snps_udc_core.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  4. *
  5. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  6. * Author: Thomas Dahlmann
  7. */
  8. /*
  9. * This file does the core driver implementation for the UDC that is based
  10. * on Synopsys device controller IP (different than HS OTG IP) that is either
  11. * connected through PCI bus or integrated to SoC platforms.
  12. */
  13. /* Driver strings */
  14. #define UDC_MOD_DESCRIPTION "Synopsys USB Device Controller"
  15. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  16. #include <linux/module.h>
  17. #include <linux/pci.h>
  18. #include <linux/kernel.h>
  19. #include <linux/delay.h>
  20. #include <linux/ioport.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/errno.h>
  24. #include <linux/timer.h>
  25. #include <linux/list.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/ioctl.h>
  28. #include <linux/fs.h>
  29. #include <linux/dmapool.h>
  30. #include <linux/prefetch.h>
  31. #include <linux/moduleparam.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/unaligned.h>
  34. #include "amd5536udc.h"
  35. static void udc_tasklet_disconnect(unsigned long);
  36. static void udc_setup_endpoints(struct udc *dev);
  37. static void udc_soft_reset(struct udc *dev);
  38. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  39. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  40. /* description */
  41. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  42. static const char name[] = "udc";
  43. /* structure to hold endpoint function pointers */
  44. static const struct usb_ep_ops udc_ep_ops;
  45. /* received setup data */
  46. static union udc_setup_data setup_data;
  47. /* pointer to device object */
  48. static struct udc *udc;
  49. /* irq spin lock for soft reset */
  50. static DEFINE_SPINLOCK(udc_irq_spinlock);
  51. /* stall spin lock */
  52. static DEFINE_SPINLOCK(udc_stall_spinlock);
  53. /*
  54. * slave mode: pending bytes in rx fifo after nyet,
  55. * used if EPIN irq came but no req was available
  56. */
  57. static unsigned int udc_rxfifo_pending;
  58. /* count soft resets after suspend to avoid loop */
  59. static int soft_reset_occured;
  60. static int soft_reset_after_usbreset_occured;
  61. /* timer */
  62. static struct timer_list udc_timer;
  63. static int stop_timer;
  64. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  65. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  66. * all OUT endpoints. So we have to handle race conditions like
  67. * when OUT data reaches the fifo but no request was queued yet.
  68. * This cannot be solved by letting the RX DMA disabled until a
  69. * request gets queued because there may be other OUT packets
  70. * in the FIFO (important for not blocking control traffic).
  71. * The value of set_rde controls the correspondig timer.
  72. *
  73. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  74. * set_rde 0 == do not touch RDE, do no start the RDE timer
  75. * set_rde 1 == timer function will look whether FIFO has data
  76. * set_rde 2 == set by timer function to enable RX DMA on next call
  77. */
  78. static int set_rde = -1;
  79. static DECLARE_COMPLETION(on_exit);
  80. static struct timer_list udc_pollstall_timer;
  81. static int stop_pollstall_timer;
  82. static DECLARE_COMPLETION(on_pollstall_exit);
  83. /* tasklet for usb disconnect */
  84. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  85. (unsigned long) &udc);
  86. /* endpoint names used for print */
  87. static const char ep0_string[] = "ep0in";
  88. static const struct {
  89. const char *name;
  90. const struct usb_ep_caps caps;
  91. } ep_info[] = {
  92. #define EP_INFO(_name, _caps) \
  93. { \
  94. .name = _name, \
  95. .caps = _caps, \
  96. }
  97. EP_INFO(ep0_string,
  98. USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_IN)),
  99. EP_INFO("ep1in-int",
  100. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  101. EP_INFO("ep2in-bulk",
  102. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  103. EP_INFO("ep3in-bulk",
  104. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  105. EP_INFO("ep4in-bulk",
  106. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  107. EP_INFO("ep5in-bulk",
  108. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  109. EP_INFO("ep6in-bulk",
  110. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  111. EP_INFO("ep7in-bulk",
  112. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  113. EP_INFO("ep8in-bulk",
  114. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  115. EP_INFO("ep9in-bulk",
  116. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  117. EP_INFO("ep10in-bulk",
  118. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  119. EP_INFO("ep11in-bulk",
  120. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  121. EP_INFO("ep12in-bulk",
  122. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  123. EP_INFO("ep13in-bulk",
  124. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  125. EP_INFO("ep14in-bulk",
  126. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  127. EP_INFO("ep15in-bulk",
  128. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)),
  129. EP_INFO("ep0out",
  130. USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_OUT)),
  131. EP_INFO("ep1out-bulk",
  132. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  133. EP_INFO("ep2out-bulk",
  134. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  135. EP_INFO("ep3out-bulk",
  136. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  137. EP_INFO("ep4out-bulk",
  138. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  139. EP_INFO("ep5out-bulk",
  140. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  141. EP_INFO("ep6out-bulk",
  142. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  143. EP_INFO("ep7out-bulk",
  144. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  145. EP_INFO("ep8out-bulk",
  146. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  147. EP_INFO("ep9out-bulk",
  148. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  149. EP_INFO("ep10out-bulk",
  150. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  151. EP_INFO("ep11out-bulk",
  152. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  153. EP_INFO("ep12out-bulk",
  154. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  155. EP_INFO("ep13out-bulk",
  156. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  157. EP_INFO("ep14out-bulk",
  158. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  159. EP_INFO("ep15out-bulk",
  160. USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)),
  161. #undef EP_INFO
  162. };
  163. /* buffer fill mode */
  164. static int use_dma_bufferfill_mode;
  165. /* tx buffer size for high speed */
  166. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  167. /*---------------------------------------------------------------------------*/
  168. /* Prints UDC device registers and endpoint irq registers */
  169. static void print_regs(struct udc *dev)
  170. {
  171. DBG(dev, "------- Device registers -------\n");
  172. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  173. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  174. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  175. DBG(dev, "\n");
  176. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  177. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  178. DBG(dev, "\n");
  179. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  180. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  181. DBG(dev, "\n");
  182. DBG(dev, "USE DMA = %d\n", use_dma);
  183. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  184. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  185. "WITHOUT desc. update)\n");
  186. dev_info(dev->dev, "DMA mode (%s)\n", "PPBNDU");
  187. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  188. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  189. "WITH desc. update)\n");
  190. dev_info(dev->dev, "DMA mode (%s)\n", "PPBDU");
  191. }
  192. if (use_dma && use_dma_bufferfill_mode) {
  193. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  194. dev_info(dev->dev, "DMA mode (%s)\n", "BF");
  195. }
  196. if (!use_dma)
  197. dev_info(dev->dev, "FIFO mode\n");
  198. DBG(dev, "-------------------------------------------------------\n");
  199. }
  200. /* Masks unused interrupts */
  201. int udc_mask_unused_interrupts(struct udc *dev)
  202. {
  203. u32 tmp;
  204. /* mask all dev interrupts */
  205. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  206. AMD_BIT(UDC_DEVINT_ENUM) |
  207. AMD_BIT(UDC_DEVINT_US) |
  208. AMD_BIT(UDC_DEVINT_UR) |
  209. AMD_BIT(UDC_DEVINT_ES) |
  210. AMD_BIT(UDC_DEVINT_SI) |
  211. AMD_BIT(UDC_DEVINT_SOF)|
  212. AMD_BIT(UDC_DEVINT_SC);
  213. writel(tmp, &dev->regs->irqmsk);
  214. /* mask all ep interrupts */
  215. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  216. return 0;
  217. }
  218. EXPORT_SYMBOL_GPL(udc_mask_unused_interrupts);
  219. /* Enables endpoint 0 interrupts */
  220. static int udc_enable_ep0_interrupts(struct udc *dev)
  221. {
  222. u32 tmp;
  223. DBG(dev, "udc_enable_ep0_interrupts()\n");
  224. /* read irq mask */
  225. tmp = readl(&dev->regs->ep_irqmsk);
  226. /* enable ep0 irq's */
  227. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  228. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  229. writel(tmp, &dev->regs->ep_irqmsk);
  230. return 0;
  231. }
  232. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  233. int udc_enable_dev_setup_interrupts(struct udc *dev)
  234. {
  235. u32 tmp;
  236. DBG(dev, "enable device interrupts for setup data\n");
  237. /* read irq mask */
  238. tmp = readl(&dev->regs->irqmsk);
  239. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  240. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  241. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  242. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  243. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  244. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  245. writel(tmp, &dev->regs->irqmsk);
  246. return 0;
  247. }
  248. EXPORT_SYMBOL_GPL(udc_enable_dev_setup_interrupts);
  249. /* Calculates fifo start of endpoint based on preceding endpoints */
  250. static int udc_set_txfifo_addr(struct udc_ep *ep)
  251. {
  252. struct udc *dev;
  253. u32 tmp;
  254. int i;
  255. if (!ep || !(ep->in))
  256. return -EINVAL;
  257. dev = ep->dev;
  258. ep->txfifo = dev->txfifo;
  259. /* traverse ep's */
  260. for (i = 0; i < ep->num; i++) {
  261. if (dev->ep[i].regs) {
  262. /* read fifo size */
  263. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  264. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  265. ep->txfifo += tmp;
  266. }
  267. }
  268. return 0;
  269. }
  270. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  271. static u32 cnak_pending;
  272. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  273. {
  274. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  275. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  276. cnak_pending |= 1 << (num);
  277. ep->naking = 1;
  278. } else
  279. cnak_pending = cnak_pending & (~(1 << (num)));
  280. }
  281. /* Enables endpoint, is called by gadget driver */
  282. static int
  283. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  284. {
  285. struct udc_ep *ep;
  286. struct udc *dev;
  287. u32 tmp;
  288. unsigned long iflags;
  289. u8 udc_csr_epix;
  290. unsigned maxpacket;
  291. if (!usbep
  292. || usbep->name == ep0_string
  293. || !desc
  294. || desc->bDescriptorType != USB_DT_ENDPOINT)
  295. return -EINVAL;
  296. ep = container_of(usbep, struct udc_ep, ep);
  297. dev = ep->dev;
  298. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  299. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  300. return -ESHUTDOWN;
  301. spin_lock_irqsave(&dev->lock, iflags);
  302. ep->ep.desc = desc;
  303. ep->halted = 0;
  304. /* set traffic type */
  305. tmp = readl(&dev->ep[ep->num].regs->ctl);
  306. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  307. writel(tmp, &dev->ep[ep->num].regs->ctl);
  308. /* set max packet size */
  309. maxpacket = usb_endpoint_maxp(desc);
  310. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  311. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  312. ep->ep.maxpacket = maxpacket;
  313. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  314. /* IN ep */
  315. if (ep->in) {
  316. /* ep ix in UDC CSR register space */
  317. udc_csr_epix = ep->num;
  318. /* set buffer size (tx fifo entries) */
  319. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  320. /* double buffering: fifo size = 2 x max packet size */
  321. tmp = AMD_ADDBITS(
  322. tmp,
