wmi.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479
  1. /*
  2. * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
  3. * Copyright (c) 2018, The Linux Foundation. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/moduleparam.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/if_arp.h>
  20. #include "wil6210.h"
  21. #include "txrx.h"
  22. #include "wmi.h"
  23. #include "trace.h"
  24. static uint max_assoc_sta = WIL6210_MAX_CID;
  25. module_param(max_assoc_sta, uint, 0644);
  26. MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
  27. int agg_wsize; /* = 0; */
  28. module_param(agg_wsize, int, 0644);
  29. MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
  30. " 0 - use default; < 0 - don't auto-establish");
  31. u8 led_id = WIL_LED_INVALID_ID;
  32. module_param(led_id, byte, 0444);
  33. MODULE_PARM_DESC(led_id,
  34. " 60G device led enablement. Set the led ID (0-2) to enable");
  35. #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
  36. #define WIL_WMI_CALL_GENERAL_TO_MS 100
  37. /**
  38. * WMI event receiving - theory of operations
  39. *
  40. * When firmware about to report WMI event, it fills memory area
  41. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  42. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  43. *
  44. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  45. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  46. * and handles events within the @wmi_event_worker. Every event get detached
  47. * from list, processed and deleted.
  48. *
  49. * Purpose for this mechanism is to release IRQ thread; otherwise,
  50. * if WMI event handling involves another WMI command flow, this 2-nd flow
  51. * won't be completed because of blocked IRQ thread.
  52. */
  53. /**
  54. * Addressing - theory of operations
  55. *
  56. * There are several buses present on the WIL6210 card.
  57. * Same memory areas are visible at different address on
  58. * the different busses. There are 3 main bus masters:
  59. * - MAC CPU (ucode)
  60. * - User CPU (firmware)
  61. * - AHB (host)
  62. *
  63. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  64. * AHB addresses starting from 0x880000
  65. *
  66. * Internally, firmware uses addresses that allow faster access but
  67. * are invisible from the host. To read from these addresses, alternative
  68. * AHB address must be used.
  69. */
  70. /**
  71. * @sparrow_fw_mapping provides memory remapping table for sparrow
  72. *
  73. * array size should be in sync with the declaration in the wil6210.h
  74. *
  75. * Sparrow memory mapping:
  76. * Linker address PCI/Host address
  77. * 0x880000 .. 0xa80000 2Mb BAR0
  78. * 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM
  79. * 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH
  80. */
  81. const struct fw_map sparrow_fw_mapping[] = {
  82. /* FW code RAM 256k */
  83. {0x000000, 0x040000, 0x8c0000, "fw_code", true, true},
  84. /* FW data RAM 32k */
  85. {0x800000, 0x808000, 0x900000, "fw_data", true, true},
  86. /* periph data 128k */
  87. {0x840000, 0x860000, 0x908000, "fw_peri", true, true},
  88. /* various RGF 40k */
  89. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  90. /* AGC table 4k */
  91. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  92. /* Pcie_ext_rgf 4k */
  93. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  94. /* mac_ext_rgf 512b */
  95. {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true, true},
  96. /* upper area 548k */
  97. {0x8c0000, 0x949000, 0x8c0000, "upper", true, true},
  98. /* UCODE areas - accessible by debugfs blobs but not by
  99. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  100. */
  101. /* ucode code RAM 128k */
  102. {0x000000, 0x020000, 0x920000, "uc_code", false, false},
  103. /* ucode data RAM 16k */
  104. {0x800000, 0x804000, 0x940000, "uc_data", false, false},
  105. };
  106. /**
  107. * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
  108. * it is a bit larger to support extra features
  109. */
  110. const struct fw_map sparrow_d0_mac_rgf_ext = {
  111. 0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true, true
  112. };
  113. /**
  114. * @talyn_fw_mapping provides memory remapping table for Talyn
  115. *
  116. * array size should be in sync with the declaration in the wil6210.h
  117. *
  118. * Talyn memory mapping:
  119. * Linker address PCI/Host address
  120. * 0x880000 .. 0xc80000 4Mb BAR0
  121. * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
  122. * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
  123. */
  124. const struct fw_map talyn_fw_mapping[] = {
  125. /* FW code RAM 1M */
  126. {0x000000, 0x100000, 0x900000, "fw_code", true, true},
  127. /* FW data RAM 128k */
  128. {0x800000, 0x820000, 0xa00000, "fw_data", true, true},
  129. /* periph. data RAM 96k */
  130. {0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
  131. /* various RGF 40k */
  132. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  133. /* AGC table 4k */
