pch_udc.c 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/pci.h>
  9. #include <linux/delay.h>
  10. #include <linux/errno.h>
  11. #include <linux/list.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/usb/ch9.h>
  14. #include <linux/usb/gadget.h>
  15. #include <linux/gpio.h>
  16. #include <linux/irq.h>
  17. /* GPIO port for VBUS detecting */
  18. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  19. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  20. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  21. /* Address offset of Registers */
  22. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  23. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  24. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  25. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  26. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  27. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  28. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  29. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  30. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  31. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  32. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  33. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  34. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  35. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  36. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  37. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  38. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  39. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  40. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  41. /* Endpoint control register */
  42. /* Bit position */
  43. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  44. #define UDC_EPCTL_RRDY (1 << 9)
  45. #define UDC_EPCTL_CNAK (1 << 8)
  46. #define UDC_EPCTL_SNAK (1 << 7)
  47. #define UDC_EPCTL_NAK (1 << 6)
  48. #define UDC_EPCTL_P (1 << 3)
  49. #define UDC_EPCTL_F (1 << 1)
  50. #define UDC_EPCTL_S (1 << 0)
  51. #define UDC_EPCTL_ET_SHIFT 4
  52. /* Mask patern */
  53. #define UDC_EPCTL_ET_MASK 0x00000030
  54. /* Value for ET field */
  55. #define UDC_EPCTL_ET_CONTROL 0
  56. #define UDC_EPCTL_ET_ISO 1
  57. #define UDC_EPCTL_ET_BULK 2
  58. #define UDC_EPCTL_ET_INTERRUPT 3
  59. /* Endpoint status register */
  60. /* Bit position */
  61. #define UDC_EPSTS_XFERDONE (1 << 27)
  62. #define UDC_EPSTS_RSS (1 << 26)
  63. #define UDC_EPSTS_RCS (1 << 25)
  64. #define UDC_EPSTS_TXEMPTY (1 << 24)
  65. #define UDC_EPSTS_TDC (1 << 10)
  66. #define UDC_EPSTS_HE (1 << 9)
  67. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  68. #define UDC_EPSTS_BNA (1 << 7)
  69. #define UDC_EPSTS_IN (1 << 6)
  70. #define UDC_EPSTS_OUT_SHIFT 4
  71. /* Mask patern */
  72. #define UDC_EPSTS_OUT_MASK 0x00000030
  73. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  74. /* Value for OUT field */
  75. #define UDC_EPSTS_OUT_SETUP 2
  76. #define UDC_EPSTS_OUT_DATA 1
  77. /* Device configuration register */
  78. /* Bit position */
  79. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  80. #define UDC_DEVCFG_SP (1 << 3)
  81. /* SPD Valee */
  82. #define UDC_DEVCFG_SPD_HS 0x0
  83. #define UDC_DEVCFG_SPD_FS 0x1
  84. #define UDC_DEVCFG_SPD_LS 0x2
  85. /* Device control register */
  86. /* Bit position */
  87. #define UDC_DEVCTL_THLEN_SHIFT 24
  88. #define UDC_DEVCTL_BRLEN_SHIFT 16
  89. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  90. #define UDC_DEVCTL_SD (1 << 10)
  91. #define UDC_DEVCTL_MODE (1 << 9)
  92. #define UDC_DEVCTL_BREN (1 << 8)
  93. #define UDC_DEVCTL_THE (1 << 7)
  94. #define UDC_DEVCTL_DU (1 << 4)
  95. #define UDC_DEVCTL_TDE (1 << 3)
  96. #define UDC_DEVCTL_RDE (1 << 2)
  97. #define UDC_DEVCTL_RES (1 << 0)
  98. /* Device status register */
  99. /* Bit position */
  100. #define UDC_DEVSTS_TS_SHIFT 18
  101. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  102. #define UDC_DEVSTS_ALT_SHIFT 8
  103. #define UDC_DEVSTS_INTF_SHIFT 4
  104. #define UDC_DEVSTS_CFG_SHIFT 0
  105. /* Mask patern */
  106. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  107. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  108. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  109. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  110. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  111. /* value for maximum speed for SPEED field */
  112. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  113. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  114. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  115. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  116. /* Device irq register */
  117. /* Bit position */
  118. #define UDC_DEVINT_RWKP (1 << 7)
  119. #define UDC_DEVINT_ENUM (1 << 6)
  120. #define UDC_DEVINT_SOF (1 << 5)
  121. #define UDC_DEVINT_US (1 << 4)
  122. #define UDC_DEVINT_UR (1 << 3)
  123. #define UDC_DEVINT_ES (1 << 2)
  124. #define UDC_DEVINT_SI (1 << 1)
  125. #define UDC_DEVINT_SC (1 << 0)
  126. /* Mask patern */
  127. #define UDC_DEVINT_MSK 0x7f
  128. /* Endpoint irq register */
  129. /* Bit position */
  130. #define UDC_EPINT_IN_SHIFT 0
  131. #define UDC_EPINT_OUT_SHIFT 16
  132. #define UDC_EPINT_IN_EP0 (1 << 0)
  133. #define UDC_EPINT_OUT_EP0 (1 << 16)
  134. /* Mask patern */
  135. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  136. /* UDC_CSR_BUSY Status register */
  137. /* Bit position */
  138. #define UDC_CSR_BUSY (1 << 0)
  139. /* SOFT RESET register */
  140. /* Bit position */
  141. #define UDC_PSRST (1 << 1)
  142. #define UDC_SRST (1 << 0)
  143. /* USB_DEVICE endpoint register */
  144. /* Bit position */
  145. #define UDC_CSR_NE_NUM_SHIFT 0
  146. #define UDC_CSR_NE_DIR_SHIFT 4
  147. #define UDC_CSR_NE_TYPE_SHIFT 5
  148. #define UDC_CSR_NE_CFG_SHIFT 7
  149. #define UDC_CSR_NE_INTF_SHIFT 11
  150. #define UDC_CSR_NE_ALT_SHIFT 15
  151. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  152. /* Mask patern */
  153. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  154. #define UDC_CSR_NE_DIR_MASK 0x00000010
  155. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  156. #define UDC_CSR_NE_CFG_MASK 0x00000780
  157. #define UDC_CSR_NE_INTF_MASK 0x00007800
  158. #define UDC_CSR_NE_ALT_MASK 0x00078000
  159. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  160. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  161. #define PCH_UDC_EPINT(in, num)\
  162. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  163. /* Index of endpoint */
  164. #define UDC_EP0IN_IDX 0
  165. #define UDC_EP0OUT_IDX 1
  166. #define UDC_EPIN_IDX(ep) (ep * 2)
  167. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  168. #define PCH_UDC_EP0 0
  169. #define PCH_UDC_EP1 1
  170. #define PCH_UDC_EP2 2
  171. #define PCH_UDC_EP3 3
  172. /* Number of endpoint */
  173. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  174. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  175. /* Length Value */
  176. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  177. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  178. /* Value of EP Buffer Size */
  179. #define UDC_EP0IN_BUFF_SIZE 16
  180. #define UDC_EPIN_BUFF_SIZE 256
  181. #define UDC_EP0OUT_BUFF_SIZE 16
  182. #define UDC_EPOUT_BUFF_SIZE 256
  183. /* Value of EP maximum packet size */
  184. #define UDC_EP0IN_MAX_PKT_SIZE 64
  185. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  186. #define UDC_BULK_MAX_PKT_SIZE 512
  187. /* DMA */
  188. #define DMA_DIR_RX 1 /* DMA for data receive */
  189. #define DMA_DIR_TX 2 /* DMA for data transmit */
  190. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  191. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  192. /**
  193. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  194. * for data
  195. * @status: Status quadlet
  196. * @reserved: Reserved
  197. * @dataptr: Buffer descriptor
  198. * @next: Next descriptor
  199. */
  200. struct pch_udc_data_dma_desc {
  201. u32 status;
  202. u32 reserved;
  203. u32 dataptr;
  204. u32 next;
  205. };
  206. /**
  207. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  208. * for control data
  209. * @status: Status
  210. * @reserved: Reserved
  211. * @data12: First setup word
  212. * @data34: Second setup word
  213. */
  214. struct pch_udc_stp_dma_desc {
  215. u32 status;
  216. u32 reserved;
  217. struct usb_ctrlrequest request;
  218. } __attribute((packed));
  219. /* DMA status definitions */
  220. /* Buffer status */
  221. #define PCH_UDC_BUFF_STS 0xC0000000
  222. #define PCH_UDC_BS_HST_RDY 0x00000000
  223. #define PCH_UDC_BS_DMA_BSY 0x40000000
  224. #define PCH_UDC_BS_DMA_DONE 0x80000000
  225. #define PCH_UDC_BS_HST_BSY 0xC0000000
  226. /* Rx/Tx Status */
  227. #define PCH_UDC_RXTX_STS 0x30000000
  228. #define PCH_UDC_RTS_SUCC 0x00000000
  229. #define PCH_UDC_RTS_DESERR 0x10000000
  230. #define PCH_UDC_RTS_BUFERR 0x30000000
  231. /* Last Descriptor Indication */
  232. #define PCH_UDC_DMA_LAST 0x08000000
  233. /* Number of Rx/Tx Bytes Mask */
  234. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  235. /**
  236. * struct pch_udc_cfg_data - Structure to hold current configuration
  237. * and interface information
  238. * @cur_cfg: current configuration in use
  239. * @cur_intf: current interface in use
  240. * @cur_alt: current alt interface in use
  241. */
  242. struct pch_udc_cfg_data {
  243. u16 cur_cfg;
  244. u16 cur_intf;
  245. u16 cur_alt;
  246. };
  247. /**
  248. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  249. * @ep: embedded ep request
  250. * @td_stp_phys: for setup request
  251. * @td_data_phys: for data request
  252. * @td_stp: for setup request
  253. * @td_data: for data request
  254. * @dev: reference to device struct
  255. * @offset_addr: offset address of ep register
  256. * @desc: for this ep
  257. * @queue: queue for requests
  258. * @num: endpoint number
  259. * @in: endpoint is IN
  260. * @halted: endpoint halted?