  323. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  324. / UDC_DWORD_BYTES,
  325. UDC_EPIN_BUFF_SIZE);
  326. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  327. /* calc. tx fifo base addr */
  328. udc_set_txfifo_addr(ep);
  329. /* flush fifo */
  330. tmp = readl(&ep->regs->ctl);
  331. tmp |= AMD_BIT(UDC_EPCTL_F);
  332. writel(tmp, &ep->regs->ctl);
  333. /* OUT ep */
  334. } else {
  335. /* ep ix in UDC CSR register space */
  336. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  337. /* set max packet size UDC CSR */
  338. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  339. tmp = AMD_ADDBITS(tmp, maxpacket,
  340. UDC_CSR_NE_MAX_PKT);
  341. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  342. if (use_dma && !ep->in) {
  343. /* alloc and init BNA dummy request */
  344. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  345. ep->bna_occurred = 0;
  346. }
  347. if (ep->num != UDC_EP0OUT_IX)
  348. dev->data_ep_enabled = 1;
  349. }
  350. /* set ep values */
  351. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  352. /* max packet */
  353. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  354. /* ep number */
  355. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  356. /* ep direction */
  357. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  358. /* ep type */
  359. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  360. /* ep config */
  361. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  362. /* ep interface */
  363. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  364. /* ep alt */
  365. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  366. /* write reg */
  367. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  368. /* enable ep irq */
  369. tmp = readl(&dev->regs->ep_irqmsk);
  370. tmp &= AMD_UNMASK_BIT(ep->num);
  371. writel(tmp, &dev->regs->ep_irqmsk);
  372. /*
  373. * clear NAK by writing CNAK
  374. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  375. */
  376. if (!use_dma || ep->in) {
  377. tmp = readl(&ep->regs->ctl);
  378. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  379. writel(tmp, &ep->regs->ctl);
  380. ep->naking = 0;
  381. UDC_QUEUE_CNAK(ep, ep->num);
  382. }
  383. tmp = desc->bEndpointAddress;
  384. DBG(dev, "%s enabled\n", usbep->name);
  385. spin_unlock_irqrestore(&dev->lock, iflags);
  386. return 0;
  387. }
  388. /* Resets endpoint */
  389. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  390. {
  391. u32 tmp;
  392. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  393. ep->ep.desc = NULL;
  394. ep->ep.ops = &udc_ep_ops;
  395. INIT_LIST_HEAD(&ep->queue);
  396. usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
  397. /* set NAK */
  398. tmp = readl(&ep->regs->ctl);
  399. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  400. writel(tmp, &ep->regs->ctl);
  401. ep->naking = 1;
  402. /* disable interrupt */
  403. tmp = readl(&regs->ep_irqmsk);
  404. tmp |= AMD_BIT(ep->num);
  405. writel(tmp, &regs->ep_irqmsk);
  406. if (ep->in) {
  407. /* unset P and IN bit of potential former DMA */
  408. tmp = readl(&ep->regs->ctl);
  409. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  410. writel(tmp, &ep->regs->ctl);
  411. tmp = readl(&ep->regs->sts);
  412. tmp |= AMD_BIT(UDC_EPSTS_IN);
  413. writel(tmp, &ep->regs->sts);
  414. /* flush the fifo */
  415. tmp = readl(&ep->regs->ctl);
  416. tmp |= AMD_BIT(UDC_EPCTL_F);
  417. writel(tmp, &ep->regs->ctl);
  418. }
  419. /* reset desc pointer */
  420. writel(0, &ep->regs->desptr);
  421. }
  422. /* Disables endpoint, is called by gadget driver */
  423. static int udc_ep_disable(struct usb_ep *usbep)
  424. {
  425. struct udc_ep *ep = NULL;
  426. unsigned long iflags;
  427. if (!usbep)
  428. return -EINVAL;
  429. ep = container_of(usbep, struct udc_ep, ep);
  430. if (usbep->name == ep0_string || !ep->ep.desc)
  431. return -EINVAL;
  432. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  433. spin_lock_irqsave(&ep->dev->lock, iflags);
  434. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  435. empty_req_queue(ep);
  436. ep_init(ep->dev->regs, ep);
  437. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  438. return 0;
  439. }
  440. /* Allocates request packet, called by gadget driver */
  441. static struct usb_request *
  442. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  443. {
  444. struct udc_request *req;
  445. struct udc_data_dma *dma_desc;
  446. struct udc_ep *ep;
  447. if (!usbep)
  448. return NULL;
  449. ep = container_of(usbep, struct udc_ep, ep);
  450. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  451. req = kzalloc(sizeof(struct udc_request), gfp);
  452. if (!req)
  453. return NULL;
  454. req->req.dma = DMA_DONT_USE;
  455. INIT_LIST_HEAD(&req->queue);
  456. if (ep->dma) {
  457. /* ep0 in requests are allocated from data pool here */
  458. dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
  459. &req->td_phys);
  460. if (!dma_desc) {
  461. kfree(req);
  462. return NULL;
  463. }
  464. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  465. "td_phys = %lx\n",
  466. req, dma_desc,
  467. (unsigned long)req->td_phys);
  468. /* prevent from using desc. - set HOST BUSY */
  469. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  470. UDC_DMA_STP_STS_BS_HOST_BUSY,
  471. UDC_DMA_STP_STS_BS);
  472. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  473. req->td_data = dma_desc;
  474. req->td_data_last = NULL;
  475. req->chain_len = 1;
  476. }
  477. return &req->req;
  478. }
  479. /* frees pci pool descriptors of a DMA chain */
  480. static void udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  481. {
  482. struct udc_data_dma *td = req->td_data;
  483. unsigned int i;
  484. dma_addr_t addr_next = 0x00;
  485. dma_addr_t addr = (dma_addr_t)td->next;
  486. DBG(dev, "free chain req = %p\n", req);
  487. /* do not free first desc., will be done by free for request */
  488. for (i = 1; i < req->chain_len; i++) {
  489. td = phys_to_virt(addr);
  490. addr_next = (dma_addr_t)td->next;
  491. dma_pool_free(dev->data_requests, td, addr);
  492. addr = addr_next;
  493. }
  494. }
  495. /* Frees request packet, called by gadget driver */
  496. static void
  497. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  498. {
  499. struct udc_ep *ep;
  500. struct udc_request *req;
  501. if (!usbep || !usbreq)
  502. return;
  503. ep = container_of(usbep, struct udc_ep, ep);
  504. req = container_of(usbreq, struct udc_request, req);
  505. VDBG(ep->dev, "free_req req=%p\n", req);
  506. BUG_ON(!list_empty(&req->queue));
  507. if (req->td_data) {
  508. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  509. /* free dma chain if created */
  510. if (req->chain_len > 1)
  511. udc_free_dma_chain(ep->dev, req);
  512. dma_pool_free(ep->dev->data_requests, req->td_data,
  513. req->td_phys);
  514. }
  515. kfree(req);
  516. }
  517. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  518. static void udc_init_bna_dummy(struct udc_request *req)
  519. {
  520. if (req) {
  521. /* set last bit */
  522. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  523. /* set next pointer to itself */
  524. req->td_data->next = req->td_phys;
  525. /* set HOST BUSY */
  526. req->td_data->status
  527. = AMD_ADDBITS(req->td_data->status,
  528. UDC_DMA_STP_STS_BS_DMA_DONE,
  529. UDC_DMA_STP_STS_BS);
  530. #ifdef UDC_VERBOSE
  531. pr_debug("bna desc = %p, sts = %08x\n",
  532. req->td_data, req->td_data->status);
  533. #endif
  534. }
  535. }
  536. /* Allocate BNA dummy descriptor */
  537. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  538. {
  539. struct udc_request *req = NULL;
  540. struct usb_request *_req = NULL;
  541. /* alloc the dummy request */
  542. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  543. if (_req) {
  544. req = container_of(_req, struct udc_request, req);
  545. ep->bna_dummy_req = req;
  546. udc_init_bna_dummy(req);
  547. }
  548. return req;
  549. }
  550. /* Write data to TX fifo for IN packets */
  551. static void
  552. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  553. {
  554. u8 *req_buf;
  555. u32 *buf;
  556. int i, j;
  557. unsigned bytes = 0;
  558. unsigned remaining = 0;
  559. if (!req || !ep)
  560. return;
  561. req_buf = req->buf + req->actual;
  562. prefetch(req_buf);
  563. remaining = req->length - req->actual;
  564. buf = (u32 *) req_buf;
  565. bytes = ep->ep.maxpacket;
  566. if (bytes > remaining)
  567. bytes = remaining;
  568. /* dwords first */
  569. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  570. writel(*(buf + i), ep->txfifo);
  571. /* remaining bytes must be written by byte access */
  572. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  573. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  574. ep->txfifo);
  575. }
  576. /* dummy write confirm */
  577. writel(0, &ep->regs->confirm);
  578. }
  579. /* Read dwords from RX fifo for OUT transfers */
  580. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  581. {
  582. int i;
  583. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  584. for (i = 0; i < dwords; i++)
  585. *(buf + i) = readl(dev->rxfifo);
  586. return 0;
  587. }
  588. /* Read bytes from RX fifo for OUT transfers */
  589. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  590. {
  591. int i, j;
  592. u32 tmp;
  593. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  594. /* dwords first */
  595. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  596. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  597. /* remaining bytes must be read by byte access */
  598. if (bytes % UDC_DWORD_BYTES) {
  599. tmp = readl(dev->rxfifo);
  600. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  601. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  602. tmp = tmp >> UDC_BITS_PER_BYTE;
  603. }
  604. }
  605. return 0;
  606. }
  607. /* Read data from RX fifo for OUT transfers */
  608. static int
  609. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  610. {
  611. u8 *buf;
  612. unsigned buf_space;
  613. unsigned bytes = 0;
  614. unsigned finished = 0;
  615. /* received number bytes */
  616. bytes = readl(&ep->regs->sts);
  617. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  618. buf_space = req->req.length - req->req.actual;
  619. buf = req->req.buf + req->req.actual;
  620. if (bytes > buf_space) {
  621. if ((buf_space % ep->ep.maxpacket) != 0) {
  622. DBG(ep->dev,
  623. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  624. ep->ep.name, bytes, buf_space);
  625. req->req.status = -EOVERFLOW;
  626. }
  627. bytes = buf_space;
  628. }
  629. req->req.actual += bytes;
  630. /* last packet ? */
  631. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  632. || ((req->req.actual == req->req.length) && !req->req.zero))
  633. finished = 1;
  634. /* read rx fifo bytes */
  635. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  636. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  637. return finished;
  638. }
  639. /* Creates or re-inits a DMA chain */
  640. static int udc_create_dma_chain(
  641. struct udc_ep *ep,
  642. struct udc_request *req,
  643. unsigned long buf_len, gfp_t gfp_flags
  644. )
  645. {
  646. unsigned long bytes = req->req.length;
  647. unsigned int i;
  648. dma_addr_t dma_addr;
  649. struct udc_data_dma *td = NULL;
  650. struct udc_data_dma *last = NULL;
  651. unsigned long txbytes;
  652. unsigned create_new_chain = 0;
  653. unsigned len;
  654. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  655. bytes, buf_len);
  656. dma_addr = DMA_DONT_USE;
  657. /* unset L bit in first desc for OUT */
  658. if (!ep->in)
  659. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  660. /* alloc only new desc's if not already available */
  661. len = req->req.length / ep->ep.maxpacket;
  662. if (req->req.length % ep->ep.maxpacket)
  663. len++;
  664. if (len > req->chain_len) {
  665. /* shorter chain already allocated before */
  666. if (req->chain_len > 1)
  667. udc_free_dma_chain(ep->dev, req);
  668. req->chain_len = len;
  669. create_new_chain = 1;
  670. }
  671. td = req->td_data;
  672. /* gen. required number of descriptors and buffers */
  673. for (i = buf_len; i < bytes; i += buf_len) {
  674. /* create or determine next desc. */
  675. if (create_new_chain) {
  676. td = dma_pool_alloc(ep->dev->data_requests,
  677. gfp_flags, &dma_addr);
  678. if (!td)
  679. return -ENOMEM;
  680. td->status = 0;
  681. } else if (i == buf_len) {
  682. /* first td */
  683. td = (struct udc_data_dma *)phys_to_virt(
  684. req->td_data->next);
  685. td->status = 0;
  686. } else {
  687. td = (struct udc_data_dma *)phys_to_virt(last->next);
  688. td->status = 0;
  689. }
  690. if (td)
  691. td->bufptr = req->req.dma + i; /* assign buffer */
  692. else