  134. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  135. /* Pcie_ext_rgf 4k */
  136. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  137. /* mac_ext_rgf 1344b */
  138. {0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true, true},
  139. /* ext USER RGF 4k */
  140. {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
  141. /* OTP 4k */
  142. {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
  143. /* DMA EXT RGF 64k */
  144. {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
  145. /* upper area 1536k */
  146. {0x900000, 0xa80000, 0x900000, "upper", true, true},
  147. /* UCODE areas - accessible by debugfs blobs but not by
  148. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  149. */
  150. /* ucode code RAM 256k */
  151. {0x000000, 0x040000, 0xa38000, "uc_code", false, false},
  152. /* ucode data RAM 32k */
  153. {0x800000, 0x808000, 0xa78000, "uc_data", false, false},
  154. };
  155. /**
  156. * @talyn_mb_fw_mapping provides memory remapping table for Talyn-MB
  157. *
  158. * array size should be in sync with the declaration in the wil6210.h
  159. *
  160. * Talyn MB memory mapping:
  161. * Linker address PCI/Host address
  162. * 0x880000 .. 0xc80000 4Mb BAR0
  163. * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
  164. * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
  165. */
  166. const struct fw_map talyn_mb_fw_mapping[] = {
  167. /* FW code RAM 768k */
  168. {0x000000, 0x0c0000, 0x900000, "fw_code", true, true},
  169. /* FW data RAM 128k */
  170. {0x800000, 0x820000, 0xa00000, "fw_data", true, true},
  171. /* periph. data RAM 96k */
  172. {0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
  173. /* various RGF 40k */
  174. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  175. /* AGC table 4k */
  176. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  177. /* Pcie_ext_rgf 4k */
  178. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  179. /* mac_ext_rgf 2256b */
  180. {0x88c000, 0x88c8d0, 0x88c000, "mac_rgf_ext", true, true},
  181. /* ext USER RGF 4k */
  182. {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
  183. /* SEC PKA 16k */
  184. {0x890000, 0x894000, 0x890000, "sec_pka", true, true},
  185. /* SEC KDF RGF 3096b */
  186. {0x898000, 0x898c18, 0x898000, "sec_kdf_rgf", true, true},
  187. /* SEC MAIN 2124b */
  188. {0x89a000, 0x89a84c, 0x89a000, "sec_main", true, true},
  189. /* OTP 4k */
  190. {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
  191. /* DMA EXT RGF 64k */
  192. {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
  193. /* DUM USER RGF 528b */
  194. {0x8c0000, 0x8c0210, 0x8c0000, "dum_user_rgf", true, true},
  195. /* DMA OFU 296b */
  196. {0x8c2000, 0x8c2128, 0x8c2000, "dma_ofu", true, true},
  197. /* ucode debug 4k */
  198. {0x8c3000, 0x8c4000, 0x8c3000, "ucode_debug", true, true},
  199. /* upper area 1536k */
  200. {0x900000, 0xa80000, 0x900000, "upper", true, true},
  201. /* UCODE areas - accessible by debugfs blobs but not by
  202. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  203. */
  204. /* ucode code RAM 256k */
  205. {0x000000, 0x040000, 0xa38000, "uc_code", false, false},
  206. /* ucode data RAM 32k */
  207. {0x800000, 0x808000, 0xa78000, "uc_data", false, false},
  208. };
  209. struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
  210. struct blink_on_off_time led_blink_time[] = {
  211. {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
  212. {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
  213. {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
  214. };
  215. u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
  216. /**
  217. * return AHB address for given firmware internal (linker) address
  218. * @x - internal address
  219. * If address have no valid AHB mapping, return 0
  220. */
  221. static u32 wmi_addr_remap(u32 x)
  222. {
  223. uint i;
  224. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  225. if (fw_mapping[i].fw &&
  226. ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
  227. return x + fw_mapping[i].host - fw_mapping[i].from;
  228. }
  229. return 0;
  230. }
  231. /**
  232. * find fw_mapping entry by section name
  233. * @section - section name
  234. *
  235. * Return pointer to section or NULL if not found
  236. */
  237. struct fw_map *wil_find_fw_mapping(const char *section)
  238. {
  239. int i;
  240. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
  241. if (fw_mapping[i].name &&
  242. !strcmp(section, fw_mapping[i].name))
  243. return &fw_mapping[i];
  244. return NULL;
  245. }
  246. /**
  247. * Check address validity for WMI buffer; remap if needed
  248. * @ptr - internal (linker) fw/ucode address
  249. * @size - if non zero, validate the block does not
  250. * exceed the device memory (bar)
  251. *
  252. * Valid buffer should be DWORD aligned
  253. *
  254. * return address for accessing buffer from the host;
  255. * if buffer is not valid, return NULL.