  261. * @epsts: Endpoint status
  262. */
  263. struct pch_udc_ep {
  264. struct usb_ep ep;
  265. dma_addr_t td_stp_phys;
  266. dma_addr_t td_data_phys;
  267. struct pch_udc_stp_dma_desc *td_stp;
  268. struct pch_udc_data_dma_desc *td_data;
  269. struct pch_udc_dev *dev;
  270. unsigned long offset_addr;
  271. struct list_head queue;
  272. unsigned num:5,
  273. in:1,
  274. halted:1;
  275. unsigned long epsts;
  276. };
  277. /**
  278. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  279. * for detecting VBUS
  280. * @port: gpio port number
  281. * @intr: gpio interrupt number
  282. * @irq_work_fall Structure for WorkQueue
  283. * @irq_work_rise Structure for WorkQueue
  284. */
  285. struct pch_vbus_gpio_data {
  286. int port;
  287. int intr;
  288. struct work_struct irq_work_fall;
  289. struct work_struct irq_work_rise;
  290. };
  291. /**
  292. * struct pch_udc_dev - Structure holding complete information
  293. * of the PCH USB device
  294. * @gadget: gadget driver data
  295. * @driver: reference to gadget driver bound
  296. * @pdev: reference to the PCI device
  297. * @ep: array of endpoints
  298. * @lock: protects all state
  299. * @stall: stall requested
  300. * @prot_stall: protcol stall requested
  301. * @registered: driver registered with system
  302. * @suspended: driver in suspended state
  303. * @connected: gadget driver associated
  304. * @vbus_session: required vbus_session state
  305. * @set_cfg_not_acked: pending acknowledgement 4 setup
  306. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  307. * @data_requests: DMA pool for data requests
  308. * @stp_requests: DMA pool for setup requests
  309. * @dma_addr: DMA pool for received
  310. * @setup_data: Received setup data
  311. * @base_addr: for mapped device memory
  312. * @cfg_data: current cfg, intf, and alt in use
  313. * @vbus_gpio: GPIO informaton for detecting VBUS
  314. */
  315. struct pch_udc_dev {
  316. struct usb_gadget gadget;
  317. struct usb_gadget_driver *driver;
  318. struct pci_dev *pdev;
  319. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  320. spinlock_t lock; /* protects all state */
  321. unsigned
  322. stall:1,
  323. prot_stall:1,
  324. suspended:1,
  325. connected:1,
  326. vbus_session:1,
  327. set_cfg_not_acked:1,
  328. waiting_zlp_ack:1;
  329. struct dma_pool *data_requests;
  330. struct dma_pool *stp_requests;
  331. dma_addr_t dma_addr;
  332. struct usb_ctrlrequest setup_data;
  333. void __iomem *base_addr;
  334. struct pch_udc_cfg_data cfg_data;
  335. struct pch_vbus_gpio_data vbus_gpio;
  336. };
  337. #define to_pch_udc(g) (container_of((g), struct pch_udc_dev, gadget))
  338. #define PCH_UDC_PCI_BAR_QUARK_X1000 0
  339. #define PCH_UDC_PCI_BAR 1
  340. #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC 0x0939
  341. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  342. #define PCI_VENDOR_ID_ROHM 0x10DB
  343. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  344. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  345. static const char ep0_string[] = "ep0in";
  346. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  347. static bool speed_fs;
  348. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  349. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  350. /**
  351. * struct pch_udc_request - Structure holding a PCH USB device request packet
  352. * @req: embedded ep request
  353. * @td_data_phys: phys. address
  354. * @td_data: first dma desc. of chain
  355. * @td_data_last: last dma desc. of chain
  356. * @queue: associated queue
  357. * @dma_going: DMA in progress for request
  358. * @dma_mapped: DMA memory mapped for request
  359. * @dma_done: DMA completed for request
  360. * @chain_len: chain length
  361. * @buf: Buffer memory for align adjustment
  362. * @dma: DMA memory for align adjustment
  363. */
  364. struct pch_udc_request {
  365. struct usb_request req;
  366. dma_addr_t td_data_phys;
  367. struct pch_udc_data_dma_desc *td_data;
  368. struct pch_udc_data_dma_desc *td_data_last;
  369. struct list_head queue;
  370. unsigned dma_going:1,
  371. dma_mapped:1,
  372. dma_done:1;
  373. unsigned chain_len;
  374. void *buf;
  375. dma_addr_t dma;
  376. };
  377. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  378. {
  379. return ioread32(dev->base_addr + reg);
  380. }
  381. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  382. unsigned long val, unsigned long reg)
  383. {
  384. iowrite32(val, dev->base_addr + reg);
  385. }
  386. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  387. unsigned long reg,
  388. unsigned long bitmask)
  389. {
  390. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  391. }
  392. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  393. unsigned long reg,
  394. unsigned long bitmask)
  395. {
  396. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  397. }
  398. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  399. {
  400. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  401. }
  402. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  403. unsigned long val, unsigned long reg)
  404. {
  405. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  406. }
  407. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  408. unsigned long reg,
  409. unsigned long bitmask)
  410. {
  411. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  412. }
  413. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  414. unsigned long reg,
  415. unsigned long bitmask)
  416. {
  417. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  418. }
  419. /**
  420. * pch_udc_csr_busy() - Wait till idle.
  421. * @dev: Reference to pch_udc_dev structure
  422. */
  423. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  424. {
  425. unsigned int count = 200;
  426. /* Wait till idle */
  427. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  428. && --count)
  429. cpu_relax();
  430. if (!count)
  431. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  432. }
  433. /**
  434. * pch_udc_write_csr() - Write the command and status registers.
  435. * @dev: Reference to pch_udc_dev structure
  436. * @val: value to be written to CSR register
  437. * @addr: address of CSR register
  438. */
  439. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  440. unsigned int ep)
  441. {
  442. unsigned long reg = PCH_UDC_CSR(ep);
  443. pch_udc_csr_busy(dev); /* Wait till idle */
  444. pch_udc_writel(dev, val, reg);
  445. pch_udc_csr_busy(dev); /* Wait till idle */
  446. }
  447. /**
  448. * pch_udc_read_csr() - Read the command and status registers.
  449. * @dev: Reference to pch_udc_dev structure
  450. * @addr: address of CSR register
  451. *
  452. * Return codes: content of CSR register
  453. */
  454. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  455. {
  456. unsigned long reg = PCH_UDC_CSR(ep);
  457. pch_udc_csr_busy(dev); /* Wait till idle */
  458. pch_udc_readl(dev, reg); /* Dummy read */
  459. pch_udc_csr_busy(dev); /* Wait till idle */
  460. return pch_udc_readl(dev, reg);
  461. }
  462. /**
  463. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  464. * @dev: Reference to pch_udc_dev structure
  465. */
  466. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  467. {
  468. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  469. mdelay(1);
  470. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  471. }
  472. /**
  473. * pch_udc_get_frame() - Get the current frame from device status register
  474. * @dev: Reference to pch_udc_dev structure
  475. * Retern current frame
  476. */
  477. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  478. {
  479. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  480. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  481. }
  482. /**
  483. * pch_udc_clear_selfpowered() - Clear the self power control
  484. * @dev: Reference to pch_udc_regs structure
  485. */
  486. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  487. {
  488. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  489. }
  490. /**
  491. * pch_udc_set_selfpowered() - Set the self power control
  492. * @dev: Reference to pch_udc_regs structure
  493. */
  494. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  495. {
  496. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  497. }
  498. /**
  499. * pch_udc_set_disconnect() - Set the disconnect status.
  500. * @dev: Reference to pch_udc_regs structure
  501. */
  502. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  503. {
  504. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  505. }
  506. /**
  507. * pch_udc_clear_disconnect() - Clear the disconnect status.
  508. * @dev: Reference to pch_udc_regs structure
  509. */
  510. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  511. {
  512. /* Clear the disconnect */
  513. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  514. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  515. mdelay(1);
  516. /* Resume USB signalling */
  517. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  518. }
  519. /**
  520. * pch_udc_reconnect() - This API initializes usb device controller,
  521. * and clear the disconnect status.
  522. * @dev: Reference to pch_udc_regs structure
  523. */
  524. static void pch_udc_init(struct pch_udc_dev *dev);
  525. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  526. {
  527. pch_udc_init(dev);
  528. /* enable device interrupts */
  529. /* pch_udc_enable_interrupts() */
  530. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  531. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  532. /* Clear the disconnect */
  533. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  534. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  535. mdelay(1);
  536. /* Resume USB signalling */
  537. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  538. }
  539. /**
  540. * pch_udc_vbus_session() - set or clearr the disconnect status.
  541. * @dev: Reference to pch_udc_regs structure
  542. * @is_active: Parameter specifying the action
  543. * 0: indicating VBUS power is ending
  544. * !0: indicating VBUS power is starting
  545. */
  546. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  547. int is_active)
  548. {
  549. if (is_active) {
  550. pch_udc_reconnect(dev);
  551. dev->vbus_session = 1;
  552. } else {
  553. if (dev->driver && dev->driver->disconnect) {
  554. spin_lock(&dev->lock);
  555. dev->driver->disconnect(&dev->gadget);
  556. spin_unlock(&dev->lock);
  557. }
  558. pch_udc_set_disconnect(dev);
  559. dev->vbus_session = 0;
  560. }
  561. }
  562. /**
  563. * pch_udc_ep_set_stall() - Set the stall of endpoint
  564. * @ep: Reference to structure of type pch_udc_ep_regs
  565. */
  566. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  567. {
  568. if (ep->in) {
  569. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  570. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  571. } else {
  572. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  573. }
  574. }
  575. /**
  576. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  577. * @ep: Reference to structure of type pch_udc_ep_regs
  578. */
  579. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  580. {
  581. /* Clear the stall */
  582. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  583. /* Clear NAK by writing CNAK */
  584. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  585. }
  586. /**
  587. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  588. * @ep: Reference to structure of type pch_udc_ep_regs
  589. * @type: Type of endpoint
  590. */
  591. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  592. u8 type)
  593. {
  594. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  595. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  596. }
  597. /**
  598. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  599. * @ep: Reference to structure of type pch_udc_ep_regs
  600. * @buf_size: The buffer word size
  601. */
  602. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  603. u32 buf_size, u32 ep_in)
  604. {
  605. u32 data;
  606. if (ep_in) {
  607. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  608. data = (data & 0xffff0000) | (buf_size & 0xffff);
  609. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  610. } else {
  611. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  612. data = (buf_size << 16) | (data & 0xffff);
  613. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  614. }
  615. }
  616. /**
  617. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  618. * @ep: Reference to structure of type pch_udc_ep_regs
  619. * @pkt_size: The packet byte size
  620. */
  621. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  622. {
  623. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  624. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  625. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  626. }
  627. /**
  628. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  629. * @ep: Reference to structure of type pch_udc_ep_regs
  630. * @addr: Address of the register
  631. */
  632. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  633. {
  634. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  635. }
  636. /**
  637. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  638. * @ep: Reference to structure of type pch_udc_ep_regs
  639. * @addr: Address of the register
  640. */
  641. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  642. {
  643. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  644. }
  645. /**
  646. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  647. * @ep: Reference to structure of type pch_udc_ep_regs
  648. */
  649. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  650. {
  651. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  652. }
  653. /**
  654. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  655. * @ep: Reference to structure of type pch_udc_ep_regs
  656. */
  657. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  658. {
  659. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  660. }
  661. /**
  662. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  663. * @ep: Reference to structure of type pch_udc_ep_regs
  664. */
  665. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  666. {
  667. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  668. }
  669. /**
  670. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  671. * register depending on the direction specified
  672. * @dev: Reference to structure of type pch_udc_regs
  673. * @dir: whether Tx or Rx
  674. * DMA_DIR_RX: Receive
  675. * DMA_DIR_TX: Transmit
  676. */
  677. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  678. {
  679. if (dir == DMA_DIR_RX)
  680. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  681. else if (dir == DMA_DIR_TX)
  682. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  683. }
  684. /**
  685. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  686. * register depending on the direction specified
  687. * @dev: Reference to structure of type pch_udc_regs
  688. * @dir: Whether Tx or Rx
  689. * DMA_DIR_RX: Receive
  690. * DMA_DIR_TX: Transmit
  691. */
  692. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  693. {
  694. if (dir == DMA_DIR_RX)
  695. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  696. else if (dir == DMA_DIR_TX)
  697. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  698. }
  699. /**
  700. * pch_udc_set_csr_done() - Set the device control register
  701. * CSR done field (bit 13)
  702. * @dev: reference to structure of type pch_udc_regs
  703. */
  704. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  705. {
  706. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  707. }
  708. /**
  709. * pch_udc_disable_interrupts() - Disables the specified interrupts
  710. * @dev: Reference to structure of type pch_udc_regs
  711. * @mask: Mask to disable interrupts
  712. */
  713. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  714. u32 mask)
  715. {
  716. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  717. }
  718. /**
  719. * pch_udc_enable_interrupts() - Enable the specified interrupts
  720. * @dev: Reference to structure of type pch_udc_regs
  721. * @mask: Mask to enable interrupts
  722. */
  723. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  724. u32 mask)
  725. {
  726. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  727. }
  728. /**
  729. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  730. * @dev: Reference to structure of type pch_udc_regs