  693. break;
  694. /* short packet ? */
  695. if ((bytes - i) >= buf_len) {
  696. txbytes = buf_len;
  697. } else {
  698. /* short packet */
  699. txbytes = bytes - i;
  700. }
  701. /* link td and assign tx bytes */
  702. if (i == buf_len) {
  703. if (create_new_chain)
  704. req->td_data->next = dma_addr;
  705. /*
  706. * else
  707. * req->td_data->next = virt_to_phys(td);
  708. */
  709. /* write tx bytes */
  710. if (ep->in) {
  711. /* first desc */
  712. req->td_data->status =
  713. AMD_ADDBITS(req->td_data->status,
  714. ep->ep.maxpacket,
  715. UDC_DMA_IN_STS_TXBYTES);
  716. /* second desc */
  717. td->status = AMD_ADDBITS(td->status,
  718. txbytes,
  719. UDC_DMA_IN_STS_TXBYTES);
  720. }
  721. } else {
  722. if (create_new_chain)
  723. last->next = dma_addr;
  724. /*
  725. * else
  726. * last->next = virt_to_phys(td);
  727. */
  728. if (ep->in) {
  729. /* write tx bytes */
  730. td->status = AMD_ADDBITS(td->status,
  731. txbytes,
  732. UDC_DMA_IN_STS_TXBYTES);
  733. }
  734. }
  735. last = td;
  736. }
  737. /* set last bit */
  738. if (td) {
  739. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  740. /* last desc. points to itself */
  741. req->td_data_last = td;
  742. }
  743. return 0;
  744. }
  745. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  746. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  747. {
  748. int retval = 0;
  749. u32 tmp;
  750. VDBG(ep->dev, "prep_dma\n");
  751. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  752. ep->num, req->td_data);
  753. /* set buffer pointer */
  754. req->td_data->bufptr = req->req.dma;
  755. /* set last bit */
  756. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  757. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  758. if (use_dma_ppb) {
  759. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  760. if (retval != 0) {
  761. if (retval == -ENOMEM)
  762. DBG(ep->dev, "Out of DMA memory\n");
  763. return retval;
  764. }
  765. if (ep->in) {
  766. if (req->req.length == ep->ep.maxpacket) {
  767. /* write tx bytes */
  768. req->td_data->status =
  769. AMD_ADDBITS(req->td_data->status,
  770. ep->ep.maxpacket,
  771. UDC_DMA_IN_STS_TXBYTES);
  772. }
  773. }
  774. }
  775. if (ep->in) {
  776. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  777. "maxpacket=%d ep%d\n",
  778. use_dma_ppb, req->req.length,
  779. ep->ep.maxpacket, ep->num);
  780. /*
  781. * if bytes < max packet then tx bytes must
  782. * be written in packet per buffer mode
  783. */
  784. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  785. || ep->num == UDC_EP0OUT_IX
  786. || ep->num == UDC_EP0IN_IX) {
  787. /* write tx bytes */
  788. req->td_data->status =
  789. AMD_ADDBITS(req->td_data->status,
  790. req->req.length,
  791. UDC_DMA_IN_STS_TXBYTES);
  792. /* reset frame num */
  793. req->td_data->status =
  794. AMD_ADDBITS(req->td_data->status,
  795. 0,
  796. UDC_DMA_IN_STS_FRAMENUM);
  797. }
  798. /* set HOST BUSY */
  799. req->td_data->status =
  800. AMD_ADDBITS(req->td_data->status,
  801. UDC_DMA_STP_STS_BS_HOST_BUSY,
  802. UDC_DMA_STP_STS_BS);
  803. } else {
  804. VDBG(ep->dev, "OUT set host ready\n");
  805. /* set HOST READY */
  806. req->td_data->status =
  807. AMD_ADDBITS(req->td_data->status,
  808. UDC_DMA_STP_STS_BS_HOST_READY,
  809. UDC_DMA_STP_STS_BS);
  810. /* clear NAK by writing CNAK */
  811. if (ep->naking) {
  812. tmp = readl(&ep->regs->ctl);
  813. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  814. writel(tmp, &ep->regs->ctl);
  815. ep->naking = 0;
  816. UDC_QUEUE_CNAK(ep, ep->num);
  817. }
  818. }
  819. return retval;
  820. }
  821. /* Completes request packet ... caller MUST hold lock */
  822. static void
  823. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  824. __releases(ep->dev->lock)
  825. __acquires(ep->dev->lock)
  826. {
  827. struct udc *dev;
  828. unsigned halted;
  829. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  830. dev = ep->dev;
  831. /* unmap DMA */
  832. if (ep->dma)
  833. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  834. halted = ep->halted;
  835. ep->halted = 1;
  836. /* set new status if pending */
  837. if (req->req.status == -EINPROGRESS)
  838. req->req.status = sts;
  839. /* remove from ep queue */
  840. list_del_init(&req->queue);
  841. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  842. &req->req, req->req.length, ep->ep.name, sts);
  843. spin_unlock(&dev->lock);
  844. usb_gadget_giveback_request(&ep->ep, &req->req);
  845. spin_lock(&dev->lock);
  846. ep->halted = halted;
  847. }
  848. /* Iterates to the end of a DMA chain and returns last descriptor */
  849. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  850. {
  851. struct udc_data_dma *td;
  852. td = req->td_data;
  853. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  854. td = phys_to_virt(td->next);
  855. return td;
  856. }
  857. /* Iterates to the end of a DMA chain and counts bytes received */
  858. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  859. {
  860. struct udc_data_dma *td;
  861. u32 count;
  862. td = req->td_data;
  863. /* received number bytes */
  864. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  865. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  866. td = phys_to_virt(td->next);
  867. /* received number bytes */
  868. if (td) {
  869. count += AMD_GETBITS(td->status,
  870. UDC_DMA_OUT_STS_RXBYTES);
  871. }
  872. }
  873. return count;
  874. }
  875. /* Enabling RX DMA */
  876. static void udc_set_rde(struct udc *dev)
  877. {
  878. u32 tmp;
  879. VDBG(dev, "udc_set_rde()\n");
  880. /* stop RDE timer */
  881. if (timer_pending(&udc_timer)) {
  882. set_rde = 0;
  883. mod_timer(&udc_timer, jiffies - 1);
  884. }
  885. /* set RDE */
  886. tmp = readl(&dev->regs->ctl);
  887. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  888. writel(tmp, &dev->regs->ctl);
  889. }
  890. /* Queues a request packet, called by gadget driver */
  891. static int
  892. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  893. {
  894. int retval = 0;
  895. u8 open_rxfifo = 0;
  896. unsigned long iflags;
  897. struct udc_ep *ep;
  898. struct udc_request *req;
  899. struct udc *dev;
  900. u32 tmp;
  901. /* check the inputs */
  902. req = container_of(usbreq, struct udc_request, req);
  903. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  904. || !list_empty(&req->queue))
  905. return -EINVAL;
  906. ep = container_of(usbep, struct udc_ep, ep);
  907. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  908. return -EINVAL;
  909. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  910. dev = ep->dev;
  911. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  912. return -ESHUTDOWN;
  913. /* map dma (usually done before) */
  914. if (ep->dma) {
  915. VDBG(dev, "DMA map req %p\n", req);
  916. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  917. if (retval)
  918. return retval;
  919. }
  920. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  921. usbep->name, usbreq, usbreq->length,
  922. req->td_data, usbreq->buf);
  923. spin_lock_irqsave(&dev->lock, iflags);
  924. usbreq->actual = 0;
  925. usbreq->status = -EINPROGRESS;
  926. req->dma_done = 0;
  927. /* on empty queue just do first transfer */
  928. if (list_empty(&ep->queue)) {
  929. /* zlp */
  930. if (usbreq->length == 0) {
  931. /* IN zlp's are handled by hardware */
  932. complete_req(ep, req, 0);
  933. VDBG(dev, "%s: zlp\n", ep->ep.name);
  934. /*
  935. * if set_config or set_intf is waiting for ack by zlp
  936. * then set CSR_DONE
  937. */
  938. if (dev->set_cfg_not_acked) {
  939. tmp = readl(&dev->regs->ctl);
  940. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  941. writel(tmp, &dev->regs->ctl);
  942. dev->set_cfg_not_acked = 0;
  943. }
  944. /* setup command is ACK'ed now by zlp */
  945. if (dev->waiting_zlp_ack_ep0in) {
  946. /* clear NAK by writing CNAK in EP0_IN */
  947. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  948. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  949. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  950. dev->ep[UDC_EP0IN_IX].naking = 0;
  951. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  952. UDC_EP0IN_IX);
  953. dev->waiting_zlp_ack_ep0in = 0;
  954. }
  955. goto finished;
  956. }
  957. if (ep->dma) {
  958. retval = prep_dma(ep, req, GFP_ATOMIC);
  959. if (retval != 0)
  960. goto finished;
  961. /* write desc pointer to enable DMA */
  962. if (ep->in) {
  963. /* set HOST READY */
  964. req->td_data->status =
  965. AMD_ADDBITS(req->td_data->status,
  966. UDC_DMA_IN_STS_BS_HOST_READY,
  967. UDC_DMA_IN_STS_BS);
  968. }
  969. /* disabled rx dma while descriptor update */
  970. if (!ep->in) {
  971. /* stop RDE timer */
  972. if (timer_pending(&udc_timer)) {
  973. set_rde = 0;
  974. mod_timer(&udc_timer, jiffies - 1);
  975. }
  976. /* clear RDE */
  977. tmp = readl(&dev->regs->ctl);
  978. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  979. writel(tmp, &dev->regs->ctl);
  980. open_rxfifo = 1;
  981. /*
  982. * if BNA occurred then let BNA dummy desc.
  983. * point to current desc.
  984. */
  985. if (ep->bna_occurred) {
  986. VDBG(dev, "copy to BNA dummy desc.\n");
  987. memcpy(ep->bna_dummy_req->td_data,
  988. req->td_data,
  989. sizeof(struct udc_data_dma));
  990. }
  991. }
  992. /* write desc pointer */
  993. writel(req->td_phys, &ep->regs->desptr);
  994. /* clear NAK by writing CNAK */
  995. if (ep->naking) {
  996. tmp = readl(&ep->regs->ctl);
  997. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  998. writel(tmp, &ep->regs->ctl);
  999. ep->naking = 0;
  1000. UDC_QUEUE_CNAK(ep, ep->num);
  1001. }
  1002. if (ep->in) {
  1003. /* enable ep irq */
  1004. tmp = readl(&dev->regs->ep_irqmsk);
  1005. tmp &= AMD_UNMASK_BIT(ep->num);
  1006. writel(tmp, &dev->regs->ep_irqmsk);
  1007. }
  1008. } else if (ep->in) {
  1009. /* enable ep irq */
  1010. tmp = readl(&dev->regs->ep_irqmsk);
  1011. tmp &= AMD_UNMASK_BIT(ep->num);
  1012. writel(tmp, &dev->regs->ep_irqmsk);
  1013. }
  1014. } else if (ep->dma) {
  1015. /*
  1016. * prep_dma not used for OUT ep's, this is not possible
  1017. * for PPB modes, because of chain creation reasons
  1018. */
  1019. if (ep->in) {
  1020. retval = prep_dma(ep, req, GFP_ATOMIC);
  1021. if (retval != 0)
  1022. goto finished;
  1023. }
  1024. }
  1025. VDBG(dev, "list_add\n");
  1026. /* add request to ep queue */
  1027. if (req) {
  1028. list_add_tail(&req->queue, &ep->queue);
  1029. /* open rxfifo if out data queued */
  1030. if (open_rxfifo) {
  1031. /* enable DMA */
  1032. req->dma_going = 1;
  1033. udc_set_rde(dev);
  1034. if (ep->num != UDC_EP0OUT_IX)
  1035. dev->data_ep_queued = 1;
  1036. }
  1037. /* stop OUT naking */
  1038. if (!ep->in) {
  1039. if (!use_dma && udc_rxfifo_pending) {
  1040. DBG(dev, "udc_queue(): pending bytes in "
  1041. "rxfifo after nyet\n");
  1042. /*
  1043. * read pending bytes afer nyet:
  1044. * referring to isr
  1045. */
  1046. if (udc_rxfifo_read(ep, req)) {
  1047. /* finish */
  1048. complete_req(ep, req, 0);
  1049. }
  1050. udc_rxfifo_pending = 0;
  1051. }
  1052. }
  1053. }
  1054. finished:
  1055. spin_unlock_irqrestore(&dev->lock, iflags);
  1056. return retval;
  1057. }
  1058. /* Empty request queue of an endpoint; caller holds spinlock */
  1059. void empty_req_queue(struct udc_ep *ep)
  1060. {
  1061. struct udc_request *req;
  1062. ep->halted = 1;
  1063. while (!list_empty(&ep->queue)) {
  1064. req = list_entry(ep->queue.next,
  1065. struct udc_request,
  1066. queue);
  1067. complete_req(ep, req, -ESHUTDOWN);
  1068. }
  1069. }
  1070. EXPORT_SYMBOL_GPL(empty_req_queue);
  1071. /* Dequeues a request packet, called by gadget driver */
  1072. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1073. {
  1074. struct udc_ep *ep;
  1075. struct udc_request *req;
  1076. unsigned halted;
  1077. unsigned long iflags;
  1078. ep = container_of(usbep, struct udc_ep, ep);
  1079. if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
  1080. && ep->num != UDC_EP0OUT_IX)))
  1081. return -EINVAL;
  1082. req = container_of(usbreq, struct udc_request, req);
  1083. spin_lock_irqsave(&ep->dev->lock, iflags);
  1084. halted = ep->halted;
  1085. ep->halted = 1;
  1086. /* request in processing or next one */
  1087. if (ep->queue.next == &req->queue) {
  1088. if (ep->dma && req->dma_going) {
  1089. if (ep->in)
  1090. ep->cancel_transfer = 1;
  1091. else {
  1092. u32 tmp;
  1093. u32 dma_sts;
  1094. /* stop potential receive DMA */
  1095. tmp = readl(&udc->regs->ctl);
  1096. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1097. &udc->regs->ctl);
  1098. /*
  1099. * Cancel transfer later in ISR
  1100. * if descriptor was touched.