  256. */
  257. void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
  258. {
  259. u32 off;
  260. u32 ptr = le32_to_cpu(ptr_);
  261. if (ptr % 4)
  262. return NULL;
  263. ptr = wmi_addr_remap(ptr);
  264. if (ptr < WIL6210_FW_HOST_OFF)
  265. return NULL;
  266. off = HOSTADDR(ptr);
  267. if (off > wil->bar_size - 4)
  268. return NULL;
  269. if (size && ((off + size > wil->bar_size) || (off + size < off)))
  270. return NULL;
  271. return wil->csr + off;
  272. }
  273. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  274. {
  275. return wmi_buffer_block(wil, ptr_, 0);
  276. }
  277. /**
  278. * Check address validity
  279. */
  280. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  281. {
  282. u32 off;
  283. if (ptr % 4)
  284. return NULL;
  285. if (ptr < WIL6210_FW_HOST_OFF)
  286. return NULL;
  287. off = HOSTADDR(ptr);
  288. if (off > wil->bar_size - 4)
  289. return NULL;
  290. return wil->csr + off;
  291. }
  292. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  293. struct wil6210_mbox_hdr *hdr)
  294. {
  295. void __iomem *src = wmi_buffer(wil, ptr);
  296. if (!src)
  297. return -EINVAL;
  298. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  299. return 0;
  300. }
  301. static const char *cmdid2name(u16 cmdid)
  302. {
  303. switch (cmdid) {
  304. case WMI_NOTIFY_REQ_CMDID:
  305. return "WMI_NOTIFY_REQ_CMD";
  306. case WMI_START_SCAN_CMDID:
  307. return "WMI_START_SCAN_CMD";
  308. case WMI_CONNECT_CMDID:
  309. return "WMI_CONNECT_CMD";
  310. case WMI_DISCONNECT_CMDID:
  311. return "WMI_DISCONNECT_CMD";
  312. case WMI_SW_TX_REQ_CMDID:
  313. return "WMI_SW_TX_REQ_CMD";
  314. case WMI_GET_RF_SECTOR_PARAMS_CMDID:
  315. return "WMI_GET_RF_SECTOR_PARAMS_CMD";
  316. case WMI_SET_RF_SECTOR_PARAMS_CMDID:
  317. return "WMI_SET_RF_SECTOR_PARAMS_CMD";
  318. case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
  319. return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
  320. case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
  321. return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
  322. case WMI_BRP_SET_ANT_LIMIT_CMDID:
  323. return "WMI_BRP_SET_ANT_LIMIT_CMD";
  324. case WMI_TOF_SESSION_START_CMDID:
  325. return "WMI_TOF_SESSION_START_CMD";
  326. case WMI_AOA_MEAS_CMDID:
  327. return "WMI_AOA_MEAS_CMD";
  328. case WMI_PMC_CMDID:
  329. return "WMI_PMC_CMD";
  330. case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
  331. return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
  332. case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
  333. return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
  334. case WMI_VRING_CFG_CMDID:
  335. return "WMI_VRING_CFG_CMD";
  336. case WMI_BCAST_VRING_CFG_CMDID:
  337. return "WMI_BCAST_VRING_CFG_CMD";
  338. case WMI_TRAFFIC_SUSPEND_CMDID:
  339. return "WMI_TRAFFIC_SUSPEND_CMD";
  340. case WMI_TRAFFIC_RESUME_CMDID:
  341. return "WMI_TRAFFIC_RESUME_CMD";
  342. case WMI_ECHO_CMDID:
  343. return "WMI_ECHO_CMD";
  344. case WMI_SET_MAC_ADDRESS_CMDID:
  345. return "WMI_SET_MAC_ADDRESS_CMD";
  346. case WMI_LED_CFG_CMDID:
  347. return "WMI_LED_CFG_CMD";
  348. case WMI_PCP_START_CMDID:
  349. return "WMI_PCP_START_CMD";
  350. case WMI_PCP_STOP_CMDID:
  351. return "WMI_PCP_STOP_CMD";
  352. case WMI_SET_SSID_CMDID:
  353. return "WMI_SET_SSID_CMD";
  354. case WMI_GET_SSID_CMDID:
  355. return "WMI_GET_SSID_CMD";