  731. * @mask: Mask to disable interrupts
  732. */
  733. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  734. u32 mask)
  735. {
  736. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  737. }
  738. /**
  739. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  740. * @dev: Reference to structure of type pch_udc_regs
  741. * @mask: Mask to enable interrupts
  742. */
  743. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  744. u32 mask)
  745. {
  746. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  747. }
  748. /**
  749. * pch_udc_read_device_interrupts() - Read the device interrupts
  750. * @dev: Reference to structure of type pch_udc_regs
  751. * Retern The device interrupts
  752. */
  753. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  754. {
  755. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  756. }
  757. /**
  758. * pch_udc_write_device_interrupts() - Write device interrupts
  759. * @dev: Reference to structure of type pch_udc_regs
  760. * @val: The value to be written to interrupt register
  761. */
  762. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  763. u32 val)
  764. {
  765. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  766. }
  767. /**
  768. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  769. * @dev: Reference to structure of type pch_udc_regs
  770. * Retern The endpoint interrupt
  771. */
  772. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  773. {
  774. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  775. }
  776. /**
  777. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  778. * @dev: Reference to structure of type pch_udc_regs
  779. * @val: The value to be written to interrupt register
  780. */
  781. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  782. u32 val)
  783. {
  784. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  785. }
  786. /**
  787. * pch_udc_read_device_status() - Read the device status
  788. * @dev: Reference to structure of type pch_udc_regs
  789. * Retern The device status
  790. */
  791. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  792. {
  793. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  794. }
  795. /**
  796. * pch_udc_read_ep_control() - Read the endpoint control
  797. * @ep: Reference to structure of type pch_udc_ep_regs
  798. * Retern The endpoint control register value
  799. */
  800. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  801. {
  802. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  803. }
  804. /**
  805. * pch_udc_clear_ep_control() - Clear the endpoint control register
  806. * @ep: Reference to structure of type pch_udc_ep_regs
  807. * Retern The endpoint control register value
  808. */
  809. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  810. {
  811. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  812. }
  813. /**
  814. * pch_udc_read_ep_status() - Read the endpoint status
  815. * @ep: Reference to structure of type pch_udc_ep_regs
  816. * Retern The endpoint status
  817. */
  818. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  819. {
  820. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  821. }
  822. /**
  823. * pch_udc_clear_ep_status() - Clear the endpoint status
  824. * @ep: Reference to structure of type pch_udc_ep_regs
  825. * @stat: Endpoint status
  826. */
  827. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  828. u32 stat)
  829. {
  830. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  831. }
  832. /**
  833. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  834. * of the endpoint control register
  835. * @ep: Reference to structure of type pch_udc_ep_regs
  836. */
  837. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  838. {
  839. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  840. }
  841. /**
  842. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  843. * of the endpoint control register
  844. * @ep: reference to structure of type pch_udc_ep_regs
  845. */
  846. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  847. {
  848. unsigned int loopcnt = 0;
  849. struct pch_udc_dev *dev = ep->dev;
  850. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  851. return;
  852. if (!ep->in) {
  853. loopcnt = 10000;
  854. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  855. --loopcnt)
  856. udelay(5);
  857. if (!loopcnt)
  858. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  859. __func__);
  860. }
  861. loopcnt = 10000;
  862. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  863. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  864. udelay(5);
  865. }
  866. if (!loopcnt)
  867. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  868. __func__, ep->num, (ep->in ? "in" : "out"));
  869. }
  870. /**
  871. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  872. * @ep: reference to structure of type pch_udc_ep_regs
  873. * @dir: direction of endpoint
  874. * 0: endpoint is OUT
  875. * !0: endpoint is IN
  876. */
  877. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  878. {
  879. if (dir) { /* IN ep */
  880. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  881. return;
  882. }
  883. }
  884. /**
  885. * pch_udc_ep_enable() - This api enables endpoint
  886. * @regs: Reference to structure pch_udc_ep_regs
  887. * @desc: endpoint descriptor
  888. */
  889. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  890. struct pch_udc_cfg_data *cfg,
  891. const struct usb_endpoint_descriptor *desc)
  892. {
  893. u32 val = 0;
  894. u32 buff_size = 0;
  895. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  896. if (ep->in)
  897. buff_size = UDC_EPIN_BUFF_SIZE;
  898. else
  899. buff_size = UDC_EPOUT_BUFF_SIZE;
  900. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  901. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  902. pch_udc_ep_set_nak(ep);
  903. pch_udc_ep_fifo_flush(ep, ep->in);
  904. /* Configure the endpoint */
  905. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  906. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  907. UDC_CSR_NE_TYPE_SHIFT) |
  908. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  909. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  910. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  911. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  912. if (ep->in)
  913. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  914. else
  915. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  916. }
  917. /**
  918. * pch_udc_ep_disable() - This api disables endpoint
  919. * @regs: Reference to structure pch_udc_ep_regs
  920. */
  921. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  922. {
  923. if (ep->in) {
  924. /* flush the fifo */
  925. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  926. /* set NAK */
  927. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  928. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  929. } else {
  930. /* set NAK */
  931. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  932. }
  933. /* reset desc pointer */
  934. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  935. }
  936. /**
  937. * pch_udc_wait_ep_stall() - Wait EP stall.
  938. * @dev: Reference to pch_udc_dev structure
  939. */
  940. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  941. {
  942. unsigned int count = 10000;
  943. /* Wait till idle */
  944. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  945. udelay(5);
  946. if (!count)
  947. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  948. }
  949. /**
  950. * pch_udc_init() - This API initializes usb device controller
  951. * @dev: Rreference to pch_udc_regs structure
  952. */
  953. static void pch_udc_init(struct pch_udc_dev *dev)
  954. {
  955. if (NULL == dev) {
  956. pr_err("%s: Invalid address\n", __func__);
  957. return;
  958. }
  959. /* Soft Reset and Reset PHY */
  960. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  961. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  962. mdelay(1);
  963. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  964. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  965. mdelay(1);
  966. /* mask and clear all device interrupts */
  967. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  968. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  969. /* mask and clear all ep interrupts */
  970. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  971. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  972. /* enable dynamic CSR programmingi, self powered and device speed */
  973. if (speed_fs)
  974. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  975. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  976. else /* defaul high speed */
  977. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  978. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  979. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  980. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  981. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  982. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  983. UDC_DEVCTL_THE);
  984. }
  985. /**
  986. * pch_udc_exit() - This API exit usb device controller
  987. * @dev: Reference to pch_udc_regs structure
  988. */
  989. static void pch_udc_exit(struct pch_udc_dev *dev)
  990. {
  991. /* mask all device interrupts */
  992. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  993. /* mask all ep interrupts */
  994. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  995. /* put device in disconnected state */
  996. pch_udc_set_disconnect(dev);
  997. }
  998. /**
  999. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1000. * @gadget: Reference to the gadget driver
  1001. *
  1002. * Return codes:
  1003. * 0: Success
  1004. * -EINVAL: If the gadget passed is NULL
  1005. */
  1006. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1007. {
  1008. struct pch_udc_dev *dev;
  1009. if (!gadget)
  1010. return -EINVAL;
  1011. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1012. return pch_udc_get_frame(dev);
  1013. }
  1014. /**
  1015. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1016. * @gadget: Reference to the gadget driver
  1017. *
  1018. * Return codes:
  1019. * 0: Success
  1020. * -EINVAL: If the gadget passed is NULL
  1021. */
  1022. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1023. {
  1024. struct pch_udc_dev *dev;
  1025. unsigned long flags;
  1026. if (!gadget)
  1027. return -EINVAL;
  1028. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1029. spin_lock_irqsave(&dev->lock, flags);
  1030. pch_udc_rmt_wakeup(dev);
  1031. spin_unlock_irqrestore(&dev->lock, flags);
  1032. return 0;
  1033. }
  1034. /**
  1035. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1036. * is self powered or not
  1037. * @gadget: Reference to the gadget driver
  1038. * @value: Specifies self powered or not
  1039. *
  1040. * Return codes:
  1041. * 0: Success
  1042. * -EINVAL: If the gadget passed is NULL
  1043. */
  1044. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1045. {
  1046. struct pch_udc_dev *dev;
  1047. if (!gadget)
  1048. return -EINVAL;
  1049. gadget->is_selfpowered = (value != 0);
  1050. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1051. if (value)
  1052. pch_udc_set_selfpowered(dev);
  1053. else
  1054. pch_udc_clear_selfpowered(dev);
  1055. return 0;
  1056. }
  1057. /**
  1058. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1059. * visible/invisible to the host
  1060. * @gadget: Reference to the gadget driver
  1061. * @is_on: Specifies whether the pull up is made active or inactive
  1062. *
  1063. * Return codes:
  1064. * 0: Success
  1065. * -EINVAL: If the gadget passed is NULL
  1066. */
  1067. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1068. {
  1069. struct pch_udc_dev *dev;
  1070. if (!gadget)
  1071. return -EINVAL;
  1072. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1073. if (is_on) {
  1074. pch_udc_reconnect(dev);
  1075. } else {
  1076. if (dev->driver && dev->driver->disconnect) {
  1077. spin_lock(&dev->lock);
  1078. dev->driver->disconnect(&dev->gadget);
  1079. spin_unlock(&dev->lock);
  1080. }
  1081. pch_udc_set_disconnect(dev);
  1082. }
  1083. return 0;
  1084. }
  1085. /**
  1086. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1087. * transceiver (or GPIO) that
  1088. * detects a VBUS power session starting/ending
  1089. * @gadget: Reference to the gadget driver
  1090. * @is_active: specifies whether the session is starting or ending
  1091. *
  1092. * Return codes:
  1093. * 0: Success
  1094. * -EINVAL: If the gadget passed is NULL
  1095. */
  1096. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1097. {
  1098. struct pch_udc_dev *dev;
  1099. if (!gadget)
  1100. return -EINVAL;
  1101. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1102. pch_udc_vbus_session(dev, is_active);
  1103. return 0;
  1104. }
  1105. /**
  1106. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1107. * SET_CONFIGURATION calls to
  1108. * specify how much power the device can consume
  1109. * @gadget: Reference to the gadget driver
  1110. * @mA: specifies the current limit in 2mA unit
  1111. *
  1112. * Return codes:
  1113. * -EINVAL: If the gadget passed is NULL
  1114. * -EOPNOTSUPP:
  1115. */
  1116. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1117. {
  1118. return -EOPNOTSUPP;
  1119. }
  1120. static int pch_udc_start(struct usb_gadget *g,
  1121. struct usb_gadget_driver *driver);
  1122. static int pch_udc_stop(struct usb_gadget *g);
  1123. static const struct usb_gadget_ops pch_udc_ops = {
  1124. .get_frame = pch_udc_pcd_get_frame,
  1125. .wakeup = pch_udc_pcd_wakeup,
  1126. .set_selfpowered = pch_udc_pcd_selfpowered,
  1127. .pullup = pch_udc_pcd_pullup,
  1128. .vbus_session = pch_udc_pcd_vbus_session,
  1129. .vbus_draw = pch_udc_pcd_vbus_draw,
  1130. .udc_start = pch_udc_start,
  1131. .udc_stop = pch_udc_stop,
  1132. };
  1133. /**
  1134. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1135. * @dev: Reference to the driver structure
  1136. *
  1137. * Return value:
  1138. * 1: VBUS is high
  1139. * 0: VBUS is low
  1140. * -1: It is not enable to detect VBUS using GPIO
  1141. */
  1142. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1143. {
  1144. int vbus = 0;
  1145. if (dev->vbus_gpio.port)
  1146. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1147. else
  1148. vbus = -1;
  1149. return vbus;
  1150. }
  1151. /**
  1152. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1153. * If VBUS is Low, disconnect is processed
  1154. * @irq_work: Structure for WorkQueue
  1155. *
  1156. */
  1157. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1158. {
  1159. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1160. struct pch_vbus_gpio_data, irq_work_fall);
  1161. struct pch_udc_dev *dev =
  1162. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1163. int vbus_saved = -1;
  1164. int vbus;
  1165. int count;
  1166. if (!dev->vbus_gpio.port)
  1167. return;
  1168. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1169. count++) {
  1170. vbus = pch_vbus_gpio_get_value(dev);
  1171. if ((vbus_saved == vbus) && (vbus == 0)) {
  1172. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1173. if (dev->driver
  1174. && dev->driver->disconnect) {
  1175. dev->driver->disconnect(
  1176. &dev->gadget);
  1177. }
  1178. if (dev->vbus_gpio.intr)
  1179. pch_udc_init(dev);
  1180. else
  1181. pch_udc_reconnect(dev);
  1182. return;
  1183. }
  1184. vbus_saved = vbus;
  1185. mdelay(PCH_VBUS_INTERVAL);
  1186. }
  1187. }
  1188. /**
  1189. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1190. * If VBUS is High, connect is processed
  1191. * @irq_work: Structure for WorkQueue
  1192. *
  1193. */
  1194. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1195. {
  1196. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1197. struct pch_vbus_gpio_data, irq_work_rise);
  1198. struct pch_udc_dev *dev =
  1199. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1200. int vbus;
  1201. if (!dev->vbus_gpio.port)
  1202. return;
  1203. mdelay(PCH_VBUS_INTERVAL);
  1204. vbus = pch_vbus_gpio_get_value(dev);
  1205. if (vbus == 1) {
  1206. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1207. pch_udc_reconnect(dev);
  1208. return;
  1209. }
  1210. }
  1211. /**
  1212. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1213. * @irq: Interrupt request number
  1214. * @dev: Reference to the device structure
  1215. *
  1216. * Return codes:
  1217. * 0: Success
  1218. * -EINVAL: GPIO port is invalid or can't be initialized.