  1101. */
  1102. dma_sts = AMD_GETBITS(req->td_data->status,
  1103. UDC_DMA_OUT_STS_BS);
  1104. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1105. ep->cancel_transfer = 1;
  1106. else {
  1107. udc_init_bna_dummy(ep->req);
  1108. writel(ep->bna_dummy_req->td_phys,
  1109. &ep->regs->desptr);
  1110. }
  1111. writel(tmp, &udc->regs->ctl);
  1112. }
  1113. }
  1114. }
  1115. complete_req(ep, req, -ECONNRESET);
  1116. ep->halted = halted;
  1117. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1118. return 0;
  1119. }
  1120. /* Halt or clear halt of endpoint */
  1121. static int
  1122. udc_set_halt(struct usb_ep *usbep, int halt)
  1123. {
  1124. struct udc_ep *ep;
  1125. u32 tmp;
  1126. unsigned long iflags;
  1127. int retval = 0;
  1128. if (!usbep)
  1129. return -EINVAL;
  1130. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1131. ep = container_of(usbep, struct udc_ep, ep);
  1132. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1133. return -EINVAL;
  1134. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1135. return -ESHUTDOWN;
  1136. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1137. /* halt or clear halt */
  1138. if (halt) {
  1139. if (ep->num == 0)
  1140. ep->dev->stall_ep0in = 1;
  1141. else {
  1142. /*
  1143. * set STALL
  1144. * rxfifo empty not taken into acount
  1145. */
  1146. tmp = readl(&ep->regs->ctl);
  1147. tmp |= AMD_BIT(UDC_EPCTL_S);
  1148. writel(tmp, &ep->regs->ctl);
  1149. ep->halted = 1;
  1150. /* setup poll timer */
  1151. if (!timer_pending(&udc_pollstall_timer)) {
  1152. udc_pollstall_timer.expires = jiffies +
  1153. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1154. / (1000 * 1000);
  1155. if (!stop_pollstall_timer) {
  1156. DBG(ep->dev, "start polltimer\n");
  1157. add_timer(&udc_pollstall_timer);
  1158. }
  1159. }
  1160. }
  1161. } else {
  1162. /* ep is halted by set_halt() before */
  1163. if (ep->halted) {
  1164. tmp = readl(&ep->regs->ctl);
  1165. /* clear stall bit */
  1166. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1167. /* clear NAK by writing CNAK */
  1168. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1169. writel(tmp, &ep->regs->ctl);
  1170. ep->halted = 0;
  1171. UDC_QUEUE_CNAK(ep, ep->num);
  1172. }
  1173. }
  1174. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1175. return retval;
  1176. }
  1177. /* gadget interface */
  1178. static const struct usb_ep_ops udc_ep_ops = {
  1179. .enable = udc_ep_enable,
  1180. .disable = udc_ep_disable,
  1181. .alloc_request = udc_alloc_request,
  1182. .free_request = udc_free_request,
  1183. .queue = udc_queue,
  1184. .dequeue = udc_dequeue,
  1185. .set_halt = udc_set_halt,
  1186. /* fifo ops not implemented */
  1187. };
  1188. /*-------------------------------------------------------------------------*/
  1189. /* Get frame counter (not implemented) */
  1190. static int udc_get_frame(struct usb_gadget *gadget)
  1191. {
  1192. return -EOPNOTSUPP;
  1193. }
  1194. /* Initiates a remote wakeup */
  1195. static int udc_remote_wakeup(struct udc *dev)
  1196. {
  1197. unsigned long flags;
  1198. u32 tmp;
  1199. DBG(dev, "UDC initiates remote wakeup\n");
  1200. spin_lock_irqsave(&dev->lock, flags);
  1201. tmp = readl(&dev->regs->ctl);
  1202. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  1203. writel(tmp, &dev->regs->ctl);
  1204. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  1205. writel(tmp, &dev->regs->ctl);
  1206. spin_unlock_irqrestore(&dev->lock, flags);
  1207. return 0;
  1208. }
  1209. /* Remote wakeup gadget interface */
  1210. static int udc_wakeup(struct usb_gadget *gadget)
  1211. {
  1212. struct udc *dev;
  1213. if (!gadget)
  1214. return -EINVAL;
  1215. dev = container_of(gadget, struct udc, gadget);
  1216. udc_remote_wakeup(dev);
  1217. return 0;
  1218. }
  1219. static int amd5536_udc_start(struct usb_gadget *g,
  1220. struct usb_gadget_driver *driver);
  1221. static int amd5536_udc_stop(struct usb_gadget *g);
  1222. static const struct usb_gadget_ops udc_ops = {
  1223. .wakeup = udc_wakeup,
  1224. .get_frame = udc_get_frame,
  1225. .udc_start = amd5536_udc_start,
  1226. .udc_stop = amd5536_udc_stop,
  1227. };
  1228. /* Setups endpoint parameters, adds endpoints to linked list */
  1229. static void make_ep_lists(struct udc *dev)
  1230. {
  1231. /* make gadget ep lists */
  1232. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1233. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1234. &dev->gadget.ep_list);
  1235. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1236. &dev->gadget.ep_list);
  1237. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1238. &dev->gadget.ep_list);
  1239. /* fifo config */
  1240. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1241. if (dev->gadget.speed == USB_SPEED_FULL)
  1242. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1243. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1244. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1245. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1246. }
  1247. /* Inits UDC context */
  1248. void udc_basic_init(struct udc *dev)
  1249. {
  1250. u32 tmp;
  1251. DBG(dev, "udc_basic_init()\n");
  1252. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1253. /* stop RDE timer */
  1254. if (timer_pending(&udc_timer)) {
  1255. set_rde = 0;
  1256. mod_timer(&udc_timer, jiffies - 1);
  1257. }
  1258. /* stop poll stall timer */
  1259. if (timer_pending(&udc_pollstall_timer))
  1260. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1261. /* disable DMA */
  1262. tmp = readl(&dev->regs->ctl);
  1263. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1264. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1265. writel(tmp, &dev->regs->ctl);
  1266. /* enable dynamic CSR programming */
  1267. tmp = readl(&dev->regs->cfg);
  1268. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1269. /* set self powered */
  1270. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1271. /* set remote wakeupable */
  1272. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1273. writel(tmp, &dev->regs->cfg);
  1274. make_ep_lists(dev);
  1275. dev->data_ep_enabled = 0;
  1276. dev->data_ep_queued = 0;
  1277. }
  1278. EXPORT_SYMBOL_GPL(udc_basic_init);
  1279. /* init registers at driver load time */
  1280. static int startup_registers(struct udc *dev)
  1281. {
  1282. u32 tmp;
  1283. /* init controller by soft reset */
  1284. udc_soft_reset(dev);
  1285. /* mask not needed interrupts */
  1286. udc_mask_unused_interrupts(dev);
  1287. /* put into initial config */
  1288. udc_basic_init(dev);
  1289. /* link up all endpoints */
  1290. udc_setup_endpoints(dev);
  1291. /* program speed */
  1292. tmp = readl(&dev->regs->cfg);
  1293. if (use_fullspeed)
  1294. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1295. else
  1296. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1297. writel(tmp, &dev->regs->cfg);
  1298. return 0;
  1299. }
  1300. /* Sets initial endpoint parameters */
  1301. static void udc_setup_endpoints(struct udc *dev)
  1302. {
  1303. struct udc_ep *ep;
  1304. u32 tmp;
  1305. u32 reg;
  1306. DBG(dev, "udc_setup_endpoints()\n");
  1307. /* read enum speed */
  1308. tmp = readl(&dev->regs->sts);
  1309. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1310. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1311. dev->gadget.speed = USB_SPEED_HIGH;
  1312. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1313. dev->gadget.speed = USB_SPEED_FULL;
  1314. /* set basic ep parameters */
  1315. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1316. ep = &dev->ep[tmp];
  1317. ep->dev = dev;
  1318. ep->ep.name = ep_info[tmp].name;
  1319. ep->ep.caps = ep_info[tmp].caps;
  1320. ep->num = tmp;
  1321. /* txfifo size is calculated at enable time */
  1322. ep->txfifo = dev->txfifo;
  1323. /* fifo size */
  1324. if (tmp < UDC_EPIN_NUM) {
  1325. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1326. ep->in = 1;
  1327. } else {
  1328. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1329. ep->in = 0;
  1330. }
  1331. ep->regs = &dev->ep_regs[tmp];
  1332. /*
  1333. * ep will be reset only if ep was not enabled before to avoid
  1334. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1335. * not enabled by gadget driver
  1336. */
  1337. if (!ep->ep.desc)
  1338. ep_init(dev->regs, ep);
  1339. if (use_dma) {
  1340. /*
  1341. * ep->dma is not really used, just to indicate that
  1342. * DMA is active: remove this
  1343. * dma regs = dev control regs
  1344. */
  1345. ep->dma = &dev->regs->ctl;
  1346. /* nak OUT endpoints until enable - not for ep0 */
  1347. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1348. && tmp > UDC_EPIN_NUM) {
  1349. /* set NAK */
  1350. reg = readl(&dev->ep[tmp].regs->ctl);
  1351. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1352. writel(reg, &dev->ep[tmp].regs->ctl);
  1353. dev->ep[tmp].naking = 1;
  1354. }
  1355. }
  1356. }
  1357. /* EP0 max packet */
  1358. if (dev->gadget.speed == USB_SPEED_FULL) {
  1359. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1360. UDC_FS_EP0IN_MAX_PKT_SIZE);
  1361. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1362. UDC_FS_EP0OUT_MAX_PKT_SIZE);
  1363. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1364. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1365. UDC_EP0IN_MAX_PKT_SIZE);
  1366. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1367. UDC_EP0OUT_MAX_PKT_SIZE);
  1368. }
  1369. /*
  1370. * with suspend bug workaround, ep0 params for gadget driver
  1371. * are set at gadget driver bind() call
  1372. */
  1373. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1374. dev->ep[UDC_EP0IN_IX].halted = 0;
  1375. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1376. /* init cfg/alt/int */
  1377. dev->cur_config = 0;
  1378. dev->cur_intf = 0;
  1379. dev->cur_alt = 0;
  1380. }
  1381. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1382. static void usb_connect(struct udc *dev)
  1383. {
  1384. /* Return if already connected */
  1385. if (dev->connected)
  1386. return;
  1387. dev_info(dev->dev, "USB Connect\n");
  1388. dev->connected = 1;
  1389. /* put into initial config */
  1390. udc_basic_init(dev);
  1391. /* enable device setup interrupts */
  1392. udc_enable_dev_setup_interrupts(dev);
  1393. }
  1394. /*
  1395. * Calls gadget with disconnect event and resets the UDC and makes
  1396. * initial bringup to be ready for ep0 events
  1397. */
  1398. static void usb_disconnect(struct udc *dev)
  1399. {
  1400. /* Return if already disconnected */
  1401. if (!dev->connected)
  1402. return;
  1403. dev_info(dev->dev, "USB Disconnect\n");
  1404. dev->connected = 0;
  1405. /* mask interrupts */
  1406. udc_mask_unused_interrupts(dev);
  1407. /* REVISIT there doesn't seem to be a point to having this
  1408. * talk to a tasklet ... do it directly, we already hold
  1409. * the spinlock needed to process the disconnect.