  356. case WMI_SET_PCP_CHANNEL_CMDID:
  357. return "WMI_SET_PCP_CHANNEL_CMD";
  358. case WMI_GET_PCP_CHANNEL_CMDID:
  359. return "WMI_GET_PCP_CHANNEL_CMD";
  360. case WMI_P2P_CFG_CMDID:
  361. return "WMI_P2P_CFG_CMD";
  362. case WMI_PORT_ALLOCATE_CMDID:
  363. return "WMI_PORT_ALLOCATE_CMD";
  364. case WMI_PORT_DELETE_CMDID:
  365. return "WMI_PORT_DELETE_CMD";
  366. case WMI_START_LISTEN_CMDID:
  367. return "WMI_START_LISTEN_CMD";
  368. case WMI_START_SEARCH_CMDID:
  369. return "WMI_START_SEARCH_CMD";
  370. case WMI_DISCOVERY_STOP_CMDID:
  371. return "WMI_DISCOVERY_STOP_CMD";
  372. case WMI_DELETE_CIPHER_KEY_CMDID:
  373. return "WMI_DELETE_CIPHER_KEY_CMD";
  374. case WMI_ADD_CIPHER_KEY_CMDID:
  375. return "WMI_ADD_CIPHER_KEY_CMD";
  376. case WMI_SET_APPIE_CMDID:
  377. return "WMI_SET_APPIE_CMD";
  378. case WMI_CFG_RX_CHAIN_CMDID:
  379. return "WMI_CFG_RX_CHAIN_CMD";
  380. case WMI_TEMP_SENSE_CMDID:
  381. return "WMI_TEMP_SENSE_CMD";
  382. case WMI_DEL_STA_CMDID:
  383. return "WMI_DEL_STA_CMD";
  384. case WMI_DISCONNECT_STA_CMDID:
  385. return "WMI_DISCONNECT_STA_CMD";
  386. case WMI_RING_BA_EN_CMDID:
  387. return "WMI_RING_BA_EN_CMD";
  388. case WMI_RING_BA_DIS_CMDID:
  389. return "WMI_RING_BA_DIS_CMD";
  390. case WMI_RCP_DELBA_CMDID:
  391. return "WMI_RCP_DELBA_CMD";
  392. case WMI_RCP_ADDBA_RESP_CMDID:
  393. return "WMI_RCP_ADDBA_RESP_CMD";
  394. case WMI_RCP_ADDBA_RESP_EDMA_CMDID:
  395. return "WMI_RCP_ADDBA_RESP_EDMA_CMD";
  396. case WMI_PS_DEV_PROFILE_CFG_CMDID:
  397. return "WMI_PS_DEV_PROFILE_CFG_CMD";
  398. case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
  399. return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
  400. case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
  401. return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
  402. case WMI_ABORT_SCAN_CMDID:
  403. return "WMI_ABORT_SCAN_CMD";
  404. case WMI_NEW_STA_CMDID:
  405. return "WMI_NEW_STA_CMD";
  406. case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
  407. return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
  408. case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
  409. return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
  410. case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
  411. return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
  412. case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
  413. return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
  414. case WMI_START_SCHED_SCAN_CMDID:
  415. return "WMI_START_SCHED_SCAN_CMD";
  416. case WMI_STOP_SCHED_SCAN_CMDID:
  417. return "WMI_STOP_SCHED_SCAN_CMD";
  418. case WMI_TX_STATUS_RING_ADD_CMDID:
  419. return "WMI_TX_STATUS_RING_ADD_CMD";
  420. case WMI_RX_STATUS_RING_ADD_CMDID:
  421. return "WMI_RX_STATUS_RING_ADD_CMD";
  422. case WMI_TX_DESC_RING_ADD_CMDID:
  423. return "WMI_TX_DESC_RING_ADD_CMD";
  424. case WMI_RX_DESC_RING_ADD_CMDID:
  425. return "WMI_RX_DESC_RING_ADD_CMD";
  426. case WMI_BCAST_DESC_RING_ADD_CMDID:
  427. return "WMI_BCAST_DESC_RING_ADD_CMD";
  428. case WMI_CFG_DEF_RX_OFFLOAD_CMDID:
  429. return "WMI_CFG_DEF_RX_OFFLOAD_CMD";
  430. case WMI_LINK_STATS_CMDID:
  431. return "WMI_LINK_STATS_CMD";
  432. case WMI_SW_TX_REQ_EXT_CMDID:
  433. return "WMI_SW_TX_REQ_EXT_CMDID";
  434. default:
  435. return "Untracked CMD";
  436. }
  437. }
  438. static const char *eventid2name(u16 eventid)