  1219. */
  1220. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1221. {
  1222. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1223. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1224. return IRQ_NONE;
  1225. if (pch_vbus_gpio_get_value(dev))
  1226. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1227. else
  1228. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1229. return IRQ_HANDLED;
  1230. }
  1231. /**
  1232. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1233. * @dev: Reference to the driver structure
  1234. * @vbus_gpio Number of GPIO port to detect gpio
  1235. *
  1236. * Return codes:
  1237. * 0: Success
  1238. * -EINVAL: GPIO port is invalid or can't be initialized.
  1239. */
  1240. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1241. {
  1242. int err;
  1243. int irq_num = 0;
  1244. dev->vbus_gpio.port = 0;
  1245. dev->vbus_gpio.intr = 0;
  1246. if (vbus_gpio_port <= -1)
  1247. return -EINVAL;
  1248. err = gpio_is_valid(vbus_gpio_port);
  1249. if (!err) {
  1250. pr_err("%s: gpio port %d is invalid\n",
  1251. __func__, vbus_gpio_port);
  1252. return -EINVAL;
  1253. }
  1254. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1255. if (err) {
  1256. pr_err("%s: can't request gpio port %d, err: %d\n",
  1257. __func__, vbus_gpio_port, err);
  1258. return -EINVAL;
  1259. }
  1260. dev->vbus_gpio.port = vbus_gpio_port;
  1261. gpio_direction_input(vbus_gpio_port);
  1262. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1263. irq_num = gpio_to_irq(vbus_gpio_port);
  1264. if (irq_num > 0) {
  1265. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1266. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1267. "vbus_detect", dev);
  1268. if (!err) {
  1269. dev->vbus_gpio.intr = irq_num;
  1270. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1271. pch_vbus_gpio_work_rise);
  1272. } else {
  1273. pr_err("%s: can't request irq %d, err: %d\n",
  1274. __func__, irq_num, err);
  1275. }
  1276. }
  1277. return 0;
  1278. }
  1279. /**
  1280. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1281. * @dev: Reference to the driver structure
  1282. */
  1283. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1284. {
  1285. if (dev->vbus_gpio.intr)
  1286. free_irq(dev->vbus_gpio.intr, dev);
  1287. if (dev->vbus_gpio.port)
  1288. gpio_free(dev->vbus_gpio.port);
  1289. }
  1290. /**
  1291. * complete_req() - This API is invoked from the driver when processing
  1292. * of a request is complete
  1293. * @ep: Reference to the endpoint structure
  1294. * @req: Reference to the request structure
  1295. * @status: Indicates the success/failure of completion
  1296. */
  1297. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1298. int status)
  1299. __releases(&dev->lock)
  1300. __acquires(&dev->lock)
  1301. {
  1302. struct pch_udc_dev *dev;
  1303. unsigned halted = ep->halted;
  1304. list_del_init(&req->queue);
  1305. /* set new status if pending */
  1306. if (req->req.status == -EINPROGRESS)
  1307. req->req.status = status;
  1308. else
  1309. status = req->req.status;
  1310. dev = ep->dev;
  1311. if (req->dma_mapped) {
  1312. if (req->dma == DMA_ADDR_INVALID) {
  1313. if (ep->in)
  1314. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1315. req->req.length,
  1316. DMA_TO_DEVICE);
  1317. else
  1318. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1319. req->req.length,
  1320. DMA_FROM_DEVICE);
  1321. req->req.dma = DMA_ADDR_INVALID;
  1322. } else {
  1323. if (ep->in)
  1324. dma_unmap_single(&dev->pdev->dev, req->dma,
  1325. req->req.length,
  1326. DMA_TO_DEVICE);
  1327. else {
  1328. dma_unmap_single(&dev->pdev->dev, req->dma,
  1329. req->req.length,
  1330. DMA_FROM_DEVICE);
  1331. memcpy(req->req.buf, req->buf, req->req.length);
  1332. }
  1333. kfree(req->buf);
  1334. req->dma = DMA_ADDR_INVALID;
  1335. }
  1336. req->dma_mapped = 0;
  1337. }
  1338. ep->halted = 1;
  1339. spin_unlock(&dev->lock);
  1340. if (!ep->in)
  1341. pch_udc_ep_clear_rrdy(ep);
  1342. usb_gadget_giveback_request(&ep->ep, &req->req);
  1343. spin_lock(&dev->lock);
  1344. ep->halted = halted;
  1345. }
  1346. /**
  1347. * empty_req_queue() - This API empties the request queue of an endpoint
  1348. * @ep: Reference to the endpoint structure
  1349. */
  1350. static void empty_req_queue(struct pch_udc_ep *ep)
  1351. {
  1352. struct pch_udc_request *req;
  1353. ep->halted = 1;
  1354. while (!list_empty(&ep->queue)) {
  1355. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1356. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1357. }
  1358. }
  1359. /**
  1360. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1361. * for the request
  1362. * @dev Reference to the driver structure
  1363. * @req Reference to the request to be freed
  1364. *
  1365. * Return codes:
  1366. * 0: Success
  1367. */
  1368. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1369. struct pch_udc_request *req)
  1370. {
  1371. struct pch_udc_data_dma_desc *td = req->td_data;
  1372. unsigned i = req->chain_len;
  1373. dma_addr_t addr2;
  1374. dma_addr_t addr = (dma_addr_t)td->next;
  1375. td->next = 0x00;
  1376. for (; i > 1; --i) {
  1377. /* do not free first desc., will be done by free for request */
  1378. td = phys_to_virt(addr);
  1379. addr2 = (dma_addr_t)td->next;
  1380. dma_pool_free(dev->data_requests, td, addr);
  1381. addr = addr2;
  1382. }
  1383. req->chain_len = 1;
  1384. }
  1385. /**
  1386. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1387. * a DMA chain
  1388. * @ep: Reference to the endpoint structure
  1389. * @req: Reference to the request
  1390. * @buf_len: The buffer length
  1391. * @gfp_flags: Flags to be used while mapping the data buffer
  1392. *
  1393. * Return codes:
  1394. * 0: success,
  1395. * -ENOMEM: dma_pool_alloc invocation fails
  1396. */
  1397. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1398. struct pch_udc_request *req,
  1399. unsigned long buf_len,
  1400. gfp_t gfp_flags)
  1401. {
  1402. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1403. unsigned long bytes = req->req.length, i = 0;
  1404. dma_addr_t dma_addr;
  1405. unsigned len = 1;
  1406. if (req->chain_len > 1)
  1407. pch_udc_free_dma_chain(ep->dev, req);
  1408. if (req->dma == DMA_ADDR_INVALID)
  1409. td->dataptr = req->req.dma;
  1410. else
  1411. td->dataptr = req->dma;
  1412. td->status = PCH_UDC_BS_HST_BSY;
  1413. for (; ; bytes -= buf_len, ++len) {
  1414. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1415. if (bytes <= buf_len)
  1416. break;
  1417. last = td;
  1418. td = dma_pool_alloc(ep->dev->data_requests, gfp_flags,
  1419. &dma_addr);
  1420. if (!td)
  1421. goto nomem;
  1422. i += buf_len;
  1423. td->dataptr = req->td_data->dataptr + i;
  1424. last->next = dma_addr;
  1425. }
  1426. req->td_data_last = td;
  1427. td->status |= PCH_UDC_DMA_LAST;
  1428. td->next = req->td_data_phys;
  1429. req->chain_len = len;
  1430. return 0;
  1431. nomem:
  1432. if (len > 1) {
  1433. req->chain_len = len;
  1434. pch_udc_free_dma_chain(ep->dev, req);
  1435. }
  1436. req->chain_len = 1;
  1437. return -ENOMEM;
  1438. }
  1439. /**
  1440. * prepare_dma() - This function creates and initializes the DMA chain
  1441. * for the request
  1442. * @ep: Reference to the endpoint structure
  1443. * @req: Reference to the request
  1444. * @gfp: Flag to be used while mapping the data buffer
  1445. *
  1446. * Return codes:
  1447. * 0: Success
  1448. * Other 0: linux error number on failure
  1449. */
  1450. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1451. gfp_t gfp)
  1452. {
  1453. int retval;
  1454. /* Allocate and create a DMA chain */
  1455. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1456. if (retval) {
  1457. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1458. return retval;
  1459. }
  1460. if (ep->in)
  1461. req->td_data->status = (req->td_data->status &
  1462. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1463. return 0;
  1464. }
  1465. /**
  1466. * process_zlp() - This function process zero length packets
  1467. * from the gadget driver
  1468. * @ep: Reference to the endpoint structure
  1469. * @req: Reference to the request
  1470. */
  1471. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1472. {
  1473. struct pch_udc_dev *dev = ep->dev;
  1474. /* IN zlp's are handled by hardware */
  1475. complete_req(ep, req, 0);
  1476. /* if set_config or set_intf is waiting for ack by zlp
  1477. * then set CSR_DONE
  1478. */
  1479. if (dev->set_cfg_not_acked) {
  1480. pch_udc_set_csr_done(dev);
  1481. dev->set_cfg_not_acked = 0;
  1482. }
  1483. /* setup command is ACK'ed now by zlp */
  1484. if (!dev->stall && dev->waiting_zlp_ack) {
  1485. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1486. dev->waiting_zlp_ack = 0;
  1487. }
  1488. }
  1489. /**
  1490. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1491. * @ep: Reference to the endpoint structure
  1492. * @req: Reference to the request structure
  1493. */
  1494. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1495. struct pch_udc_request *req)
  1496. {
  1497. struct pch_udc_data_dma_desc *td_data;
  1498. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1499. td_data = req->td_data;
  1500. /* Set the status bits for all descriptors */
  1501. while (1) {
  1502. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1503. PCH_UDC_BS_HST_RDY;
  1504. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1505. break;
  1506. td_data = phys_to_virt(td_data->next);
  1507. }
  1508. /* Write the descriptor pointer */
  1509. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1510. req->dma_going = 1;
  1511. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1512. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1513. pch_udc_ep_clear_nak(ep);
  1514. pch_udc_ep_set_rrdy(ep);
  1515. }
  1516. /**
  1517. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1518. * from gadget driver
  1519. * @usbep: Reference to the USB endpoint structure
  1520. * @desc: Reference to the USB endpoint descriptor structure
  1521. *
  1522. * Return codes:
  1523. * 0: Success
  1524. * -EINVAL:
  1525. * -ESHUTDOWN:
  1526. */
  1527. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1528. const struct usb_endpoint_descriptor *desc)
  1529. {
  1530. struct pch_udc_ep *ep;
  1531. struct pch_udc_dev *dev;
  1532. unsigned long iflags;
  1533. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1534. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1535. return -EINVAL;
  1536. ep = container_of(usbep, struct pch_udc_ep, ep);
  1537. dev = ep->dev;
  1538. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1539. return -ESHUTDOWN;
  1540. spin_lock_irqsave(&dev->lock, iflags);
  1541. ep->ep.desc = desc;
  1542. ep->halted = 0;
  1543. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1544. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1545. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1546. spin_unlock_irqrestore(&dev->lock, iflags);
  1547. return 0;
  1548. }
  1549. /**
  1550. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1551. * from gadget driver
  1552. * @usbep Reference to the USB endpoint structure
  1553. *
  1554. * Return codes:
  1555. * 0: Success
  1556. * -EINVAL:
  1557. */
  1558. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1559. {
  1560. struct pch_udc_ep *ep;
  1561. unsigned long iflags;
  1562. if (!usbep)
  1563. return -EINVAL;
  1564. ep = container_of(usbep, struct pch_udc_ep, ep);
  1565. if ((usbep->name == ep0_string) || !ep->ep.desc)
  1566. return -EINVAL;
  1567. spin_lock_irqsave(&ep->dev->lock, iflags);
  1568. empty_req_queue(ep);
  1569. ep->halted = 1;
  1570. pch_udc_ep_disable(ep);
  1571. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1572. ep->ep.desc = NULL;
  1573. INIT_LIST_HEAD(&ep->queue);
  1574. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1575. return 0;
  1576. }
  1577. /**
  1578. * pch_udc_alloc_request() - This function allocates request structure.