  1410. */
  1411. tasklet_schedule(&disconnect_tasklet);
  1412. }
  1413. /* Tasklet for disconnect to be outside of interrupt context */
  1414. static void udc_tasklet_disconnect(unsigned long par)
  1415. {
  1416. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1417. u32 tmp;
  1418. DBG(dev, "Tasklet disconnect\n");
  1419. spin_lock_irq(&dev->lock);
  1420. if (dev->driver) {
  1421. spin_unlock(&dev->lock);
  1422. dev->driver->disconnect(&dev->gadget);
  1423. spin_lock(&dev->lock);
  1424. /* empty queues */
  1425. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1426. empty_req_queue(&dev->ep[tmp]);
  1427. }
  1428. /* disable ep0 */
  1429. ep_init(dev->regs,
  1430. &dev->ep[UDC_EP0IN_IX]);
  1431. if (!soft_reset_occured) {
  1432. /* init controller by soft reset */
  1433. udc_soft_reset(dev);
  1434. soft_reset_occured++;
  1435. }
  1436. /* re-enable dev interrupts */
  1437. udc_enable_dev_setup_interrupts(dev);
  1438. /* back to full speed ? */
  1439. if (use_fullspeed) {
  1440. tmp = readl(&dev->regs->cfg);
  1441. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1442. writel(tmp, &dev->regs->cfg);
  1443. }
  1444. spin_unlock_irq(&dev->lock);
  1445. }
  1446. /* Reset the UDC core */
  1447. static void udc_soft_reset(struct udc *dev)
  1448. {
  1449. unsigned long flags;
  1450. DBG(dev, "Soft reset\n");
  1451. /*
  1452. * reset possible waiting interrupts, because int.
  1453. * status is lost after soft reset,
  1454. * ep int. status reset
  1455. */
  1456. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1457. /* device int. status reset */
  1458. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1459. /* Don't do this for Broadcom UDC since this is a reserved
  1460. * bit.
  1461. */
  1462. if (dev->chiprev != UDC_BCM_REV) {
  1463. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1464. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1465. readl(&dev->regs->cfg);
  1466. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1467. }
  1468. }
  1469. /* RDE timer callback to set RDE bit */
  1470. static void udc_timer_function(struct timer_list *unused)
  1471. {
  1472. u32 tmp;
  1473. spin_lock_irq(&udc_irq_spinlock);
  1474. if (set_rde > 0) {
  1475. /*
  1476. * open the fifo if fifo was filled on last timer call
  1477. * conditionally
  1478. */
  1479. if (set_rde > 1) {
  1480. /* set RDE to receive setup data */
  1481. tmp = readl(&udc->regs->ctl);
  1482. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1483. writel(tmp, &udc->regs->ctl);
  1484. set_rde = -1;
  1485. } else if (readl(&udc->regs->sts)
  1486. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1487. /*
  1488. * if fifo empty setup polling, do not just
  1489. * open the fifo
  1490. */
  1491. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1492. if (!stop_timer)
  1493. add_timer(&udc_timer);
  1494. } else {
  1495. /*
  1496. * fifo contains data now, setup timer for opening
  1497. * the fifo when timer expires to be able to receive
  1498. * setup packets, when data packets gets queued by
  1499. * gadget layer then timer will forced to expire with
  1500. * set_rde=0 (RDE is set in udc_queue())
  1501. */
  1502. set_rde++;
  1503. /* debug: lhadmot_timer_start = 221070 */
  1504. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1505. if (!stop_timer)
  1506. add_timer(&udc_timer);
  1507. }
  1508. } else
  1509. set_rde = -1; /* RDE was set by udc_queue() */
  1510. spin_unlock_irq(&udc_irq_spinlock);
  1511. if (stop_timer)
  1512. complete(&on_exit);
  1513. }
  1514. /* Handle halt state, used in stall poll timer */
  1515. static void udc_handle_halt_state(struct udc_ep *ep)
  1516. {
  1517. u32 tmp;
  1518. /* set stall as long not halted */
  1519. if (ep->halted == 1) {
  1520. tmp = readl(&ep->regs->ctl);
  1521. /* STALL cleared ? */
  1522. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1523. /*
  1524. * FIXME: MSC spec requires that stall remains
  1525. * even on receivng of CLEAR_FEATURE HALT. So
  1526. * we would set STALL again here to be compliant.
  1527. * But with current mass storage drivers this does
  1528. * not work (would produce endless host retries).
  1529. * So we clear halt on CLEAR_FEATURE.
  1530. *
  1531. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1532. tmp |= AMD_BIT(UDC_EPCTL_S);
  1533. writel(tmp, &ep->regs->ctl);*/
  1534. /* clear NAK by writing CNAK */
  1535. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1536. writel(tmp, &ep->regs->ctl);
  1537. ep->halted = 0;
  1538. UDC_QUEUE_CNAK(ep, ep->num);
  1539. }
  1540. }
  1541. }
  1542. /* Stall timer callback to poll S bit and set it again after */
  1543. static void udc_pollstall_timer_function(struct timer_list *unused)
  1544. {
  1545. struct udc_ep *ep;
  1546. int halted = 0;
  1547. spin_lock_irq(&udc_stall_spinlock);
  1548. /*
  1549. * only one IN and OUT endpoints are handled
  1550. * IN poll stall
  1551. */
  1552. ep = &udc->ep[UDC_EPIN_IX];
  1553. udc_handle_halt_state(ep);
  1554. if (ep->halted)
  1555. halted = 1;
  1556. /* OUT poll stall */
  1557. ep = &udc->ep[UDC_EPOUT_IX];
  1558. udc_handle_halt_state(ep);
  1559. if (ep->halted)
  1560. halted = 1;
  1561. /* setup timer again when still halted */
  1562. if (!stop_pollstall_timer && halted) {
  1563. udc_pollstall_timer.expires = jiffies +
  1564. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1565. / (1000 * 1000);
  1566. add_timer(&udc_pollstall_timer);
  1567. }
  1568. spin_unlock_irq(&udc_stall_spinlock);
  1569. if (stop_pollstall_timer)
  1570. complete(&on_pollstall_exit);
  1571. }
  1572. /* Inits endpoint 0 so that SETUP packets are processed */
  1573. static void activate_control_endpoints(struct udc *dev)
  1574. {
  1575. u32 tmp;
  1576. DBG(dev, "activate_control_endpoints\n");
  1577. /* flush fifo */
  1578. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1579. tmp |= AMD_BIT(UDC_EPCTL_F);
  1580. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1581. /* set ep0 directions */
  1582. dev->ep[UDC_EP0IN_IX].in = 1;
  1583. dev->ep[UDC_EP0OUT_IX].in = 0;
  1584. /* set buffer size (tx fifo entries) of EP0_IN */
  1585. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1586. if (dev->gadget.speed == USB_SPEED_FULL)
  1587. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1588. UDC_EPIN_BUFF_SIZE);
  1589. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1590. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1591. UDC_EPIN_BUFF_SIZE);
  1592. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1593. /* set max packet size of EP0_IN */
  1594. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1595. if (dev->gadget.speed == USB_SPEED_FULL)
  1596. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1597. UDC_EP_MAX_PKT_SIZE);
  1598. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1599. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1600. UDC_EP_MAX_PKT_SIZE);
  1601. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1602. /* set max packet size of EP0_OUT */
  1603. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1604. if (dev->gadget.speed == USB_SPEED_FULL)
  1605. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1606. UDC_EP_MAX_PKT_SIZE);
  1607. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1608. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1609. UDC_EP_MAX_PKT_SIZE);
  1610. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1611. /* set max packet size of EP0 in UDC CSR */
  1612. tmp = readl(&dev->csr->ne[0]);
  1613. if (dev->gadget.speed == USB_SPEED_FULL)
  1614. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1615. UDC_CSR_NE_MAX_PKT);
  1616. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1617. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1618. UDC_CSR_NE_MAX_PKT);
  1619. writel(tmp, &dev->csr->ne[0]);
  1620. if (use_dma) {
  1621. dev->ep[UDC_EP0OUT_IX].td->status |=
  1622. AMD_BIT(UDC_DMA_OUT_STS_L);
  1623. /* write dma desc address */
  1624. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1625. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1626. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1627. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1628. /* stop RDE timer */
  1629. if (timer_pending(&udc_timer)) {
  1630. set_rde = 0;
  1631. mod_timer(&udc_timer, jiffies - 1);
  1632. }
  1633. /* stop pollstall timer */
  1634. if (timer_pending(&udc_pollstall_timer))
  1635. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1636. /* enable DMA */
  1637. tmp = readl(&dev->regs->ctl);
  1638. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1639. | AMD_BIT(UDC_DEVCTL_RDE)
  1640. | AMD_BIT(UDC_DEVCTL_TDE);
  1641. if (use_dma_bufferfill_mode)
  1642. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1643. else if (use_dma_ppb_du)
  1644. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1645. writel(tmp, &dev->regs->ctl);
  1646. }
  1647. /* clear NAK by writing CNAK for EP0IN */
  1648. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1649. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1650. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1651. dev->ep[UDC_EP0IN_IX].naking = 0;
  1652. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1653. /* clear NAK by writing CNAK for EP0OUT */
  1654. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1655. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1656. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1657. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1658. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1659. }
  1660. /* Make endpoint 0 ready for control traffic */
  1661. static int setup_ep0(struct udc *dev)
  1662. {
  1663. activate_control_endpoints(dev);
  1664. /* enable ep0 interrupts */
  1665. udc_enable_ep0_interrupts(dev);
  1666. /* enable device setup interrupts */
  1667. udc_enable_dev_setup_interrupts(dev);
  1668. return 0;
  1669. }
  1670. /* Called by gadget driver to register itself */
  1671. static int amd5536_udc_start(struct usb_gadget *g,
  1672. struct usb_gadget_driver *driver)
  1673. {
  1674. struct udc *dev = to_amd5536_udc(g);
  1675. u32 tmp;
  1676. driver->driver.bus = NULL;
  1677. dev->driver = driver;
  1678. /* Some gadget drivers use both ep0 directions.
  1679. * NOTE: to gadget driver, ep0 is just one endpoint...