  439. {
  440. switch (eventid) {
  441. case WMI_NOTIFY_REQ_DONE_EVENTID:
  442. return "WMI_NOTIFY_REQ_DONE_EVENT";
  443. case WMI_DISCONNECT_EVENTID:
  444. return "WMI_DISCONNECT_EVENT";
  445. case WMI_SW_TX_COMPLETE_EVENTID:
  446. return "WMI_SW_TX_COMPLETE_EVENT";
  447. case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
  448. return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
  449. case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
  450. return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
  451. case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
  452. return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
  453. case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
  454. return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
  455. case WMI_BRP_SET_ANT_LIMIT_EVENTID:
  456. return "WMI_BRP_SET_ANT_LIMIT_EVENT";
  457. case WMI_FW_READY_EVENTID:
  458. return "WMI_FW_READY_EVENT";
  459. case WMI_TRAFFIC_RESUME_EVENTID:
  460. return "WMI_TRAFFIC_RESUME_EVENT";
  461. case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
  462. return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
  463. case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
  464. return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
  465. case WMI_VRING_CFG_DONE_EVENTID:
  466. return "WMI_VRING_CFG_DONE_EVENT";
  467. case WMI_READY_EVENTID:
  468. return "WMI_READY_EVENT";
  469. case WMI_RX_MGMT_PACKET_EVENTID:
  470. return "WMI_RX_MGMT_PACKET_EVENT";
  471. case WMI_TX_MGMT_PACKET_EVENTID:
  472. return "WMI_TX_MGMT_PACKET_EVENT";
  473. case WMI_SCAN_COMPLETE_EVENTID:
  474. return "WMI_SCAN_COMPLETE_EVENT";
  475. case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
  476. return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
  477. case WMI_CONNECT_EVENTID:
  478. return "WMI_CONNECT_EVENT";
  479. case WMI_EAPOL_RX_EVENTID:
  480. return "WMI_EAPOL_RX_EVENT";
  481. case WMI_BA_STATUS_EVENTID:
  482. return "WMI_BA_STATUS_EVENT";
  483. case WMI_RCP_ADDBA_REQ_EVENTID:
  484. return "WMI_RCP_ADDBA_REQ_EVENT";
  485. case WMI_DELBA_EVENTID:
  486. return "WMI_DELBA_EVENT";
  487. case WMI_RING_EN_EVENTID:
  488. return "WMI_RING_EN_EVENT";
  489. case WMI_DATA_PORT_OPEN_EVENTID:
  490. return "WMI_DATA_PORT_OPEN_EVENT";
  491. case WMI_AOA_MEAS_EVENTID:
  492. return "WMI_AOA_MEAS_EVENT";
  493. case WMI_TOF_SESSION_END_EVENTID:
  494. return "WMI_TOF_SESSION_END_EVENT";
  495. case WMI_TOF_GET_CAPABILITIES_EVENTID:
  496. return "WMI_TOF_GET_CAPABILITIES_EVENT";
  497. case WMI_TOF_SET_LCR_EVENTID:
  498. return "WMI_TOF_SET_LCR_EVENT";
  499. case WMI_TOF_SET_LCI_EVENTID:
  500. return "WMI_TOF_SET_LCI_EVENT";
  501. case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
  502. return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
  503. case WMI_TOF_CHANNEL_INFO_EVENTID:
  504. return "WMI_TOF_CHANNEL_INFO_EVENT";
  505. case WMI_TRAFFIC_SUSPEND_EVENTID:
  506. return "WMI_TRAFFIC_SUSPEND_EVENT";
  507. case WMI_ECHO_RSP_EVENTID:
  508. return "WMI_ECHO_RSP_EVENT";
  509. case WMI_LED_CFG_DONE_EVENTID:
  510. return "WMI_LED_CFG_DONE_EVENT";
  511. case WMI_PCP_STARTED_EVENTID:
  512. return "WMI_PCP_STARTED_EVENT";
  513. case WMI_PCP_STOPPED_EVENTID:
  514. return "WMI_PCP_STOPPED_EVENT";
  515. case WMI_GET_SSID_EVENTID:
  516. return "WMI_GET_SSID_EVENT";