  1579. * It is called by gadget driver
  1580. * @usbep: Reference to the USB endpoint structure
  1581. * @gfp: Flag to be used while allocating memory
  1582. *
  1583. * Return codes:
  1584. * NULL: Failure
  1585. * Allocated address: Success
  1586. */
  1587. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1588. gfp_t gfp)
  1589. {
  1590. struct pch_udc_request *req;
  1591. struct pch_udc_ep *ep;
  1592. struct pch_udc_data_dma_desc *dma_desc;
  1593. if (!usbep)
  1594. return NULL;
  1595. ep = container_of(usbep, struct pch_udc_ep, ep);
  1596. req = kzalloc(sizeof *req, gfp);
  1597. if (!req)
  1598. return NULL;
  1599. req->req.dma = DMA_ADDR_INVALID;
  1600. req->dma = DMA_ADDR_INVALID;
  1601. INIT_LIST_HEAD(&req->queue);
  1602. if (!ep->dev->dma_addr)
  1603. return &req->req;
  1604. /* ep0 in requests are allocated from data pool here */
  1605. dma_desc = dma_pool_alloc(ep->dev->data_requests, gfp,
  1606. &req->td_data_phys);
  1607. if (NULL == dma_desc) {
  1608. kfree(req);
  1609. return NULL;
  1610. }
  1611. /* prevent from using desc. - set HOST BUSY */
  1612. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1613. dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
  1614. req->td_data = dma_desc;
  1615. req->td_data_last = dma_desc;
  1616. req->chain_len = 1;
  1617. return &req->req;
  1618. }
  1619. /**
  1620. * pch_udc_free_request() - This function frees request structure.
  1621. * It is called by gadget driver
  1622. * @usbep: Reference to the USB endpoint structure
  1623. * @usbreq: Reference to the USB request
  1624. */
  1625. static void pch_udc_free_request(struct usb_ep *usbep,
  1626. struct usb_request *usbreq)
  1627. {
  1628. struct pch_udc_ep *ep;
  1629. struct pch_udc_request *req;
  1630. struct pch_udc_dev *dev;
  1631. if (!usbep || !usbreq)
  1632. return;
  1633. ep = container_of(usbep, struct pch_udc_ep, ep);
  1634. req = container_of(usbreq, struct pch_udc_request, req);
  1635. dev = ep->dev;
  1636. if (!list_empty(&req->queue))
  1637. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1638. __func__, usbep->name, req);
  1639. if (req->td_data != NULL) {
  1640. if (req->chain_len > 1)
  1641. pch_udc_free_dma_chain(ep->dev, req);
  1642. dma_pool_free(ep->dev->data_requests, req->td_data,
  1643. req->td_data_phys);
  1644. }
  1645. kfree(req);
  1646. }
  1647. /**
  1648. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1649. * by gadget driver
  1650. * @usbep: Reference to the USB endpoint structure
  1651. * @usbreq: Reference to the USB request
  1652. * @gfp: Flag to be used while mapping the data buffer
  1653. *
  1654. * Return codes:
  1655. * 0: Success
  1656. * linux error number: Failure
  1657. */
  1658. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1659. gfp_t gfp)
  1660. {
  1661. int retval = 0;
  1662. struct pch_udc_ep *ep;
  1663. struct pch_udc_dev *dev;
  1664. struct pch_udc_request *req;
  1665. unsigned long iflags;
  1666. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1667. return -EINVAL;
  1668. ep = container_of(usbep, struct pch_udc_ep, ep);
  1669. dev = ep->dev;
  1670. if (!ep->ep.desc && ep->num)
  1671. return -EINVAL;
  1672. req = container_of(usbreq, struct pch_udc_request, req);
  1673. if (!list_empty(&req->queue))
  1674. return -EINVAL;
  1675. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1676. return -ESHUTDOWN;
  1677. spin_lock_irqsave(&dev->lock, iflags);
  1678. /* map the buffer for dma */
  1679. if (usbreq->length &&
  1680. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1681. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1682. if (ep->in)
  1683. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1684. usbreq->buf,
  1685. usbreq->length,
  1686. DMA_TO_DEVICE);
  1687. else
  1688. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1689. usbreq->buf,
  1690. usbreq->length,
  1691. DMA_FROM_DEVICE);
  1692. } else {
  1693. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1694. if (!req->buf) {
  1695. retval = -ENOMEM;
  1696. goto probe_end;
  1697. }
  1698. if (ep->in) {
  1699. memcpy(req->buf, usbreq->buf, usbreq->length);
  1700. req->dma = dma_map_single(&dev->pdev->dev,
  1701. req->buf,
  1702. usbreq->length,
  1703. DMA_TO_DEVICE);
  1704. } else
  1705. req->dma = dma_map_single(&dev->pdev->dev,
  1706. req->buf,
  1707. usbreq->length,
  1708. DMA_FROM_DEVICE);
  1709. }
  1710. req->dma_mapped = 1;
  1711. }
  1712. if (usbreq->length > 0) {
  1713. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1714. if (retval)
  1715. goto probe_end;
  1716. }
  1717. usbreq->actual = 0;
  1718. usbreq->status = -EINPROGRESS;
  1719. req->dma_done = 0;
  1720. if (list_empty(&ep->queue) && !ep->halted) {
  1721. /* no pending transfer, so start this req */
  1722. if (!usbreq->length) {
  1723. process_zlp(ep, req);
  1724. retval = 0;
  1725. goto probe_end;
  1726. }
  1727. if (!ep->in) {
  1728. pch_udc_start_rxrequest(ep, req);
  1729. } else {
  1730. /*
  1731. * For IN trfr the descriptors will be programmed and
  1732. * P bit will be set when
  1733. * we get an IN token
  1734. */
  1735. pch_udc_wait_ep_stall(ep);
  1736. pch_udc_ep_clear_nak(ep);
  1737. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1738. }
  1739. }
  1740. /* Now add this request to the ep's pending requests */
  1741. if (req != NULL)
  1742. list_add_tail(&req->queue, &ep->queue);
  1743. probe_end:
  1744. spin_unlock_irqrestore(&dev->lock, iflags);
  1745. return retval;
  1746. }
  1747. /**
  1748. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1749. * It is called by gadget driver
  1750. * @usbep: Reference to the USB endpoint structure
  1751. * @usbreq: Reference to the USB request
  1752. *
  1753. * Return codes:
  1754. * 0: Success
  1755. * linux error number: Failure
  1756. */
  1757. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1758. struct usb_request *usbreq)
  1759. {
  1760. struct pch_udc_ep *ep;
  1761. struct pch_udc_request *req;
  1762. unsigned long flags;
  1763. int ret = -EINVAL;
  1764. ep = container_of(usbep, struct pch_udc_ep, ep);
  1765. if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
  1766. return ret;
  1767. req = container_of(usbreq, struct pch_udc_request, req);
  1768. spin_lock_irqsave(&ep->dev->lock, flags);
  1769. /* make sure it's still queued on this endpoint */
  1770. list_for_each_entry(req, &ep->queue, queue) {
  1771. if (&req->req == usbreq) {
  1772. pch_udc_ep_set_nak(ep);
  1773. if (!list_empty(&req->queue))
  1774. complete_req(ep, req, -ECONNRESET);
  1775. ret = 0;
  1776. break;
  1777. }
  1778. }
  1779. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1780. return ret;
  1781. }
  1782. /**
  1783. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1784. * feature
  1785. * @usbep: Reference to the USB endpoint structure
  1786. * @halt: Specifies whether to set or clear the feature
  1787. *
  1788. * Return codes:
  1789. * 0: Success
  1790. * linux error number: Failure
  1791. */
  1792. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1793. {
  1794. struct pch_udc_ep *ep;
  1795. unsigned long iflags;
  1796. int ret;
  1797. if (!usbep)
  1798. return -EINVAL;
  1799. ep = container_of(usbep, struct pch_udc_ep, ep);
  1800. if (!ep->ep.desc && !ep->num)
  1801. return -EINVAL;
  1802. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1803. return -ESHUTDOWN;
  1804. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1805. if (list_empty(&ep->queue)) {
  1806. if (halt) {
  1807. if (ep->num == PCH_UDC_EP0)
  1808. ep->dev->stall = 1;
  1809. pch_udc_ep_set_stall(ep);
  1810. pch_udc_enable_ep_interrupts(
  1811. ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1812. } else {
  1813. pch_udc_ep_clear_stall(ep);
  1814. }
  1815. ret = 0;
  1816. } else {
  1817. ret = -EAGAIN;
  1818. }
  1819. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1820. return ret;
  1821. }
  1822. /**
  1823. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1824. * halt feature
  1825. * @usbep: Reference to the USB endpoint structure
  1826. * @halt: Specifies whether to set or clear the feature
  1827. *
  1828. * Return codes:
  1829. * 0: Success
  1830. * linux error number: Failure
  1831. */
  1832. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1833. {
  1834. struct pch_udc_ep *ep;
  1835. unsigned long iflags;
  1836. int ret;
  1837. if (!usbep)
  1838. return -EINVAL;
  1839. ep = container_of(usbep, struct pch_udc_ep, ep);
  1840. if (!ep->ep.desc && !ep->num)
  1841. return -EINVAL;
  1842. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1843. return -ESHUTDOWN;
  1844. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1845. if (!list_empty(&ep->queue)) {
  1846. ret = -EAGAIN;
  1847. } else {
  1848. if (ep->num == PCH_UDC_EP0)
  1849. ep->dev->stall = 1;
  1850. pch_udc_ep_set_stall(ep);
  1851. pch_udc_enable_ep_interrupts(ep->dev,
  1852. PCH_UDC_EPINT(ep->in, ep->num));
  1853. ep->dev->prot_stall = 1;
  1854. ret = 0;
  1855. }
  1856. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1857. return ret;
  1858. }
  1859. /**
  1860. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1861. * @usbep: Reference to the USB endpoint structure
  1862. */
  1863. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1864. {
  1865. struct pch_udc_ep *ep;
  1866. if (!usbep)
  1867. return;
  1868. ep = container_of(usbep, struct pch_udc_ep, ep);
  1869. if (ep->ep.desc || !ep->num)
  1870. pch_udc_ep_fifo_flush(ep, ep->in);
  1871. }
  1872. static const struct usb_ep_ops pch_udc_ep_ops = {
  1873. .enable = pch_udc_pcd_ep_enable,
  1874. .disable = pch_udc_pcd_ep_disable,
  1875. .alloc_request = pch_udc_alloc_request,
  1876. .free_request = pch_udc_free_request,
  1877. .queue = pch_udc_pcd_queue,
  1878. .dequeue = pch_udc_pcd_dequeue,
  1879. .set_halt = pch_udc_pcd_set_halt,
  1880. .set_wedge = pch_udc_pcd_set_wedge,
  1881. .fifo_status = NULL,
  1882. .fifo_flush = pch_udc_pcd_fifo_flush,
  1883. };
  1884. /**
  1885. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1886. * @td_stp: Reference to the SETP buffer structure
  1887. */
  1888. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1889. {
  1890. static u32 pky_marker;
  1891. if (!td_stp)
  1892. return;
  1893. td_stp->reserved = ++pky_marker;
  1894. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1895. td_stp->status = PCH_UDC_BS_HST_RDY;
  1896. }