  1680. */
  1681. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1682. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1683. /* get ready for ep0 traffic */
  1684. setup_ep0(dev);
  1685. /* clear SD */
  1686. tmp = readl(&dev->regs->ctl);
  1687. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1688. writel(tmp, &dev->regs->ctl);
  1689. usb_connect(dev);
  1690. return 0;
  1691. }
  1692. /* shutdown requests and disconnect from gadget */
  1693. static void
  1694. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1695. __releases(dev->lock)
  1696. __acquires(dev->lock)
  1697. {
  1698. int tmp;
  1699. /* empty queues and init hardware */
  1700. udc_basic_init(dev);
  1701. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1702. empty_req_queue(&dev->ep[tmp]);
  1703. udc_setup_endpoints(dev);
  1704. }
  1705. /* Called by gadget driver to unregister itself */
  1706. static int amd5536_udc_stop(struct usb_gadget *g)
  1707. {
  1708. struct udc *dev = to_amd5536_udc(g);
  1709. unsigned long flags;
  1710. u32 tmp;
  1711. spin_lock_irqsave(&dev->lock, flags);
  1712. udc_mask_unused_interrupts(dev);
  1713. shutdown(dev, NULL);
  1714. spin_unlock_irqrestore(&dev->lock, flags);
  1715. dev->driver = NULL;
  1716. /* set SD */
  1717. tmp = readl(&dev->regs->ctl);
  1718. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1719. writel(tmp, &dev->regs->ctl);
  1720. return 0;
  1721. }
  1722. /* Clear pending NAK bits */
  1723. static void udc_process_cnak_queue(struct udc *dev)
  1724. {
  1725. u32 tmp;
  1726. u32 reg;
  1727. /* check epin's */
  1728. DBG(dev, "CNAK pending queue processing\n");
  1729. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1730. if (cnak_pending & (1 << tmp)) {
  1731. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1732. /* clear NAK by writing CNAK */
  1733. reg = readl(&dev->ep[tmp].regs->ctl);
  1734. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1735. writel(reg, &dev->ep[tmp].regs->ctl);
  1736. dev->ep[tmp].naking = 0;
  1737. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1738. }
  1739. }
  1740. /* ... and ep0out */
  1741. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1742. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1743. /* clear NAK by writing CNAK */
  1744. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1745. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1746. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1747. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1748. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1749. dev->ep[UDC_EP0OUT_IX].num);
  1750. }
  1751. }
  1752. /* Enabling RX DMA after setup packet */
  1753. static void udc_ep0_set_rde(struct udc *dev)
  1754. {
  1755. if (use_dma) {
  1756. /*
  1757. * only enable RXDMA when no data endpoint enabled
  1758. * or data is queued
  1759. */
  1760. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1761. udc_set_rde(dev);
  1762. } else {
  1763. /*
  1764. * setup timer for enabling RDE (to not enable
  1765. * RXFIFO DMA for data endpoints to early)
  1766. */
  1767. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1768. udc_timer.expires =
  1769. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1770. set_rde = 1;
  1771. if (!stop_timer)
  1772. add_timer(&udc_timer);
  1773. }
  1774. }
  1775. }
  1776. }
  1777. /* Interrupt handler for data OUT traffic */
  1778. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1779. {
  1780. irqreturn_t ret_val = IRQ_NONE;
  1781. u32 tmp;
  1782. struct udc_ep *ep;
  1783. struct udc_request *req;
  1784. unsigned int count;
  1785. struct udc_data_dma *td = NULL;
  1786. unsigned dma_done;
  1787. VDBG(dev, "ep%d irq\n", ep_ix);
  1788. ep = &dev->ep[ep_ix];
  1789. tmp = readl(&ep->regs->sts);
  1790. if (use_dma) {
  1791. /* BNA event ? */
  1792. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1793. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1794. ep->num, readl(&ep->regs->desptr));
  1795. /* clear BNA */
  1796. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1797. if (!ep->cancel_transfer)
  1798. ep->bna_occurred = 1;
  1799. else
  1800. ep->cancel_transfer = 0;
  1801. ret_val = IRQ_HANDLED;
  1802. goto finished;
  1803. }
  1804. }
  1805. /* HE event ? */
  1806. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1807. dev_err(dev->dev, "HE ep%dout occurred\n", ep->num);
  1808. /* clear HE */
  1809. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1810. ret_val = IRQ_HANDLED;
  1811. goto finished;
  1812. }
  1813. if (!list_empty(&ep->queue)) {
  1814. /* next request */
  1815. req = list_entry(ep->queue.next,
  1816. struct udc_request, queue);
  1817. } else {
  1818. req = NULL;
  1819. udc_rxfifo_pending = 1;
  1820. }
  1821. VDBG(dev, "req = %p\n", req);
  1822. /* fifo mode */
  1823. if (!use_dma) {
  1824. /* read fifo */
  1825. if (req && udc_rxfifo_read(ep, req)) {
  1826. ret_val = IRQ_HANDLED;
  1827. /* finish */
  1828. complete_req(ep, req, 0);
  1829. /* next request */
  1830. if (!list_empty(&ep->queue) && !ep->halted) {
  1831. req = list_entry(ep->queue.next,
  1832. struct udc_request, queue);
  1833. } else
  1834. req = NULL;
  1835. }
  1836. /* DMA */
  1837. } else if (!ep->cancel_transfer && req) {
  1838. ret_val = IRQ_HANDLED;
  1839. /* check for DMA done */
  1840. if (!use_dma_ppb) {
  1841. dma_done = AMD_GETBITS(req->td_data->status,
  1842. UDC_DMA_OUT_STS_BS);
  1843. /* packet per buffer mode - rx bytes */
  1844. } else {
  1845. /*
  1846. * if BNA occurred then recover desc. from
  1847. * BNA dummy desc.
  1848. */
  1849. if (ep->bna_occurred) {
  1850. VDBG(dev, "Recover desc. from BNA dummy\n");
  1851. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1852. sizeof(struct udc_data_dma));
  1853. ep->bna_occurred = 0;
  1854. udc_init_bna_dummy(ep->req);
  1855. }
  1856. td = udc_get_last_dma_desc(req);
  1857. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1858. }
  1859. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1860. /* buffer fill mode - rx bytes */
  1861. if (!use_dma_ppb) {
  1862. /* received number bytes */
  1863. count = AMD_GETBITS(req->td_data->status,
  1864. UDC_DMA_OUT_STS_RXBYTES);
  1865. VDBG(dev, "rx bytes=%u\n", count);
  1866. /* packet per buffer mode - rx bytes */
  1867. } else {
  1868. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1869. VDBG(dev, "last desc = %p\n", td);
  1870. /* received number bytes */
  1871. if (use_dma_ppb_du) {
  1872. /* every desc. counts bytes */
  1873. count = udc_get_ppbdu_rxbytes(req);
  1874. } else {
  1875. /* last desc. counts bytes */
  1876. count = AMD_GETBITS(td->status,
  1877. UDC_DMA_OUT_STS_RXBYTES);
  1878. if (!count && req->req.length
  1879. == UDC_DMA_MAXPACKET) {
  1880. /*
  1881. * on 64k packets the RXBYTES
  1882. * field is zero
  1883. */
  1884. count = UDC_DMA_MAXPACKET;
  1885. }
  1886. }
  1887. VDBG(dev, "last desc rx bytes=%u\n", count);
  1888. }
  1889. tmp = req->req.length - req->req.actual;
  1890. if (count > tmp) {
  1891. if ((tmp % ep->ep.maxpacket) != 0) {
  1892. DBG(dev, "%s: rx %db, space=%db\n",
  1893. ep->ep.name, count, tmp);
  1894. req->req.status = -EOVERFLOW;
  1895. }
  1896. count = tmp;
  1897. }
  1898. req->req.actual += count;
  1899. req->dma_going = 0;
  1900. /* complete request */
  1901. complete_req(ep, req, 0);
  1902. /* next request */
  1903. if (!list_empty(&ep->queue) && !ep->halted) {
  1904. req = list_entry(ep->queue.next,
  1905. struct udc_request,
  1906. queue);
  1907. /*
  1908. * DMA may be already started by udc_queue()
  1909. * called by gadget drivers completion
  1910. * routine. This happens when queue
  1911. * holds one request only.
  1912. */
  1913. if (req->dma_going == 0) {
  1914. /* next dma */
  1915. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1916. goto finished;
  1917. /* write desc pointer */
  1918. writel(req->td_phys,
  1919. &ep->regs->desptr);
  1920. req->dma_going = 1;
  1921. /* enable DMA */
  1922. udc_set_rde(dev);
  1923. }
  1924. } else {
  1925. /*
  1926. * implant BNA dummy descriptor to allow
  1927. * RXFIFO opening by RDE
  1928. */
  1929. if (ep->bna_dummy_req) {
  1930. /* write desc pointer */
  1931. writel(ep->bna_dummy_req->td_phys,
  1932. &ep->regs->desptr);
  1933. ep->bna_occurred = 0;
  1934. }
  1935. /*
  1936. * schedule timer for setting RDE if queue
  1937. * remains empty to allow ep0 packets pass
  1938. * through
  1939. */
  1940. if (set_rde != 0
  1941. && !timer_pending(&udc_timer)) {
  1942. udc_timer.expires =
  1943. jiffies
  1944. + HZ*UDC_RDE_TIMER_SECONDS;
  1945. set_rde = 1;
  1946. if (!stop_timer)
  1947. add_timer(&udc_timer);
  1948. }
  1949. if (ep->num != UDC_EP0OUT_IX)
  1950. dev->data_ep_queued = 0;
  1951. }
  1952. } else {
  1953. /*
  1954. * RX DMA must be reenabled for each desc in PPBDU mode
  1955. * and must be enabled for PPBNDU mode in case of BNA
  1956. */
  1957. udc_set_rde(dev);
  1958. }
  1959. } else if (ep->cancel_transfer) {
  1960. ret_val = IRQ_HANDLED;
  1961. ep->cancel_transfer = 0;
  1962. }
  1963. /* check pending CNAKS */
  1964. if (cnak_pending) {
  1965. /* CNAk processing when rxfifo empty only */
  1966. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1967. udc_process_cnak_queue(dev);
  1968. }
  1969. /* clear OUT bits in ep status */
  1970. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1971. finished:
  1972. return ret_val;
  1973. }
  1974. /* Interrupt handler for data IN traffic */
  1975. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1976. {
  1977. irqreturn_t ret_val = IRQ_NONE;
  1978. u32 tmp;
  1979. u32 epsts;
  1980. struct udc_ep *ep;
  1981. struct udc_request *req;
  1982. struct udc_data_dma *td;
  1983. unsigned len;
  1984. ep = &dev->ep[ep_ix];
  1985. epsts = readl(&ep->regs->sts);
  1986. if (use_dma) {
  1987. /* BNA ? */
  1988. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1989. dev_err(dev->dev,
  1990. "BNA ep%din occurred - DESPTR = %08lx\n",
  1991. ep->num,
  1992. (unsigned long) readl(&ep->regs->desptr));
  1993. /* clear BNA */
  1994. writel(epsts, &ep->regs->sts);
  1995. ret_val = IRQ_HANDLED;
  1996. goto finished;
  1997. }
  1998. }
  1999. /* HE event ? */
  2000. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2001. dev_err(dev->dev,
  2002. "HE ep%dn occurred - DESPTR = %08lx\n",
  2003. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2004. /* clear HE */
  2005. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2006. ret_val = IRQ_HANDLED;
  2007. goto finished;
  2008. }
  2009. /* DMA completion */
  2010. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2011. VDBG(dev, "TDC set- completion\n");
  2012. ret_val = IRQ_HANDLED;
  2013. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2014. req = list_entry(ep->queue.next,
  2015. struct udc_request, queue);
  2016. /*
  2017. * length bytes transferred
  2018. * check dma done of last desc. in PPBDU mode
  2019. */
  2020. if (use_dma_ppb_du) {
  2021. td = udc_get_last_dma_desc(req);
  2022. if (td)
  2023. req->req.actual = req->req.length;
  2024. } else {
  2025. /* assume all bytes transferred */
  2026. req->req.actual = req->req.length;
  2027. }
  2028. if (req->req.actual == req->req.length) {
  2029. /* complete req */
  2030. complete_req(ep, req, 0);
  2031. req->dma_going = 0;
  2032. /* further request available ? */
  2033. if (list_empty(&ep->queue)) {
  2034. /* disable interrupt */
  2035. tmp = readl(&dev->regs->ep_irqmsk);
  2036. tmp |= AMD_BIT(ep->num);
  2037. writel(tmp, &dev->regs->ep_irqmsk);
  2038. }
  2039. }
  2040. }
  2041. ep->cancel_transfer = 0;
  2042. }
  2043. /*
  2044. * status reg has IN bit set and TDC not set (if TDC was handled,
  2045. * IN must not be handled (UDC defect) ?
  2046. */
  2047. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2048. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2049. ret_val = IRQ_HANDLED;
  2050. if (!list_empty(&ep->queue)) {
  2051. /* next request */
  2052. req = list_entry(ep->queue.next,
  2053. struct udc_request, queue);
  2054. /* FIFO mode */
  2055. if (!use_dma) {
  2056. /* write fifo */
  2057. udc_txfifo_write(ep, &req->req);
  2058. len = req->req.length - req->req.actual;
  2059. if (len > ep->ep.maxpacket)
  2060. len = ep->ep.maxpacket;
  2061. req->req.actual += len;
  2062. if (req->req.actual == req->req.length
  2063. || (len != ep->ep.maxpacket)) {
  2064. /* complete req */
  2065. complete_req(ep, req, 0);
  2066. }
  2067. /* DMA */
  2068. } else if (req && !req->dma_going) {
  2069. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2070. req, req->td_data);
  2071. if (req->td_data) {
  2072. req->dma_going = 1;
  2073. /*
  2074. * unset L bit of first desc.