  517. case WMI_GET_PCP_CHANNEL_EVENTID:
  518. return "WMI_GET_PCP_CHANNEL_EVENT";
  519. case WMI_P2P_CFG_DONE_EVENTID:
  520. return "WMI_P2P_CFG_DONE_EVENT";
  521. case WMI_PORT_ALLOCATED_EVENTID:
  522. return "WMI_PORT_ALLOCATED_EVENT";
  523. case WMI_PORT_DELETED_EVENTID:
  524. return "WMI_PORT_DELETED_EVENT";
  525. case WMI_LISTEN_STARTED_EVENTID:
  526. return "WMI_LISTEN_STARTED_EVENT";
  527. case WMI_SEARCH_STARTED_EVENTID:
  528. return "WMI_SEARCH_STARTED_EVENT";
  529. case WMI_DISCOVERY_STOPPED_EVENTID:
  530. return "WMI_DISCOVERY_STOPPED_EVENT";
  531. case WMI_CFG_RX_CHAIN_DONE_EVENTID:
  532. return "WMI_CFG_RX_CHAIN_DONE_EVENT";
  533. case WMI_TEMP_SENSE_DONE_EVENTID:
  534. return "WMI_TEMP_SENSE_DONE_EVENT";
  535. case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
  536. return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
  537. case WMI_PS_DEV_PROFILE_CFG_EVENTID:
  538. return "WMI_PS_DEV_PROFILE_CFG_EVENT";
  539. case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
  540. return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
  541. case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
  542. return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
  543. case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
  544. return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
  545. case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
  546. return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
  547. case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
  548. return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
  549. case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
  550. return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
  551. case WMI_START_SCHED_SCAN_EVENTID:
  552. return "WMI_START_SCHED_SCAN_EVENT";
  553. case WMI_STOP_SCHED_SCAN_EVENTID:
  554. return "WMI_STOP_SCHED_SCAN_EVENT";
  555. case WMI_SCHED_SCAN_RESULT_EVENTID:
  556. return "WMI_SCHED_SCAN_RESULT_EVENT";
  557. case WMI_TX_STATUS_RING_CFG_DONE_EVENTID:
  558. return "WMI_TX_STATUS_RING_CFG_DONE_EVENT";
  559. case WMI_RX_STATUS_RING_CFG_DONE_EVENTID:
  560. return "WMI_RX_STATUS_RING_CFG_DONE_EVENT";
  561. case WMI_TX_DESC_RING_CFG_DONE_EVENTID:
  562. return "WMI_TX_DESC_RING_CFG_DONE_EVENT";
  563. case WMI_RX_DESC_RING_CFG_DONE_EVENTID:
  564. return "WMI_RX_DESC_RING_CFG_DONE_EVENT";
  565. case WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID:
  566. return "WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENT";
  567. case WMI_LINK_STATS_CONFIG_DONE_EVENTID:
  568. return "WMI_LINK_STATS_CONFIG_DONE_EVENT";
  569. case WMI_LINK_STATS_EVENTID:
  570. return "WMI_LINK_STATS_EVENT";
  571. default:
  572. return "Untracked EVENT";
  573. }
  574. }
  575. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
  576. void *buf, u16 len)
  577. {
  578. struct {
  579. struct wil6210_mbox_hdr hdr;
  580. struct wmi_cmd_hdr wmi;
  581. } __packed cmd = {
  582. .hdr = {
  583. .type = WIL_MBOX_HDR_TYPE_WMI,
  584. .flags = 0,
  585. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  586. },
  587. .wmi = {
  588. .mid = mid,
  589. .command_id = cpu_to_le16(cmdid),
  590. },
  591. };
  592. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  593. struct wil6210_mbox_ring_desc d_head;
  594. u32 next_head;
  595. void __iomem *dst;
  596. void __iomem *head = wmi_addr(wil, r->head);