  1897. /**
  1898. * pch_udc_start_next_txrequest() - This function starts
  1899. * the next transmission requirement
  1900. * @ep: Reference to the endpoint structure
  1901. */
  1902. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1903. {
  1904. struct pch_udc_request *req;
  1905. struct pch_udc_data_dma_desc *td_data;
  1906. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1907. return;
  1908. if (list_empty(&ep->queue))
  1909. return;
  1910. /* next request */
  1911. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1912. if (req->dma_going)
  1913. return;
  1914. if (!req->td_data)
  1915. return;
  1916. pch_udc_wait_ep_stall(ep);
  1917. req->dma_going = 1;
  1918. pch_udc_ep_set_ddptr(ep, 0);
  1919. td_data = req->td_data;
  1920. while (1) {
  1921. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1922. PCH_UDC_BS_HST_RDY;
  1923. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1924. break;
  1925. td_data = phys_to_virt(td_data->next);
  1926. }
  1927. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1928. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1929. pch_udc_ep_set_pd(ep);
  1930. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1931. pch_udc_ep_clear_nak(ep);
  1932. }
  1933. /**
  1934. * pch_udc_complete_transfer() - This function completes a transfer
  1935. * @ep: Reference to the endpoint structure
  1936. */
  1937. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1938. {
  1939. struct pch_udc_request *req;
  1940. struct pch_udc_dev *dev = ep->dev;
  1941. if (list_empty(&ep->queue))
  1942. return;
  1943. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1944. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1945. PCH_UDC_BS_DMA_DONE)
  1946. return;
  1947. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1948. PCH_UDC_RTS_SUCC) {
  1949. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1950. "epstatus=0x%08x\n",
  1951. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1952. (int)(ep->epsts));
  1953. return;
  1954. }
  1955. req->req.actual = req->req.length;
  1956. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1957. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1958. complete_req(ep, req, 0);
  1959. req->dma_going = 0;
  1960. if (!list_empty(&ep->queue)) {
  1961. pch_udc_wait_ep_stall(ep);
  1962. pch_udc_ep_clear_nak(ep);
  1963. pch_udc_enable_ep_interrupts(ep->dev,
  1964. PCH_UDC_EPINT(ep->in, ep->num));
  1965. } else {
  1966. pch_udc_disable_ep_interrupts(ep->dev,
  1967. PCH_UDC_EPINT(ep->in, ep->num));
  1968. }
  1969. }
  1970. /**
  1971. * pch_udc_complete_receiver() - This function completes a receiver
  1972. * @ep: Reference to the endpoint structure
  1973. */
  1974. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1975. {
  1976. struct pch_udc_request *req;
  1977. struct pch_udc_dev *dev = ep->dev;
  1978. unsigned int count;
  1979. struct pch_udc_data_dma_desc *td;
  1980. dma_addr_t addr;
  1981. if (list_empty(&ep->queue))
  1982. return;
  1983. /* next request */
  1984. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1985. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1986. pch_udc_ep_set_ddptr(ep, 0);
  1987. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1988. PCH_UDC_BS_DMA_DONE)
  1989. td = req->td_data_last;
  1990. else
  1991. td = req->td_data;
  1992. while (1) {
  1993. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1994. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1995. "epstatus=0x%08x\n",
  1996. (req->td_data->status & PCH_UDC_RXTX_STS),
  1997. (int)(ep->epsts));
  1998. return;
  1999. }
  2000. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2001. if (td->status & PCH_UDC_DMA_LAST) {
  2002. count = td->status & PCH_UDC_RXTX_BYTES;
  2003. break;
  2004. }
  2005. if (td == req->td_data_last) {
  2006. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2007. return;
  2008. }
  2009. addr = (dma_addr_t)td->next;
  2010. td = phys_to_virt(addr);
  2011. }
  2012. /* on 64k packets the RXBYTES field is zero */
  2013. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2014. count = UDC_DMA_MAXPACKET;
  2015. req->td_data->status |= PCH_UDC_DMA_LAST;
  2016. td->status |= PCH_UDC_BS_HST_BSY;
  2017. req->dma_going = 0;
  2018. req->req.actual = count;
  2019. complete_req(ep, req, 0);
  2020. /* If there is a new/failed requests try that now */
  2021. if (!list_empty(&ep->queue)) {
  2022. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2023. pch_udc_start_rxrequest(ep, req);
  2024. }
  2025. }
  2026. /**
  2027. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2028. * for IN endpoints
  2029. * @dev: Reference to the device structure
  2030. * @ep_num: Endpoint that generated the interrupt
  2031. */
  2032. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2033. {
  2034. u32 epsts;
  2035. struct pch_udc_ep *ep;
  2036. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2037. epsts = ep->epsts;
  2038. ep->epsts = 0;
  2039. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2040. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2041. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2042. return;
  2043. if ((epsts & UDC_EPSTS_BNA))
  2044. return;
  2045. if (epsts & UDC_EPSTS_HE)
  2046. return;
  2047. if (epsts & UDC_EPSTS_RSS) {
  2048. pch_udc_ep_set_stall(ep);
  2049. pch_udc_enable_ep_interrupts(ep->dev,
  2050. PCH_UDC_EPINT(ep->in, ep->num));
  2051. }
  2052. if (epsts & UDC_EPSTS_RCS) {
  2053. if (!dev->prot_stall) {
  2054. pch_udc_ep_clear_stall(ep);
  2055. } else {
  2056. pch_udc_ep_set_stall(ep);
  2057. pch_udc_enable_ep_interrupts(ep->dev,
  2058. PCH_UDC_EPINT(ep->in, ep->num));
  2059. }
  2060. }
  2061. if (epsts & UDC_EPSTS_TDC)
  2062. pch_udc_complete_transfer(ep);
  2063. /* On IN interrupt, provide data if we have any */
  2064. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2065. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2066. pch_udc_start_next_txrequest(ep);
  2067. }
  2068. /**
  2069. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2070. * @dev: Reference to the device structure
  2071. * @ep_num: Endpoint that generated the interrupt
  2072. */
  2073. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2074. {
  2075. u32 epsts;
  2076. struct pch_udc_ep *ep;
  2077. struct pch_udc_request *req = NULL;
  2078. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2079. epsts = ep->epsts;
  2080. ep->epsts = 0;
  2081. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2082. /* next request */
  2083. req = list_entry(ep->queue.next, struct pch_udc_request,
  2084. queue);
  2085. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2086. PCH_UDC_BS_DMA_DONE) {
  2087. if (!req->dma_going)
  2088. pch_udc_start_rxrequest(ep, req);
  2089. return;
  2090. }
  2091. }
  2092. if (epsts & UDC_EPSTS_HE)
  2093. return;
  2094. if (epsts & UDC_EPSTS_RSS) {
  2095. pch_udc_ep_set_stall(ep);
  2096. pch_udc_enable_ep_interrupts(ep->dev,
  2097. PCH_UDC_EPINT(ep->in, ep->num));
  2098. }
  2099. if (epsts & UDC_EPSTS_RCS) {
  2100. if (!dev->prot_stall) {
  2101. pch_udc_ep_clear_stall(ep);
  2102. } else {
  2103. pch_udc_ep_set_stall(ep);
  2104. pch_udc_enable_ep_interrupts(ep->dev,
  2105. PCH_UDC_EPINT(ep->in, ep->num));
  2106. }
  2107. }
  2108. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2109. UDC_EPSTS_OUT_DATA) {
  2110. if (ep->dev->prot_stall == 1) {
  2111. pch_udc_ep_set_stall(ep);
  2112. pch_udc_enable_ep_interrupts(ep->dev,
  2113. PCH_UDC_EPINT(ep->in, ep->num));
  2114. } else {
  2115. pch_udc_complete_receiver(ep);
  2116. }
  2117. }
  2118. if (list_empty(&ep->queue))
  2119. pch_udc_set_dma(dev, DMA_DIR_RX);
  2120. }
  2121. /**
  2122. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2123. * @dev: Reference to the device structure
  2124. */
  2125. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2126. {
  2127. u32 epsts;
  2128. struct pch_udc_ep *ep;
  2129. struct pch_udc_ep *ep_out;
  2130. ep = &dev->ep[UDC_EP0IN_IDX];
  2131. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2132. epsts = ep->epsts;
  2133. ep->epsts = 0;
  2134. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2135. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2136. UDC_EPSTS_XFERDONE)))
  2137. return;
  2138. if ((epsts & UDC_EPSTS_BNA))
  2139. return;
  2140. if (epsts & UDC_EPSTS_HE)
  2141. return;
  2142. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2143. pch_udc_complete_transfer(ep);
  2144. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2145. ep_out->td_data->status = (ep_out->td_data->status &
  2146. ~PCH_UDC_BUFF_STS) |
  2147. PCH_UDC_BS_HST_RDY;
  2148. pch_udc_ep_clear_nak(ep_out);
  2149. pch_udc_set_dma(dev, DMA_DIR_RX);
  2150. pch_udc_ep_set_rrdy(ep_out);
  2151. }
  2152. /* On IN interrupt, provide data if we have any */
  2153. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2154. !(epsts & UDC_EPSTS_TXEMPTY))
  2155. pch_udc_start_next_txrequest(ep);
  2156. }
  2157. /**
  2158. * pch_udc_svc_control_out() - Routine that handle Control
  2159. * OUT endpoint interrupts
  2160. * @dev: Reference to the device structure
  2161. */
  2162. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2163. __releases(&dev->lock)
  2164. __acquires(&dev->lock)
  2165. {
  2166. u32 stat;
  2167. int setup_supported;
  2168. struct pch_udc_ep *ep;
  2169. ep = &dev->ep[UDC_EP0OUT_IDX];
  2170. stat = ep->epsts;
  2171. ep->epsts = 0;
  2172. /* If setup data */
  2173. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2174. UDC_EPSTS_OUT_SETUP) {
  2175. dev->stall = 0;
  2176. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2177. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2178. dev->setup_data = ep->td_stp->request;
  2179. pch_udc_init_setup_buff(ep->td_stp);
  2180. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2181. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2182. dev->ep[UDC_EP0IN_IDX].in);
  2183. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2184. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2185. else /* OUT */
  2186. dev->gadget.ep0 = &ep->ep;
  2187. spin_lock(&dev->lock);
  2188. /* If Mass storage Reset */
  2189. if ((dev->setup_data.bRequestType == 0x21) &&
  2190. (dev->setup_data.bRequest == 0xFF))
  2191. dev->prot_stall = 0;
  2192. /* call gadget with setup data received */
  2193. setup_supported = dev->driver->setup(&dev->gadget,
  2194. &dev->setup_data);
  2195. spin_unlock(&dev->lock);
  2196. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2197. ep->td_data->status = (ep->td_data->status &
  2198. ~PCH_UDC_BUFF_STS) |
  2199. PCH_UDC_BS_HST_RDY;
  2200. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2201. }
  2202. /* ep0 in returns data on IN phase */
  2203. if (setup_supported >= 0 && setup_supported <
  2204. UDC_EP0IN_MAX_PKT_SIZE) {
  2205. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2206. /* Gadget would have queued a request when
  2207. * we called the setup */
  2208. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2209. pch_udc_set_dma(dev, DMA_DIR_RX);
  2210. pch_udc_ep_clear_nak(ep);
  2211. }
  2212. } else if (setup_supported < 0) {
  2213. /* if unsupported request, then stall */
  2214. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2215. pch_udc_enable_ep_interrupts(ep->dev,
  2216. PCH_UDC_EPINT(ep->in, ep->num));
  2217. dev->stall = 0;
  2218. pch_udc_set_dma(dev, DMA_DIR_RX);
  2219. } else {
  2220. dev->waiting_zlp_ack = 1;
  2221. }
  2222. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2223. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2224. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2225. pch_udc_ep_set_ddptr(ep, 0);
  2226. if (!list_empty(&ep->queue)) {
  2227. ep->epsts = stat;
  2228. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2229. }
  2230. pch_udc_set_dma(dev, DMA_DIR_RX);
  2231. }
  2232. pch_udc_ep_set_rrdy(ep);
  2233. }
  2234. /**
  2235. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2236. * and clears NAK status
  2237. * @dev: Reference to the device structure
  2238. * @ep_num: End point number
  2239. */
  2240. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2241. {
  2242. struct pch_udc_ep *ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2243. if (list_empty(&ep->queue))
  2244. return;
  2245. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  2246. pch_udc_ep_clear_nak(ep);
  2247. }
  2248. /**
  2249. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2250. * @dev: Reference to the device structure
  2251. * @ep_intr: Status of endpoint interrupt
  2252. */
  2253. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2254. {
  2255. int i;
  2256. struct pch_udc_ep *ep;
  2257. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2258. /* IN */
  2259. if (ep_intr & (0x1 << i)) {
  2260. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2261. ep->epsts = pch_udc_read_ep_status(ep);
  2262. pch_udc_clear_ep_status(ep, ep->epsts);
  2263. }
  2264. /* OUT */
  2265. if (ep_intr & (0x10000 << i)) {
  2266. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2267. ep->epsts = pch_udc_read_ep_status(ep);
  2268. pch_udc_clear_ep_status(ep, ep->epsts);
  2269. }
  2270. }
  2271. }
  2272. /**
  2273. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2274. * for traffic after a reset
  2275. * @dev: Reference to the device structure
  2276. */
  2277. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2278. {
  2279. struct pch_udc_ep *ep;
  2280. u32 val;
  2281. /* Setup the IN endpoint */
  2282. ep = &dev->ep[UDC_EP0IN_IDX];
  2283. pch_udc_clear_ep_control(ep);
  2284. pch_udc_ep_fifo_flush(ep, ep->in);
  2285. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2286. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2287. /* Initialize the IN EP Descriptor */
  2288. ep->td_data = NULL;
  2289. ep->td_stp = NULL;
  2290. ep->td_data_phys = 0;
  2291. ep->td_stp_phys = 0;
  2292. /* Setup the OUT endpoint */
  2293. ep = &dev->ep[UDC_EP0OUT_IDX];
  2294. pch_udc_clear_ep_control(ep);
  2295. pch_udc_ep_fifo_flush(ep, ep->in);
  2296. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2297. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2298. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2299. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2300. /* Initialize the SETUP buffer */
  2301. pch_udc_init_setup_buff(ep->td_stp);
  2302. /* Write the pointer address of dma descriptor */
  2303. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2304. /* Write the pointer address of Setup descriptor */
  2305. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2306. /* Initialize the dma descriptor */
  2307. ep->td_data->status = PCH_UDC_DMA_LAST;
  2308. ep->td_data->dataptr = dev->dma_addr;
  2309. ep->td_data->next = ep->td_data_phys;
  2310. pch_udc_ep_clear_nak(ep);
  2311. }
  2312. /**
  2313. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2314. * @dev: Reference to driver structure
  2315. */
  2316. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2317. {
  2318. struct pch_udc_ep *ep;
  2319. int i;
  2320. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2321. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2322. /* Mask all endpoint interrupts */
  2323. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2324. /* clear all endpoint interrupts */
  2325. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2326. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2327. ep = &dev->ep[i];
  2328. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2329. pch_udc_clear_ep_control(ep);
  2330. pch_udc_ep_set_ddptr(ep, 0);
  2331. pch_udc_write_csr(ep->dev, 0x00, i);
  2332. }
  2333. dev->stall = 0;
  2334. dev->prot_stall = 0;
  2335. dev->waiting_zlp_ack = 0;
  2336. dev->set_cfg_not_acked = 0;
  2337. /* disable ep to empty req queue. Skip the control EP's */
  2338. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2339. ep = &dev->ep[i];
  2340. pch_udc_ep_set_nak(ep);
  2341. pch_udc_ep_fifo_flush(ep, ep->in);
  2342. /* Complete request queue */
  2343. empty_req_queue(ep);
  2344. }
  2345. if (dev->driver) {
  2346. spin_unlock(&dev->lock);
  2347. usb_gadget_udc_reset(&dev->gadget, dev->driver);
  2348. spin_lock(&dev->lock);
  2349. }
  2350. }
  2351. /**
  2352. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2353. * done interrupt
  2354. * @dev: Reference to driver structure
  2355. */
  2356. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2357. {
  2358. u32 dev_stat, dev_speed;
  2359. u32 speed = USB_SPEED_FULL;
  2360. dev_stat = pch_udc_read_device_status(dev);
  2361. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2362. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2363. switch (dev_speed) {
  2364. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2365. speed = USB_SPEED_HIGH;
  2366. break;
  2367. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2368. speed = USB_SPEED_FULL;
  2369. break;
  2370. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2371. speed = USB_SPEED_LOW;
  2372. break;
  2373. default:
  2374. BUG();
  2375. }
  2376. dev->gadget.speed = speed;
  2377. pch_udc_activate_control_ep(dev);
  2378. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2379. pch_udc_set_dma(dev, DMA_DIR_TX);
  2380. pch_udc_set_dma(dev, DMA_DIR_RX);
  2381. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2382. /* enable device interrupts */
  2383. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2384. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2385. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2386. }
  2387. /**
  2388. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2389. * interrupt
  2390. * @dev: Reference to driver structure
  2391. */
  2392. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2393. {
  2394. u32 reg, dev_stat = 0;
  2395. int i;
  2396. dev_stat = pch_udc_read_device_status(dev);
  2397. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2398. UDC_DEVSTS_INTF_SHIFT;
  2399. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2400. UDC_DEVSTS_ALT_SHIFT;
  2401. dev->set_cfg_not_acked = 1;
  2402. /* Construct the usb request for gadget driver and inform it */
  2403. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2404. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2405. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2406. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2407. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2408. /* programm the Endpoint Cfg registers */
  2409. /* Only one end point cfg register */
  2410. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2411. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2412. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2413. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2414. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2415. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2416. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2417. /* clear stall bits */
  2418. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2419. dev->ep[i].halted = 0;
  2420. }
  2421. dev->stall = 0;
  2422. spin_unlock(&dev->lock);
  2423. dev->driver->setup(&dev->gadget, &dev->setup_data);
  2424. spin_lock(&dev->lock);
  2425. }
  2426. /**
  2427. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2428. * interrupt
  2429. * @dev: Reference to driver structure
  2430. */
  2431. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2432. {
  2433. int i;
  2434. u32 reg, dev_stat = 0;
  2435. dev_stat = pch_udc_read_device_status(dev);
  2436. dev->set_cfg_not_acked = 1;
  2437. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2438. UDC_DEVSTS_CFG_SHIFT;
  2439. /* make usb request for gadget driver */
  2440. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2441. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2442. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2443. /* program the NE registers */
  2444. /* Only one end point cfg register */
  2445. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2446. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2447. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2448. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2449. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2450. /* clear stall bits */
  2451. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2452. dev->ep[i].halted = 0;
  2453. }
  2454. dev->stall = 0;
  2455. /* call gadget zero with setup data received */
  2456. spin_unlock(&dev->lock);
  2457. dev->driver->setup(&dev->gadget, &dev->setup_data);
  2458. spin_lock(&dev->lock);
  2459. }
  2460. /**
  2461. * pch_udc_dev_isr() - This function services device interrupts
  2462. * by invoking appropriate routines.
  2463. * @dev: Reference to the device structure
  2464. * @dev_intr: The Device interrupt status.
  2465. */
  2466. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2467. {
  2468. int vbus;
  2469. /* USB Reset Interrupt */
  2470. if (dev_intr & UDC_DEVINT_UR) {
  2471. pch_udc_svc_ur_interrupt(dev);
  2472. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2473. }
  2474. /* Enumeration Done Interrupt */
  2475. if (dev_intr & UDC_DEVINT_ENUM) {
  2476. pch_udc_svc_enum_interrupt(dev);
  2477. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2478. }
  2479. /* Set Interface Interrupt */
  2480. if (dev_intr & UDC_DEVINT_SI)
  2481. pch_udc_svc_intf_interrupt(dev);
  2482. /* Set Config Interrupt */
  2483. if (dev_intr & UDC_DEVINT_SC)
  2484. pch_udc_svc_cfg_interrupt(dev);
  2485. /* USB Suspend interrupt */
  2486. if (dev_intr & UDC_DEVINT_US) {
  2487. if (dev->driver
  2488. && dev->driver->suspend) {
  2489. spin_unlock(&dev->lock);
  2490. dev->driver->suspend(&dev->gadget);
  2491. spin_lock(&dev->lock);
  2492. }
  2493. vbus = pch_vbus_gpio_get_value(dev);
  2494. if ((dev->vbus_session == 0)
  2495. && (vbus != 1)) {
  2496. if (dev->driver && dev->driver->disconnect) {
  2497. spin_unlock(&dev->lock);
  2498. dev->driver->disconnect(&dev->gadget);
  2499. spin_lock(&dev->lock);
  2500. }
  2501. pch_udc_reconnect(dev);
  2502. } else if ((dev->vbus_session == 0)
  2503. && (vbus == 1)
  2504. && !dev->vbus_gpio.intr)
  2505. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2506. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2507. }
  2508. /* Clear the SOF interrupt, if enabled */
  2509. if (dev_intr & UDC_DEVINT_SOF)
  2510. dev_dbg(&dev->pdev->dev, "SOF\n");
  2511. /* ES interrupt, IDLE > 3ms on the USB */
  2512. if (dev_intr & UDC_DEVINT_ES)
  2513. dev_dbg(&dev->pdev->dev, "ES\n");
  2514. /* RWKP interrupt */
  2515. if (dev_intr & UDC_DEVINT_RWKP)
  2516. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2517. }
  2518. /**
  2519. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2520. * @irq: Interrupt request number
  2521. * @dev: Reference to the device structure
  2522. */
  2523. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2524. {
  2525. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2526. u32 dev_intr, ep_intr;
  2527. int i;
  2528. dev_intr = pch_udc_read_device_interrupts(dev);
  2529. ep_intr = pch_udc_read_ep_interrupts(dev);
  2530. /* For a hot plug, this find that the controller is hung up. */
  2531. if (dev_intr == ep_intr)
  2532. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2533. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2534. /* The controller is reset */
  2535. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2536. return IRQ_HANDLED;
  2537. }
  2538. if (dev_intr)
  2539. /* Clear device interrupts */
  2540. pch_udc_write_device_interrupts(dev, dev_intr);
  2541. if (ep_intr)
  2542. /* Clear ep interrupts */
  2543. pch_udc_write_ep_interrupts(dev, ep_intr);
  2544. if (!dev_intr && !ep_intr)
  2545. return IRQ_NONE;
  2546. spin_lock(&dev->lock);
  2547. if (dev_intr)
  2548. pch_udc_dev_isr(dev, dev_intr);
  2549. if (ep_intr) {
  2550. pch_udc_read_all_epstatus(dev, ep_intr);
  2551. /* Process Control In interrupts, if present */
  2552. if (ep_intr & UDC_EPINT_IN_EP0) {
  2553. pch_udc_svc_control_in(dev);
  2554. pch_udc_postsvc_epinters(dev, 0);
  2555. }
  2556. /* Process Control Out interrupts, if present */
  2557. if (ep_intr & UDC_EPINT_OUT_EP0)
  2558. pch_udc_svc_control_out(dev);
  2559. /* Process data in end point interrupts */
  2560. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2561. if (ep_intr & (1 << i)) {
  2562. pch_udc_svc_data_in(dev, i);
  2563. pch_udc_postsvc_epinters(dev, i);
  2564. }
  2565. }
  2566. /* Process data out end point interrupts */
  2567. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2568. PCH_UDC_USED_EP_NUM); i++)
  2569. if (ep_intr & (1 << i))
  2570. pch_udc_svc_data_out(dev, i -
  2571. UDC_EPINT_OUT_SHIFT);
  2572. }
  2573. spin_unlock(&dev->lock);
  2574. return IRQ_HANDLED;
  2575. }
  2576. /**
  2577. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2578. * @dev: Reference to the device structure
  2579. */
  2580. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2581. {
  2582. /* enable ep0 interrupts */
  2583. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2584. UDC_EPINT_OUT_EP0);
  2585. /* enable device interrupts */
  2586. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2587. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2588. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2589. }
  2590. /**
  2591. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2592. * @dev: Reference to the driver structure
  2593. */
  2594. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2595. {
  2596. const char *const ep_string[] = {
  2597. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2598. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2599. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2600. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2601. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2602. "ep15in", "ep15out",
  2603. };
  2604. int i;
  2605. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2606. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2607. /* Initialize the endpoints structures */
  2608. memset(dev->ep, 0, sizeof dev->ep);
  2609. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2610. struct pch_udc_ep *ep = &dev->ep[i];
  2611. ep->dev = dev;
  2612. ep->halted = 1;
  2613. ep->num = i / 2;
  2614. ep->in = ~i & 1;
  2615. ep->ep.name = ep_string[i];
  2616. ep->ep.ops = &pch_udc_ep_ops;
  2617. if (ep->in) {
  2618. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2619. ep->ep.caps.dir_in = true;
  2620. } else {
  2621. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2622. UDC_EP_REG_SHIFT;
  2623. ep->ep.caps.dir_out = true;
  2624. }
  2625. if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
  2626. ep->ep.caps.type_control = true;
  2627. } else {
  2628. ep->ep.caps.type_iso = true;
  2629. ep->ep.caps.type_bulk = true;
  2630. ep->ep.caps.type_int = true;
  2631. }
  2632. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2633. usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
  2634. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2635. INIT_LIST_HEAD(&ep->queue);
  2636. }
  2637. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
  2638. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2639. /* remove ep0 in and out from the list. They have own pointer */
  2640. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2641. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2642. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2643. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2644. }
  2645. /**
  2646. * pch_udc_pcd_init() - This API initializes the driver structure
  2647. * @dev: Reference to the driver structure
  2648. *
  2649. * Return codes:
  2650. * 0: Success
  2651. */
  2652. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2653. {
  2654. pch_udc_init(dev);
  2655. pch_udc_pcd_reinit(dev);
  2656. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2657. return 0;
  2658. }
  2659. /**
  2660. * init_dma_pools() - create dma pools during initialization
  2661. * @pdev: reference to struct pci_dev
  2662. */
  2663. static int init_dma_pools(struct pch_udc_dev *dev)
  2664. {
  2665. struct pch_udc_stp_dma_desc *td_stp;
  2666. struct pch_udc_data_dma_desc *td_data;
  2667. void *ep0out_buf;
  2668. /* DMA setup */
  2669. dev->data_requests = dma_pool_create("data_requests", &dev->pdev->dev,
  2670. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2671. if (!dev->data_requests) {
  2672. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2673. __func__);
  2674. return -ENOMEM;
  2675. }
  2676. /* dma desc for setup data */
  2677. dev->stp_requests = dma_pool_create("setup requests", &dev->pdev->dev,
  2678. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2679. if (!dev->stp_requests) {
  2680. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2681. __func__);
  2682. return -ENOMEM;
  2683. }
  2684. /* setup */
  2685. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2686. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2687. if (!td_stp) {
  2688. dev_err(&dev->pdev->dev,
  2689. "%s: can't allocate setup dma descriptor\n", __func__);
  2690. return -ENOMEM;
  2691. }
  2692. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2693. /* data: 0 packets !? */
  2694. td_data = dma_pool_alloc(dev->data_requests, GFP_KERNEL,
  2695. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2696. if (!td_data) {
  2697. dev_err(&dev->pdev->dev,
  2698. "%s: can't allocate data dma descriptor\n", __func__);
  2699. return -ENOMEM;
  2700. }
  2701. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2702. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2703. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2704. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2705. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2706. ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
  2707. GFP_KERNEL);
  2708. if (!ep0out_buf)
  2709. return -ENOMEM;
  2710. dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
  2711. UDC_EP0OUT_BUFF_SIZE * 4,
  2712. DMA_FROM_DEVICE);
  2713. return 0;
  2714. }
  2715. static int pch_udc_start(struct usb_gadget *g,
  2716. struct usb_gadget_driver *driver)
  2717. {
  2718. struct pch_udc_dev *dev = to_pch_udc(g);
  2719. driver->driver.bus = NULL;
  2720. dev->driver = driver;
  2721. /* get ready for ep0 traffic */
  2722. pch_udc_setup_ep0(dev);
  2723. /* clear SD */
  2724. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2725. pch_udc_clear_disconnect(dev);
  2726. dev->connected = 1;
  2727. return 0;
  2728. }
  2729. static int pch_udc_stop(struct usb_gadget *g)
  2730. {
  2731. struct pch_udc_dev *dev = to_pch_udc(g);
  2732. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2733. /* Assures that there are no pending requests with this driver */
  2734. dev->driver = NULL;
  2735. dev->connected = 0;
  2736. /* set SD */
  2737. pch_udc_set_disconnect(dev);
  2738. return 0;
  2739. }
  2740. static void pch_udc_shutdown(struct pci_dev *pdev)
  2741. {
  2742. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2743. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2744. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2745. /* disable the pullup so the host will think we're gone */
  2746. pch_udc_set_disconnect(dev);
  2747. }
  2748. static void pch_udc_remove(struct pci_dev *pdev)
  2749. {
  2750. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2751. usb_del_gadget_udc(&dev->gadget);
  2752. /* gadget driver must not be registered */
  2753. if (dev->driver)
  2754. dev_err(&pdev->dev,
  2755. "%s: gadget driver still bound!!!\n", __func__);
  2756. /* dma pool cleanup */
  2757. dma_pool_destroy(dev->data_requests);
  2758. if (dev->stp_requests) {
  2759. /* cleanup DMA desc's for ep0in */
  2760. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2761. dma_pool_free(dev->stp_requests,
  2762. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2763. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2764. }
  2765. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2766. dma_pool_free(dev->stp_requests,
  2767. dev->ep[UDC_EP0OUT_IDX].td_data,
  2768. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2769. }
  2770. dma_pool_destroy(dev->stp_requests);
  2771. }
  2772. if (dev->dma_addr)
  2773. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2774. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2775. pch_vbus_gpio_free(dev);
  2776. pch_udc_exit(dev);
  2777. }
  2778. #ifdef CONFIG_PM_SLEEP
  2779. static int pch_udc_suspend(struct device *d)
  2780. {
  2781. struct pci_dev *pdev = to_pci_dev(d);
  2782. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2783. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2784. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2785. return 0;
  2786. }
  2787. static int pch_udc_resume(struct device *d)
  2788. {
  2789. return 0;
  2790. }
  2791. static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
  2792. #define PCH_UDC_PM_OPS (&pch_udc_pm)
  2793. #else
  2794. #define PCH_UDC_PM_OPS NULL
  2795. #endif /* CONFIG_PM_SLEEP */
  2796. static int pch_udc_probe(struct pci_dev *pdev,
  2797. const struct pci_device_id *id)
  2798. {
  2799. int bar;
  2800. int retval;
  2801. struct pch_udc_dev *dev;
  2802. /* init */
  2803. dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
  2804. if (!dev)
  2805. return -ENOMEM;
  2806. /* pci setup */
  2807. retval = pcim_enable_device(pdev);
  2808. if (retval)
  2809. return retval;
  2810. pci_set_drvdata(pdev, dev);
  2811. /* Determine BAR based on PCI ID */
  2812. if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
  2813. bar = PCH_UDC_PCI_BAR_QUARK_X1000;
  2814. else
  2815. bar = PCH_UDC_PCI_BAR;
  2816. /* PCI resource allocation */
  2817. retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
  2818. if (retval)
  2819. return retval;
  2820. dev->base_addr = pcim_iomap_table(pdev)[bar];
  2821. /* initialize the hardware */
  2822. if (pch_udc_pcd_init(dev))
  2823. return -ENODEV;
  2824. pci_enable_msi(pdev);
  2825. retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
  2826. IRQF_SHARED, KBUILD_MODNAME, dev);
  2827. if (retval) {
  2828. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2829. pdev->irq);
  2830. goto finished;
  2831. }
  2832. pci_set_master(pdev);
  2833. pci_try_set_mwi(pdev);
  2834. /* device struct setup */
  2835. spin_lock_init(&dev->lock);
  2836. dev->pdev = pdev;
  2837. dev->gadget.ops = &pch_udc_ops;
  2838. retval = init_dma_pools(dev);
  2839. if (retval)
  2840. goto finished;
  2841. dev->gadget.name = KBUILD_MODNAME;
  2842. dev->gadget.max_speed = USB_SPEED_HIGH;
  2843. /* Put the device in disconnected state till a driver is bound */
  2844. pch_udc_set_disconnect(dev);
  2845. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2846. if (retval)
  2847. goto finished;
  2848. return 0;
  2849. finished:
  2850. pch_udc_remove(pdev);
  2851. return retval;
  2852. }
  2853. static const struct pci_device_id pch_udc_pcidev_id[] = {
  2854. {
  2855. PCI_DEVICE(PCI_VENDOR_ID_INTEL,
  2856. PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
  2857. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2858. .class_mask = 0xffffffff,
  2859. },
  2860. {
  2861. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2862. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2863. .class_mask = 0xffffffff,
  2864. },
  2865. {
  2866. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2867. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2868. .class_mask = 0xffffffff,
  2869. },
  2870. {
  2871. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2872. .class = PCI_CLASS_SERIAL_USB_DEVICE,
  2873. .class_mask = 0xffffffff,
  2874. },
  2875. { 0 },
  2876. };
  2877. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2878. static struct pci_driver pch_udc_driver = {
  2879. .name = KBUILD_MODNAME,
  2880. .id_table = pch_udc_pcidev_id,
  2881. .probe = pch_udc_probe,
  2882. .remove = pch_udc_remove,
  2883. .shutdown = pch_udc_shutdown,
  2884. .driver = {
  2885. .pm = PCH_UDC_PM_OPS,
  2886. },
  2887. };
  2888. module_pci_driver(pch_udc_driver);
  2889. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2890. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  2891. MODULE_LICENSE("GPL");