  2075. * for chain
  2076. */
  2077. if (use_dma_ppb && req->req.length >
  2078. ep->ep.maxpacket) {
  2079. req->td_data->status &=
  2080. AMD_CLEAR_BIT(
  2081. UDC_DMA_IN_STS_L);
  2082. }
  2083. /* write desc pointer */
  2084. writel(req->td_phys, &ep->regs->desptr);
  2085. /* set HOST READY */
  2086. req->td_data->status =
  2087. AMD_ADDBITS(
  2088. req->td_data->status,
  2089. UDC_DMA_IN_STS_BS_HOST_READY,
  2090. UDC_DMA_IN_STS_BS);
  2091. /* set poll demand bit */
  2092. tmp = readl(&ep->regs->ctl);
  2093. tmp |= AMD_BIT(UDC_EPCTL_P);
  2094. writel(tmp, &ep->regs->ctl);
  2095. }
  2096. }
  2097. } else if (!use_dma && ep->in) {
  2098. /* disable interrupt */
  2099. tmp = readl(
  2100. &dev->regs->ep_irqmsk);
  2101. tmp |= AMD_BIT(ep->num);
  2102. writel(tmp,
  2103. &dev->regs->ep_irqmsk);
  2104. }
  2105. }
  2106. /* clear status bits */
  2107. writel(epsts, &ep->regs->sts);
  2108. finished:
  2109. return ret_val;
  2110. }
  2111. /* Interrupt handler for Control OUT traffic */
  2112. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2113. __releases(dev->lock)
  2114. __acquires(dev->lock)
  2115. {
  2116. irqreturn_t ret_val = IRQ_NONE;
  2117. u32 tmp;
  2118. int setup_supported;
  2119. u32 count;
  2120. int set = 0;
  2121. struct udc_ep *ep;
  2122. struct udc_ep *ep_tmp;
  2123. ep = &dev->ep[UDC_EP0OUT_IX];
  2124. /* clear irq */
  2125. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2126. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2127. /* check BNA and clear if set */
  2128. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2129. VDBG(dev, "ep0: BNA set\n");
  2130. writel(AMD_BIT(UDC_EPSTS_BNA),
  2131. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2132. ep->bna_occurred = 1;
  2133. ret_val = IRQ_HANDLED;
  2134. goto finished;
  2135. }
  2136. /* type of data: SETUP or DATA 0 bytes */
  2137. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2138. VDBG(dev, "data_typ = %x\n", tmp);
  2139. /* setup data */
  2140. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2141. ret_val = IRQ_HANDLED;
  2142. ep->dev->stall_ep0in = 0;
  2143. dev->waiting_zlp_ack_ep0in = 0;
  2144. /* set NAK for EP0_IN */
  2145. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2146. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2147. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2148. dev->ep[UDC_EP0IN_IX].naking = 1;
  2149. /* get setup data */
  2150. if (use_dma) {
  2151. /* clear OUT bits in ep status */
  2152. writel(UDC_EPSTS_OUT_CLEAR,
  2153. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2154. setup_data.data[0] =
  2155. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2156. setup_data.data[1] =
  2157. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2158. /* set HOST READY */
  2159. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2160. UDC_DMA_STP_STS_BS_HOST_READY;
  2161. } else {
  2162. /* read fifo */
  2163. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2164. }
  2165. /* determine direction of control data */
  2166. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2167. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2168. /* enable RDE */
  2169. udc_ep0_set_rde(dev);
  2170. set = 0;
  2171. } else {
  2172. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2173. /*
  2174. * implant BNA dummy descriptor to allow RXFIFO opening
  2175. * by RDE
  2176. */
  2177. if (ep->bna_dummy_req) {
  2178. /* write desc pointer */
  2179. writel(ep->bna_dummy_req->td_phys,
  2180. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2181. ep->bna_occurred = 0;
  2182. }
  2183. set = 1;
  2184. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2185. /*
  2186. * setup timer for enabling RDE (to not enable
  2187. * RXFIFO DMA for data to early)
  2188. */
  2189. set_rde = 1;
  2190. if (!timer_pending(&udc_timer)) {
  2191. udc_timer.expires = jiffies +
  2192. HZ/UDC_RDE_TIMER_DIV;
  2193. if (!stop_timer)
  2194. add_timer(&udc_timer);
  2195. }
  2196. }
  2197. /*
  2198. * mass storage reset must be processed here because
  2199. * next packet may be a CLEAR_FEATURE HALT which would not
  2200. * clear the stall bit when no STALL handshake was received
  2201. * before (autostall can cause this)
  2202. */
  2203. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2204. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2205. DBG(dev, "MSC Reset\n");
  2206. /*
  2207. * clear stall bits
  2208. * only one IN and OUT endpoints are handled
  2209. */
  2210. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2211. udc_set_halt(&ep_tmp->ep, 0);
  2212. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2213. udc_set_halt(&ep_tmp->ep, 0);
  2214. }
  2215. /* call gadget with setup data received */
  2216. spin_unlock(&dev->lock);
  2217. setup_supported = dev->driver->setup(&dev->gadget,
  2218. &setup_data.request);
  2219. spin_lock(&dev->lock);
  2220. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2221. /* ep0 in returns data (not zlp) on IN phase */
  2222. if (setup_supported >= 0 && setup_supported <
  2223. UDC_EP0IN_MAXPACKET) {
  2224. /* clear NAK by writing CNAK in EP0_IN */
  2225. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2226. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2227. dev->ep[UDC_EP0IN_IX].naking = 0;
  2228. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2229. /* if unsupported request then stall */
  2230. } else if (setup_supported < 0) {
  2231. tmp |= AMD_BIT(UDC_EPCTL_S);
  2232. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2233. } else
  2234. dev->waiting_zlp_ack_ep0in = 1;
  2235. /* clear NAK by writing CNAK in EP0_OUT */
  2236. if (!set) {
  2237. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2238. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2239. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2240. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2241. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2242. }
  2243. if (!use_dma) {
  2244. /* clear OUT bits in ep status */
  2245. writel(UDC_EPSTS_OUT_CLEAR,
  2246. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2247. }
  2248. /* data packet 0 bytes */
  2249. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2250. /* clear OUT bits in ep status */
  2251. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2252. /* get setup data: only 0 packet */
  2253. if (use_dma) {
  2254. /* no req if 0 packet, just reactivate */
  2255. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2256. VDBG(dev, "ZLP\n");
  2257. /* set HOST READY */
  2258. dev->ep[UDC_EP0OUT_IX].td->status =
  2259. AMD_ADDBITS(
  2260. dev->ep[UDC_EP0OUT_IX].td->status,
  2261. UDC_DMA_OUT_STS_BS_HOST_READY,
  2262. UDC_DMA_OUT_STS_BS);
  2263. /* enable RDE */
  2264. udc_ep0_set_rde(dev);
  2265. ret_val = IRQ_HANDLED;
  2266. } else {
  2267. /* control write */
  2268. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2269. /* re-program desc. pointer for possible ZLPs */
  2270. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2271. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2272. /* enable RDE */
  2273. udc_ep0_set_rde(dev);
  2274. }
  2275. } else {
  2276. /* received number bytes */
  2277. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2278. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2279. /* out data for fifo mode not working */
  2280. count = 0;
  2281. /* 0 packet or real data ? */
  2282. if (count != 0) {
  2283. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2284. } else {
  2285. /* dummy read confirm */
  2286. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2287. ret_val = IRQ_HANDLED;
  2288. }
  2289. }
  2290. }
  2291. /* check pending CNAKS */
  2292. if (cnak_pending) {
  2293. /* CNAk processing when rxfifo empty only */
  2294. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2295. udc_process_cnak_queue(dev);
  2296. }
  2297. finished:
  2298. return ret_val;
  2299. }
  2300. /* Interrupt handler for Control IN traffic */
  2301. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2302. {
  2303. irqreturn_t ret_val = IRQ_NONE;
  2304. u32 tmp;
  2305. struct udc_ep *ep;
  2306. struct udc_request *req;
  2307. unsigned len;
  2308. ep = &dev->ep[UDC_EP0IN_IX];
  2309. /* clear irq */
  2310. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2311. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2312. /* DMA completion */
  2313. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2314. VDBG(dev, "isr: TDC clear\n");
  2315. ret_val = IRQ_HANDLED;
  2316. /* clear TDC bit */
  2317. writel(AMD_BIT(UDC_EPSTS_TDC),
  2318. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2319. /* status reg has IN bit set ? */
  2320. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2321. ret_val = IRQ_HANDLED;
  2322. if (ep->dma) {
  2323. /* clear IN bit */
  2324. writel(AMD_BIT(UDC_EPSTS_IN),
  2325. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2326. }
  2327. if (dev->stall_ep0in) {
  2328. DBG(dev, "stall ep0in\n");
  2329. /* halt ep0in */
  2330. tmp = readl(&ep->regs->ctl);
  2331. tmp |= AMD_BIT(UDC_EPCTL_S);
  2332. writel(tmp, &ep->regs->ctl);
  2333. } else {
  2334. if (!list_empty(&ep->queue)) {
  2335. /* next request */
  2336. req = list_entry(ep->queue.next,
  2337. struct udc_request, queue);
  2338. if (ep->dma) {
  2339. /* write desc pointer */
  2340. writel(req->td_phys, &ep->regs->desptr);
  2341. /* set HOST READY */
  2342. req->td_data->status =
  2343. AMD_ADDBITS(
  2344. req->td_data->status,
  2345. UDC_DMA_STP_STS_BS_HOST_READY,
  2346. UDC_DMA_STP_STS_BS);
  2347. /* set poll demand bit */
  2348. tmp =
  2349. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2350. tmp |= AMD_BIT(UDC_EPCTL_P);
  2351. writel(tmp,
  2352. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2353. /* all bytes will be transferred */
  2354. req->req.actual = req->req.length;
  2355. /* complete req */
  2356. complete_req(ep, req, 0);
  2357. } else {
  2358. /* write fifo */
  2359. udc_txfifo_write(ep, &req->req);
  2360. /* lengh bytes transferred */
  2361. len = req->req.length - req->req.actual;
  2362. if (len > ep->ep.maxpacket)
  2363. len = ep->ep.maxpacket;
  2364. req->req.actual += len;
  2365. if (req->req.actual == req->req.length
  2366. || (len != ep->ep.maxpacket)) {
  2367. /* complete req */
  2368. complete_req(ep, req, 0);
  2369. }
  2370. }
  2371. }
  2372. }
  2373. ep->halted = 0;
  2374. dev->stall_ep0in = 0;
  2375. if (!ep->dma) {
  2376. /* clear IN bit */
  2377. writel(AMD_BIT(UDC_EPSTS_IN),
  2378. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2379. }
  2380. }
  2381. return ret_val;
  2382. }
  2383. /* Interrupt handler for global device events */
  2384. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2385. __releases(dev->lock)
  2386. __acquires(dev->lock)
  2387. {
  2388. irqreturn_t ret_val = IRQ_NONE;
  2389. u32 tmp;
  2390. u32 cfg;
  2391. struct udc_ep *ep;
  2392. u16 i;
  2393. u8 udc_csr_epix;
  2394. /* SET_CONFIG irq ? */
  2395. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2396. ret_val = IRQ_HANDLED;
  2397. /* read config value */
  2398. tmp = readl(&dev->regs->sts);
  2399. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2400. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2401. dev->cur_config = cfg;
  2402. dev->set_cfg_not_acked = 1;
  2403. /* make usb request for gadget driver */
  2404. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2405. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2406. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2407. /* programm the NE registers */
  2408. for (i = 0; i < UDC_EP_NUM; i++) {
  2409. ep = &dev->ep[i];
  2410. if (ep->in) {
  2411. /* ep ix in UDC CSR register space */
  2412. udc_csr_epix = ep->num;
  2413. /* OUT ep */
  2414. } else {
  2415. /* ep ix in UDC CSR register space */
  2416. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2417. }
  2418. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2419. /* ep cfg */
  2420. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2421. UDC_CSR_NE_CFG);
  2422. /* write reg */
  2423. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2424. /* clear stall bits */
  2425. ep->halted = 0;
  2426. tmp = readl(&ep->regs->ctl);