  597. uint retry;
  598. int rc = 0;
  599. if (len > r->entry_size - sizeof(cmd)) {
  600. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  601. (int)(sizeof(cmd) + len), r->entry_size);
  602. return -ERANGE;
  603. }
  604. might_sleep();
  605. if (!test_bit(wil_status_fwready, wil->status)) {
  606. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  607. return -EAGAIN;
  608. }
  609. /* Allow sending only suspend / resume commands during susepnd flow */
  610. if ((test_bit(wil_status_suspending, wil->status) ||
  611. test_bit(wil_status_suspended, wil->status) ||
  612. test_bit(wil_status_resuming, wil->status)) &&
  613. ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
  614. (cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
  615. wil_err(wil, "WMI: reject send_command during suspend\n");
  616. return -EINVAL;
  617. }
  618. if (!head) {
  619. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  620. return -EINVAL;
  621. }
  622. wil_halp_vote(wil);
  623. /* read Tx head till it is not busy */
  624. for (retry = 5; retry > 0; retry--) {
  625. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  626. if (d_head.sync == 0)
  627. break;
  628. msleep(20);
  629. }
  630. if (d_head.sync != 0) {
  631. wil_err(wil, "WMI head busy\n");
  632. rc = -EBUSY;
  633. goto out;
  634. }
  635. /* next head */
  636. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  637. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  638. /* wait till FW finish with previous command */
  639. for (retry = 5; retry > 0; retry--) {
  640. if (!test_bit(wil_status_fwready, wil->status)) {
  641. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  642. rc = -EAGAIN;
  643. goto out;
  644. }
  645. r->tail = wil_r(wil, RGF_MBOX +
  646. offsetof(struct wil6210_mbox_ctl, tx.tail));
  647. if (next_head != r->tail)
  648. break;
  649. msleep(20);
  650. }
  651. if (next_head == r->tail) {
  652. wil_err(wil, "WMI ring full\n");
  653. rc = -EBUSY;
  654. goto out;
  655. }
  656. dst = wmi_buffer(wil, d_head.addr);
  657. if (!dst) {
  658. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  659. le32_to_cpu(d_head.addr));
  660. rc = -EAGAIN;
  661. goto out;
  662. }
  663. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  664. /* set command */
  665. wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
  666. cmdid2name(cmdid), cmdid, len, mid);
  667. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  668. sizeof(cmd), true);
  669. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  670. len, true);
  671. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  672. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  673. /* mark entry as full */
  674. wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
  675. /* advance next ptr */
  676. wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
  677. r->head = next_head);
  678. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  679. /* interrupt to FW */
  680. wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
  681. SW_INT_MBOX);
  682. out:
  683. wil_halp_unvote(wil);
  684. return rc;
  685. }
  686. int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
  687. {
  688. int rc;
  689. mutex_lock(&wil->wmi_mutex);
  690. rc = __wmi_send(wil, cmdid, mid, buf, len);
  691. mutex_unlock(&wil->wmi_mutex);
  692. return rc;
  693. }
  694. /*=== