->nr = nr;
  1153. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1154. return 0;
  1155. }
  1156. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1157. {
  1158. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1159. }
  1160. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1161. {
  1162. int val = atomic_read(&delayed_root->items_seq);
  1163. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1164. return 1;
  1165. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1166. return 1;
  1167. return 0;
  1168. }
  1169. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1170. {
  1171. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1172. if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
  1173. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1174. return;
  1175. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1176. int seq;
  1177. int ret;
  1178. seq = atomic_read(&delayed_root->items_seq);
  1179. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1180. if (ret)
  1181. return;
  1182. wait_event_interruptible(delayed_root->wait,
  1183. could_end_wait(delayed_root, seq));
  1184. return;
  1185. }
  1186. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1187. }
  1188. /* Will return 0 or -ENOMEM */
  1189. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1190. const char *name, int name_len,
  1191. struct btrfs_inode *dir,
  1192. struct btrfs_disk_key *disk_key, u8 type,
  1193. u64 index)
  1194. {
  1195. struct btrfs_delayed_node *delayed_node;
  1196. struct btrfs_delayed_item *delayed_item;
  1197. struct btrfs_dir_item *dir_item;
  1198. int ret;
  1199. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1200. if (IS_ERR(delayed_node))
  1201. return PTR_ERR(delayed_node);
  1202. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1203. if (!delayed_item) {
  1204. ret = -ENOMEM;
  1205. goto release_node;
  1206. }
  1207. delayed_item->key.objectid = btrfs_ino(dir);
  1208. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1209. delayed_item->key.offset = index;
  1210. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1211. dir_item->location = *disk_key;
  1212. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1213. btrfs_set_stack_dir_data_len(dir_item, 0);
  1214. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1215. btrfs_set_stack_dir_type(dir_item, type);
  1216. memcpy((char *)(dir_item + 1), name, name_len);
  1217. ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
  1218. /*
  1219. * we have reserved enough space when we start a new transaction,
  1220. * so reserving metadata failure is impossible
  1221. */
  1222. BUG_ON(ret);
  1223. mutex_lock(&delayed_node->mutex);
  1224. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1225. if (unlikely(ret)) {
  1226. btrfs_err(trans->fs_info,
  1227. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1228. name_len, name, delayed_node->root->objectid,
  1229. delayed_node->inode_id, ret);
  1230. BUG();
  1231. }
  1232. mutex_unlock(&delayed_node->mutex);
  1233. release_node:
  1234. btrfs_release_delayed_node(delayed_node);
  1235. return ret;
  1236. }
  1237. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1238. struct btrfs_delayed_node *node,
  1239. struct btrfs_key *key)
  1240. {
  1241. struct btrfs_delayed_item *item;
  1242. mutex_lock(&node->mutex);
  1243. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1244. if (!item) {
  1245. mutex_unlock(&node->mutex);
  1246. return 1;
  1247. }
  1248. btrfs_delayed_item_release_metadata(node->root, item);
  1249. btrfs_release_delayed_item(item);
  1250. mutex_unlock(&node->mutex);
  1251. return 0;
  1252. }
  1253. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1254. struct btrfs_inode *dir, u64 index)
  1255. {
  1256. struct btrfs_delayed_node *node;
  1257. struct btrfs_delayed_item *item;
  1258. struct btrfs_key item_key;
  1259. int ret;
  1260. node = btrfs_get_or_create_delayed_node(dir);
  1261. if (IS_ERR(node))
  1262. return PTR_ERR(node);
  1263. item_key.objectid = btrfs_ino(dir);
  1264. item_key.type = BTRFS_DIR_INDEX_KEY;
  1265. item_key.offset = index;
  1266. ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
  1267. &item_key);
  1268. if (!ret)
  1269. goto end;
  1270. item = btrfs_alloc_delayed_item(0);
  1271. if (!item) {
  1272. ret = -ENOMEM;
  1273. goto end;
  1274. }
  1275. item->key = item_key;
  1276. ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
  1277. /*
  1278. * we have reserved enough space when we start a new transaction,
  1279. * so reserving metadata failure is impossible.
  1280. */
  1281. BUG_ON(ret);
  1282. mutex_lock(&node->mutex);
  1283. ret = __btrfs_add_delayed_deletion_item(node, item);
  1284. if (unlikely(ret)) {
  1285. btrfs_err(trans->fs_info,
  1286. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1287. index, node->root->objectid, node->inode_id, ret);
  1288. BUG();
  1289. }
  1290. mutex_unlock(&node->mutex);
  1291. end:
  1292. btrfs_release_delayed_node(node);
  1293. return ret;
  1294. }
  1295. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1296. {
  1297. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1298. if (!delayed_node)
  1299. return -ENOENT;
  1300. /*
  1301. * Since we have held i_mutex of this directory, it is impossible that
  1302. * a new directory index is added into the delayed node and index_cnt
  1303. * is updated now. So we needn't lock the delayed node.
  1304. */
  1305. if (!delayed_node->index_cnt) {
  1306. btrfs_release_delayed_node(delayed_node);
  1307. return -EINVAL;
  1308. }
  1309. inode->index_cnt = delayed_node->index_cnt;
  1310. btrfs_release_delayed_node(delayed_node);
  1311. return 0;
  1312. }
  1313. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1314. struct list_head *ins_list,
  1315. struct list_head *del_list)
  1316. {
  1317. struct btrfs_delayed_node *delayed_node;
  1318. struct btrfs_delayed_item *item;
  1319. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1320. if (!delayed_node)
  1321. return false;
  1322. /*
  1323. * We can only do one readdir with delayed items at a time because of
  1324. * item->readdir_list.
  1325. */
  1326. inode_unlock_shared(inode);
  1327. inode_lock(inode);
  1328. mutex_lock(&delayed_node->mutex);
  1329. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1330. while (item) {
  1331. refcount_inc(&item->refs);
  1332. list_add_tail(&item->readdir_list, ins_list);
  1333. item = __btrfs_next_delayed_item(item);
  1334. }
  1335. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1336. while (item) {
  1337. refcount_inc(&item->refs);
  1338. list_add_tail(&item->readdir_list, del_list);
  1339. item = __btrfs_next_delayed_item(item);
  1340. }
  1341. mutex_unlock(&delayed_node->mutex);
  1342. /*
  1343. * This delayed node is still cached in the btrfs inode, so refs
  1344. * must be > 1 now, and we needn't check it is going to be freed
  1345. * or not.
  1346. *
  1347. * Besides that, this function is used to read dir, we do not
  1348. * insert/delete delayed items in this period. So we also needn't
  1349. * requeue or dequeue this delayed node.
  1350. */
  1351. refcount_dec(&delayed_node->refs);
  1352. return true;
  1353. }
  1354. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1355. struct list_head *ins_list,
  1356. struct list_head *del_list)
  1357. {
  1358. struct btrfs_delayed_item *curr, *next;
  1359. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1360. list_del(&curr->readdir_list);
  1361. if (refcount_dec_and_test(&curr->refs))
  1362. kfree(curr);
  1363. }
  1364. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1365. list_del(&curr->readdir_list);
  1366. if (refcount_dec_and_test(&curr->refs))
  1367. kfree(curr);
  1368. }
  1369. /*
  1370. * The VFS is going to do up_read(), so we need to downgrade back to a
  1371. * read lock.
  1372. */
  1373. downgrade_write(&inode->i_rwsem);
  1374. }
  1375. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1376. u64 index)
  1377. {
  1378. struct btrfs_delayed_item *curr;
  1379. int ret = 0;
  1380. list_for_each_entry(curr, del_list, readdir_list) {
  1381. if (curr->key.offset > index)
  1382. break;
  1383. if (curr->key.offset == index) {
  1384. ret = 1;
  1385. break;
  1386. }
  1387. }
  1388. return ret;
  1389. }
  1390. /*
  1391. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1392. *
  1393. */
  1394. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1395. struct list_head *ins_list)
  1396. {
  1397. struct btrfs_dir_item *di;
  1398. struct btrfs_delayed_item *curr, *next;
  1399. struct btrfs_key location;
  1400. char *name;
  1401. int name_len;
  1402. int over = 0;
  1403. unsigned char d_type;
  1404. if (list_empty(ins_list))
  1405. return 0;
  1406. /*
  1407. * Changing the data of the delayed item is impossible. So
  1408. * we needn't lock them. And we have held i_mutex of the
  1409. * directory, nobody can delete any directory indexes now.
  1410. */
  1411. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1412. list_del(&curr->readdir_list);
  1413. if (curr->key.offset < ctx->pos) {
  1414. if (refcount_dec_and_test(&curr->refs))
  1415. kfree(curr);
  1416. continue;
  1417. }
  1418. ctx->pos = curr->key.offset;
  1419. di = (struct btrfs_dir_item *)curr->data;
  1420. name = (char *)(di + 1);
  1421. name_len = btrfs_stack_dir_name_len(di);
  1422. d_type = btrfs_filetype_table[di->type];
  1423. btrfs_disk_key_to_cpu(&location, &di->location);
  1424. over = !dir_emit(ctx, name, name_len,
  1425. location.objectid, d_type);
  1426. if (refcount_dec_and_test(&curr->refs))
  1427. kfree(curr);
  1428. if (over)
  1429. return 1;
  1430. ctx->pos++;
  1431. }
  1432. return 0;
  1433. }
  1434. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1435. struct btrfs_inode_item *inode_item,
  1436. struct inode *inode)
  1437. {
  1438. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1439. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1440. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1441. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1442. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1443. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1444. btrfs_set_stack_inode_generation(inode_item,
  1445. BTRFS_I(inode)->generation);
  1446. btrfs_set_stack_inode_sequence(inode_item,
  1447. inode_peek_iversion(inode));
  1448. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1449. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1450. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1451. btrfs_set_stack_inode_block_group(inode_item, 0);
  1452. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1453. inode->i_atime.tv_sec);
  1454. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1455. inode->i_atime.tv_nsec);
  1456. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1457. inode->i_mtime.tv_sec);
  1458. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1459. inode->i_mtime.tv_nsec);
  1460. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1461. inode->i_ctime.tv_sec);
  1462. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1463. inode->i_ctime.tv_nsec);
  1464. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1465. BTRFS_I(inode)->i_otime.tv_sec);
  1466. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1467. BTRFS_I(inode)->i_otime.tv_nsec);
  1468. }
  1469. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1470. {
  1471. struct btrfs_delayed_node *delayed_node;
  1472. struct btrfs_inode_item *inode_item;
  1473. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1474. if (!delayed_node)
  1475. return -ENOENT;
  1476. mutex_lock(&delayed_node->mutex);
  1477. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1478. mutex_unlock(&delayed_node->mutex);
  1479. btrfs_release_delayed_node(delayed_node);
  1480. return -ENOENT;
  1481. }
  1482. inode_item = &delayed_node->inode_item;
  1483. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1484. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1485. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1486. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1487. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1488. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1489. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1490. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1491. inode_set_iversion_queried(inode,
  1492. btrfs_stack_inode_sequence(inode_item));
  1493. inode->i_rdev = 0;
  1494. *rdev = btrfs_stack_inode_rdev(inode_item);
  1495. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1496. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1497. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1498. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1499. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1500. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1501. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1502. BTRFS_I(inode)->i_otime.tv_sec =
  1503. btrfs_stack_timespec_sec(&inode_item->otime);
  1504. BTRFS_I(inode)->i_otime.tv_nsec =
  1505. btrfs_stack_timespec_nsec(&inode_item->otime);
  1506. inode->i_generation = BTRFS_I(inode)->generation;
  1507. BTRFS_I(inode)->index_cnt = (u64)-1;
  1508. mutex_unlock(&delayed_node->mutex);
  1509. btrfs_release_delayed_node(delayed_node);
  1510. return 0;
  1511. }
  1512. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1513. struct btrfs_root *root, struct inode *inode)
  1514. {
  1515. struct btrfs_delayed_node *delayed_node;
  1516. int ret = 0;
  1517. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1518. if (IS_ERR(delayed_node))
  1519. return PTR_ERR(delayed_node);
  1520. mutex_lock(&delayed_node->mutex);
  1521. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1522. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1523. goto release_node;
  1524. }
  1525. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1526. delayed_node);
  1527. if (ret)
  1528. goto release_node;
  1529. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1530. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1531. delayed_node->count++;
  1532. atomic_inc(&root->fs_info->delayed_root->items);
  1533. release_node:
  1534. mutex_unlock(&delayed_node->mutex);
  1535. btrfs_release_delayed_node(delayed_node);
  1536. return ret;
  1537. }
  1538. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1539. {
  1540. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1541. struct btrfs_delayed_node *delayed_node;
  1542. /*
  1543. * we don't do delayed inode updates during log recovery because it
  1544. * leads to enospc problems. This means we also can't do
  1545. * delayed inode refs
  1546. */
  1547. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1548. return -EAGAIN;
  1549. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1550. if (IS_ERR(delayed_node))
  1551. return PTR_ERR(delayed_node);
  1552. /*
  1553. * We don't reserve space for inode ref deletion is because:
  1554. * - We ONLY do async inode ref deletion for the inode who has only
  1555. * one link(i_nlink == 1), it means there is only one inode ref.
  1556. * And in most case, the inode ref and the inode item are in the
  1557. * same leaf, and we will deal with them at the same time.
  1558. * Since we are sure we will reserve the space for the inode item,
  1559. * it is unnecessary to reserve space for inode ref deletion.
  1560. * - If the inode ref and the inode item are not in the same leaf,
  1561. * We also needn't worry about enospc problem, because we reserve
  1562. * much more space for the inode update than it needs.
  1563. * - At the worst, we can steal some space from the global reservation.
  1564. * It is very rare.
  1565. */
  1566. mutex_lock(&delayed_node->mutex);
  1567. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1568. goto release_node;
  1569. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1570. delayed_node->count++;
  1571. atomic_inc(&fs_info->delayed_root->items);
  1572. release_node:
  1573. mutex_unlock(&delayed_node->mutex);
  1574. btrfs_release_delayed_node(delayed_node);
  1575. return 0;
  1576. }
  1577. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1578. {
  1579. struct btrfs_root *root = delayed_node->root;
  1580. struct btrfs_fs_info *fs_info = root->fs_info;
  1581. struct btrfs_delayed_item *curr_item, *prev_item;
  1582. mutex_lock(&delayed_node->mutex);
  1583. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1584. while (curr_item) {
  1585. btrfs_delayed_item_release_metadata(root, curr_item);
  1586. prev_item = curr_item;
  1587. curr_item = __btrfs_next_delayed_item(prev_item);
  1588. btrfs_release_delayed_item(prev_item);
  1589. }
  1590. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1591. while (curr_item) {
  1592. btrfs_delayed_item_release_metadata(root, curr_item);
  1593. prev_item = curr_item;
  1594. curr_item = __btrfs_next_delayed_item(prev_item);
  1595. btrfs_release_delayed_item(prev_item);
  1596. }
  1597. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1598. btrfs_release_delayed_iref(delayed_node);
  1599. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1600. btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
  1601. btrfs_release_delayed_inode(delayed_node);
  1602. }
  1603. mutex_unlock(&delayed_node->mutex);
  1604. }
  1605. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1606. {
  1607. struct btrfs_delayed_node *delayed_node;
  1608. delayed_node = btrfs_get_delayed_node(inode);
  1609. if (!delayed_node)
  1610. return;
  1611. __btrfs_kill_delayed_node(delayed_node);
  1612. btrfs_release_delayed_node(delayed_node);
  1613. }
  1614. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1615. {
  1616. u64 inode_id = 0;
  1617. struct btrfs_delayed_node *delayed_nodes[8];
  1618. int i, n;
  1619. while (1) {
  1620. spin_lock(&root->inode_lock);
  1621. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1622. (void **)delayed_nodes, inode_id,
  1623. ARRAY_SIZE(delayed_nodes));
  1624. if (!n) {
  1625. spin_unlock(&root->inode_lock);
  1626. break;
  1627. }
  1628. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1629. for (i = 0; i < n; i++) {
  1630. /*
  1631. * Don't increase refs in case the node is dead and
  1632. * about to be removed from the tree in the loop below
  1633. */
  1634. if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
  1635. delayed_nodes[i] = NULL;
  1636. }
  1637. spin_unlock(&root->inode_lock);
  1638. for (i = 0; i < n; i++) {
  1639. if (!delayed_nodes[i])
  1640. continue;
  1641. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1642. btrfs_release_delayed_node(delayed_nodes[i]);
  1643. }
  1644. }
  1645. }
  1646. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1647. {
  1648. struct btrfs_delayed_node *curr_node, *prev_node;
  1649. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1650. while (curr_node) {
  1651. __btrfs_kill_delayed_node(curr_node);
  1652. prev_node = curr_node;
  1653. curr_node = btrfs_next_delayed_node(curr_node);
  1654. btrfs_release_delayed_node(prev_node);
  1655. }
  1656. }