spi-pxa2xx-dma.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. /*
  2. * PXA2xx SPI DMA engine support.
  3. *
  4. * Copyright (C) 2013, Intel Corporation
  5. * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/device.h>
  12. #include <linux/dma-mapping.h>
  13. #include <linux/dmaengine.h>
  14. #include <linux/pxa2xx_ssp.h>
  15. #include <linux/scatterlist.h>
  16. #include <linux/sizes.h>
  17. #include <linux/spi/spi.h>
  18. #include <linux/spi/pxa2xx_spi.h>
  19. #include "spi-pxa2xx.h"
  20. static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
  21. bool error)
  22. {
  23. struct spi_message *msg = drv_data->master->cur_msg;
  24. /*
  25. * It is possible that one CPU is handling ROR interrupt and other
  26. * just gets DMA completion. Calling pump_transfers() twice for the
  27. * same transfer leads to problems thus we prevent concurrent calls
  28. * by using ->dma_running.
  29. */
  30. if (atomic_dec_and_test(&drv_data->dma_running)) {
  31. /*
  32. * If the other CPU is still handling the ROR interrupt we
  33. * might not know about the error yet. So we re-check the
  34. * ROR bit here before we clear the status register.
  35. */
  36. if (!error) {
  37. u32 status = pxa2xx_spi_read(drv_data, SSSR)
  38. & drv_data->mask_sr;
  39. error = status & SSSR_ROR;
  40. }
  41. /* Clear status & disable interrupts */
  42. pxa2xx_spi_write(drv_data, SSCR1,
  43. pxa2xx_spi_read(drv_data, SSCR1)
  44. & ~drv_data->dma_cr1);
  45. write_SSSR_CS(drv_data, drv_data->clear_sr);
  46. if (!pxa25x_ssp_comp(drv_data))
  47. pxa2xx_spi_write(drv_data, SSTO, 0);
  48. if (error) {
  49. /* In case we got an error we disable the SSP now */
  50. pxa2xx_spi_write(drv_data, SSCR0,
  51. pxa2xx_spi_read(drv_data, SSCR0)
  52. & ~SSCR0_SSE);
  53. msg->status = -EIO;
  54. }
  55. spi_finalize_current_transfer(drv_data->master);
  56. }
  57. }
  58. static void pxa2xx_spi_dma_callback(void *data)
  59. {
  60. pxa2xx_spi_dma_transfer_complete(data, false);
  61. }
  62. static struct dma_async_tx_descriptor *
  63. pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
  64. enum dma_transfer_direction dir,
  65. struct spi_transfer *xfer)
  66. {
  67. struct chip_data *chip =
  68. spi_get_ctldata(drv_data->master->cur_msg->spi);
  69. enum dma_slave_buswidth width;
  70. struct dma_slave_config cfg;
  71. struct dma_chan *chan;
  72. struct sg_table *sgt;
  73. int ret;
  74. switch (drv_data->n_bytes) {
  75. case 1:
  76. width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  77. break;
  78. case 2:
  79. width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  80. break;
  81. default:
  82. width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  83. break;
  84. }
  85. memset(&cfg, 0, sizeof(cfg));
  86. cfg.direction = dir;
  87. if (dir == DMA_MEM_TO_DEV) {
  88. cfg.dst_addr = drv_data->ssdr_physical;
  89. cfg.dst_addr_width = width;
  90. cfg.dst_maxburst = chip->dma_burst_size;
  91. sgt = &xfer->tx_sg;
  92. chan = drv_data->master->dma_tx;
  93. } else {
  94. cfg.src_addr = drv_data->ssdr_physical;
  95. cfg.src_addr_width = width;
  96. cfg.src_maxburst = chip->dma_burst_size;
  97. sgt = &xfer->rx_sg;
  98. chan = drv_data->master->dma_rx;
  99. }
  100. ret = dmaengine_slave_config(chan, &cfg);
  101. if (ret) {
  102. dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
  103. return NULL;
  104. }
  105. return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
  106. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  107. }
  108. irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
  109. {
  110. u32 status;
  111. status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
  112. if (status & SSSR_ROR) {
  113. dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
  114. dmaengine_terminate_async(drv_data->master->dma_rx);
  115. dmaengine_terminate_async(drv_data->master->dma_tx);
  116. pxa2xx_spi_dma_transfer_complete(drv_data, true);
  117. return IRQ_HANDLED;
  118. }
  119. return IRQ_NONE;
  120. }
  121. int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
  122. struct spi_transfer *xfer)
  123. {
  124. struct dma_async_tx_descriptor *tx_desc, *rx_desc;
  125. int err;
  126. tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
  127. if (!tx_desc) {
  128. dev_err(&drv_data->pdev->dev,
  129. "failed to get DMA TX descriptor\n");
  130. err = -EBUSY;
  131. goto err_tx;
  132. }
  133. rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
  134. if (!rx_desc) {
  135. dev_err(&drv_data->pdev->dev,
  136. "failed to get DMA RX descriptor\n");
  137. err = -EBUSY;
  138. goto err_rx;
  139. }
  140. /* We are ready when RX completes */
  141. rx_desc->callback = pxa2xx_spi_dma_callback;
  142. rx_desc->callback_param = drv_data;
  143. dmaengine_submit(rx_desc);
  144. dmaengine_submit(tx_desc);
  145. return 0;
  146. err_rx:
  147. dmaengine_terminate_async(drv_data->master->dma_tx);
  148. err_tx:
  149. return err;
  150. }
  151. void pxa2xx_spi_dma_start(struct driver_data *drv_data)
  152. {
  153. dma_async_issue_pending(drv_data->master->dma_rx);
  154. dma_async_issue_pending(drv_data->master->dma_tx);
  155. atomic_set(&drv_data->dma_running, 1);
  156. }
  157. void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
  158. {
  159. atomic_set(&drv_data->dma_running, 0);
  160. dmaengine_terminate_sync(drv_data->master->dma_rx);
  161. dmaengine_terminate_sync(drv_data->master->dma_tx);
  162. }
  163. int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
  164. {
  165. struct pxa2xx_spi_master *pdata = drv_data->master_info;
  166. struct device *dev = &drv_data->pdev->dev;
  167. struct spi_controller *master = drv_data->master;
  168. dma_cap_mask_t mask;
  169. dma_cap_zero(mask);
  170. dma_cap_set(DMA_SLAVE, mask);
  171. master->dma_tx = dma_request_slave_channel_compat(mask,
  172. pdata->dma_filter, pdata->tx_param, dev, "tx");
  173. if (!master->dma_tx)
  174. return -ENODEV;
  175. master->dma_rx = dma_request_slave_channel_compat(mask,
  176. pdata->dma_filter, pdata->rx_param, dev, "rx");
  177. if (!master->dma_rx) {
  178. dma_release_channel(master->dma_tx);
  179. master->dma_tx = NULL;
  180. return -ENODEV;
  181. }
  182. return 0;
  183. }
  184. void pxa2xx_spi_dma_release(struct driver_data *drv_data)
  185. {
  186. struct spi_controller *master = drv_data->master;
  187. if (master->dma_rx) {
  188. dmaengine_terminate_sync(master->dma_rx);
  189. dma_release_channel(master->dma_rx);
  190. master->dma_rx = NULL;
  191. }
  192. if (master->dma_tx) {
  193. dmaengine_terminate_sync(master->dma_tx);
  194. dma_release_channel(master->dma_tx);
  195. master->dma_tx = NULL;
  196. }
  197. }
  198. int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
  199. struct spi_device *spi,
  200. u8 bits_per_word, u32 *burst_code,
  201. u32 *threshold)
  202. {
  203. struct pxa2xx_spi_chip *chip_info = spi->controller_data;
  204. /*
  205. * If the DMA burst size is given in chip_info we use that,
  206. * otherwise we use the default. Also we use the default FIFO
  207. * thresholds for now.
  208. */
  209. *burst_code = chip_info ? chip_info->dma_burst_size : 1;
  210. *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
  211. | SSCR1_TxTresh(TX_THRESH_DFLT);
  212. return 0;
  213. }