  2427. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2428. writel(tmp, &ep->regs->ctl);
  2429. }
  2430. /* call gadget zero with setup data received */
  2431. spin_unlock(&dev->lock);
  2432. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2433. spin_lock(&dev->lock);
  2434. } /* SET_INTERFACE ? */
  2435. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2436. ret_val = IRQ_HANDLED;
  2437. dev->set_cfg_not_acked = 1;
  2438. /* read interface and alt setting values */
  2439. tmp = readl(&dev->regs->sts);
  2440. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2441. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2442. /* make usb request for gadget driver */
  2443. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2444. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2445. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2446. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2447. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2448. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2449. dev->cur_alt, dev->cur_intf);
  2450. /* programm the NE registers */
  2451. for (i = 0; i < UDC_EP_NUM; i++) {
  2452. ep = &dev->ep[i];
  2453. if (ep->in) {
  2454. /* ep ix in UDC CSR register space */
  2455. udc_csr_epix = ep->num;
  2456. /* OUT ep */
  2457. } else {
  2458. /* ep ix in UDC CSR register space */
  2459. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2460. }
  2461. /* UDC CSR reg */
  2462. /* set ep values */
  2463. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2464. /* ep interface */
  2465. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2466. UDC_CSR_NE_INTF);
  2467. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2468. /* ep alt */
  2469. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2470. UDC_CSR_NE_ALT);
  2471. /* write reg */
  2472. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2473. /* clear stall bits */
  2474. ep->halted = 0;
  2475. tmp = readl(&ep->regs->ctl);
  2476. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2477. writel(tmp, &ep->regs->ctl);
  2478. }
  2479. /* call gadget zero with setup data received */
  2480. spin_unlock(&dev->lock);
  2481. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2482. spin_lock(&dev->lock);
  2483. } /* USB reset */
  2484. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2485. DBG(dev, "USB Reset interrupt\n");
  2486. ret_val = IRQ_HANDLED;
  2487. /* allow soft reset when suspend occurs */
  2488. soft_reset_occured = 0;
  2489. dev->waiting_zlp_ack_ep0in = 0;
  2490. dev->set_cfg_not_acked = 0;
  2491. /* mask not needed interrupts */
  2492. udc_mask_unused_interrupts(dev);
  2493. /* call gadget to resume and reset configs etc. */
  2494. spin_unlock(&dev->lock);
  2495. if (dev->sys_suspended && dev->driver->resume) {
  2496. dev->driver->resume(&dev->gadget);
  2497. dev->sys_suspended = 0;
  2498. }
  2499. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2500. spin_lock(&dev->lock);
  2501. /* disable ep0 to empty req queue */
  2502. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2503. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2504. /* soft reset when rxfifo not empty */
  2505. tmp = readl(&dev->regs->sts);
  2506. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2507. && !soft_reset_after_usbreset_occured) {
  2508. udc_soft_reset(dev);
  2509. soft_reset_after_usbreset_occured++;
  2510. }
  2511. /*
  2512. * DMA reset to kill potential old DMA hw hang,
  2513. * POLL bit is already reset by ep_init() through
  2514. * disconnect()
  2515. */
  2516. DBG(dev, "DMA machine reset\n");
  2517. tmp = readl(&dev->regs->cfg);
  2518. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2519. writel(tmp, &dev->regs->cfg);
  2520. /* put into initial config */
  2521. udc_basic_init(dev);
  2522. /* enable device setup interrupts */
  2523. udc_enable_dev_setup_interrupts(dev);
  2524. /* enable suspend interrupt */
  2525. tmp = readl(&dev->regs->irqmsk);
  2526. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2527. writel(tmp, &dev->regs->irqmsk);
  2528. } /* USB suspend */
  2529. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2530. DBG(dev, "USB Suspend interrupt\n");
  2531. ret_val = IRQ_HANDLED;
  2532. if (dev->driver->suspend) {
  2533. spin_unlock(&dev->lock);
  2534. dev->sys_suspended = 1;
  2535. dev->driver->suspend(&dev->gadget);
  2536. spin_lock(&dev->lock);
  2537. }
  2538. } /* new speed ? */
  2539. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2540. DBG(dev, "ENUM interrupt\n");
  2541. ret_val = IRQ_HANDLED;
  2542. soft_reset_after_usbreset_occured = 0;
  2543. /* disable ep0 to empty req queue */
  2544. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2545. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2546. /* link up all endpoints */
  2547. udc_setup_endpoints(dev);
  2548. dev_info(dev->dev, "Connect: %s\n",
  2549. usb_speed_string(dev->gadget.speed));
  2550. /* init ep 0 */
  2551. activate_control_endpoints(dev);
  2552. /* enable ep0 interrupts */
  2553. udc_enable_ep0_interrupts(dev);
  2554. }
  2555. /* session valid change interrupt */
  2556. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2557. DBG(dev, "USB SVC interrupt\n");
  2558. ret_val = IRQ_HANDLED;
  2559. /* check that session is not valid to detect disconnect */
  2560. tmp = readl(&dev->regs->sts);
  2561. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2562. /* disable suspend interrupt */
  2563. tmp = readl(&dev->regs->irqmsk);
  2564. tmp |= AMD_BIT(UDC_DEVINT_US);
  2565. writel(tmp, &dev->regs->irqmsk);
  2566. DBG(dev, "USB Disconnect (session valid low)\n");
  2567. /* cleanup on disconnect */
  2568. usb_disconnect(udc);
  2569. }
  2570. }
  2571. return ret_val;
  2572. }
  2573. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2574. irqreturn_t udc_irq(int irq, void *pdev)
  2575. {
  2576. struct udc *dev = pdev;
  2577. u32 reg;
  2578. u16 i;
  2579. u32 ep_irq;
  2580. irqreturn_t ret_val = IRQ_NONE;
  2581. spin_lock(&dev->lock);
  2582. /* check for ep irq */
  2583. reg = readl(&dev->regs->ep_irqsts);
  2584. if (reg) {
  2585. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2586. ret_val |= udc_control_out_isr(dev);
  2587. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2588. ret_val |= udc_control_in_isr(dev);
  2589. /*
  2590. * data endpoint
  2591. * iterate ep's
  2592. */
  2593. for (i = 1; i < UDC_EP_NUM; i++) {
  2594. ep_irq = 1 << i;
  2595. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2596. continue;
  2597. /* clear irq status */
  2598. writel(ep_irq, &dev->regs->ep_irqsts);
  2599. /* irq for out ep ? */
  2600. if (i > UDC_EPIN_NUM)
  2601. ret_val |= udc_data_out_isr(dev, i);
  2602. else
  2603. ret_val |= udc_data_in_isr(dev, i);
  2604. }
  2605. }
  2606. /* check for dev irq */
  2607. reg = readl(&dev->regs->irqsts);
  2608. if (reg) {
  2609. /* clear irq */
  2610. writel(reg, &dev->regs->irqsts);
  2611. ret_val |= udc_dev_isr(dev, reg);
  2612. }
  2613. spin_unlock(&dev->lock);
  2614. return ret_val;
  2615. }
  2616. EXPORT_SYMBOL_GPL(udc_irq);
  2617. /* Tears down device */
  2618. void gadget_release(struct device *pdev)
  2619. {
  2620. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2621. kfree(dev);
  2622. }
  2623. EXPORT_SYMBOL_GPL(gadget_release);
  2624. /* Cleanup on device remove */
  2625. void udc_remove(struct udc *dev)
  2626. {
  2627. /* remove timer */
  2628. stop_timer++;
  2629. if (timer_pending(&udc_timer))
  2630. wait_for_completion(&on_exit);
  2631. del_timer_sync(&udc_timer);
  2632. /* remove pollstall timer */
  2633. stop_pollstall_timer++;
  2634. if (timer_pending(&udc_pollstall_timer))
  2635. wait_for_completion(&on_pollstall_exit);
  2636. del_timer_sync(&udc_pollstall_timer);
  2637. udc = NULL;
  2638. }
  2639. EXPORT_SYMBOL_GPL(udc_remove);
  2640. /* free all the dma pools */
  2641. void free_dma_pools(struct udc *dev)
  2642. {
  2643. dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td,
  2644. dev->ep[UDC_EP0OUT_IX].td_phys);
  2645. dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
  2646. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2647. dma_pool_destroy(dev->stp_requests);
  2648. dma_pool_destroy(dev->data_requests);
  2649. }
  2650. EXPORT_SYMBOL_GPL(free_dma_pools);
  2651. /* create dma pools on init */
  2652. int init_dma_pools(struct udc *dev)
  2653. {
  2654. struct udc_stp_dma *td_stp;
  2655. struct udc_data_dma *td_data;
  2656. int retval;
  2657. /* consistent DMA mode setting ? */
  2658. if (use_dma_ppb) {
  2659. use_dma_bufferfill_mode = 0;
  2660. } else {
  2661. use_dma_ppb_du = 0;
  2662. use_dma_bufferfill_mode = 1;
  2663. }
  2664. /* DMA setup */
  2665. dev->data_requests = dma_pool_create("data_requests", dev->dev,
  2666. sizeof(struct udc_data_dma), 0, 0);
  2667. if (!dev->data_requests) {
  2668. DBG(dev, "can't get request data pool\n");
  2669. return -ENOMEM;
  2670. }
  2671. /* EP0 in dma regs = dev control regs */
  2672. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2673. /* dma desc for setup data */
  2674. dev->stp_requests = dma_pool_create("setup requests", dev->dev,
  2675. sizeof(struct udc_stp_dma), 0, 0);
  2676. if (!dev->stp_requests) {
  2677. DBG(dev, "can't get stp request pool\n");
  2678. retval = -ENOMEM;
  2679. goto err_create_dma_pool;
  2680. }
  2681. /* setup */
  2682. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2683. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2684. if (!td_stp) {
  2685. retval = -ENOMEM;
  2686. goto err_alloc_dma;
  2687. }
  2688. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2689. /* data: 0 packets !? */
  2690. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2691. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2692. if (!td_data) {
  2693. retval = -ENOMEM;
  2694. goto err_alloc_phys;
  2695. }
  2696. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2697. return 0;
  2698. err_alloc_phys:
  2699. dma_pool_free(dev->stp_requests, dev->ep[UDC_EP0OUT_IX].td_stp,
  2700. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2701. err_alloc_dma:
  2702. dma_pool_destroy(dev->stp_requests);
  2703. dev->stp_requests = NULL;
  2704. err_create_dma_pool:
  2705. dma_pool_destroy(dev->data_requests);
  2706. dev->data_requests = NULL;
  2707. return retval;
  2708. }
  2709. EXPORT_SYMBOL_GPL(init_dma_pools);
  2710. /* general probe */
  2711. int udc_probe(struct udc *dev)
  2712. {
  2713. char tmp[128];
  2714. u32 reg;
  2715. int retval;
  2716. /* device struct setup */
  2717. dev->gadget.ops = &udc_ops;
  2718. dev_set_name(&dev->gadget.dev, "gadget");
  2719. dev->gadget.name = name;
  2720. dev->gadget.max_speed = USB_SPEED_HIGH;
  2721. /* init registers, interrupts, ... */
  2722. startup_registers(dev);
  2723. dev_info(dev->dev, "%s\n", mod_desc);
  2724. snprintf(tmp, sizeof(tmp), "%d", dev->irq);
  2725. /* Print this device info for AMD chips only*/
  2726. if (dev->chiprev == UDC_HSA0_REV ||
  2727. dev->chiprev == UDC_HSB1_REV) {
  2728. dev_info(dev->dev, "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2729. tmp, dev->phys_addr, dev->chiprev,
  2730. (dev->chiprev == UDC_HSA0_REV) ?
  2731. "A0" : "B1");
  2732. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2733. if (dev->chiprev == UDC_HSA0_REV) {
  2734. dev_err(dev->dev, "chip revision is A0; too old\n");
  2735. retval = -ENODEV;
  2736. goto finished;
  2737. }
  2738. dev_info(dev->dev,
  2739. "driver version: %s(for Geode5536 B1)\n", tmp);
  2740. }
  2741. udc = dev;
  2742. retval = usb_add_gadget_udc_release(udc->dev, &dev->gadget,
  2743. gadget_release);
  2744. if (retval)
  2745. goto finished;
  2746. /* timer init */
  2747. timer_setup(&udc_timer, udc_timer_function, 0);
  2748. timer_setup(&udc_pollstall_timer, udc_pollstall_timer_function, 0);
  2749. /* set SD */
  2750. reg = readl(&dev->regs->ctl);
  2751. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2752. writel(reg, &dev->regs->ctl);
  2753. /* print dev register info */
  2754. print_regs(dev);
  2755. return 0;
  2756. finished:
  2757. return retval;
  2758. }
  2759. EXPORT_SYMBOL_GPL(udc_probe);
  2760. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2761. MODULE_AUTHOR("Thomas Dahlmann");
  2762. MODULE_LICENSE("GPL");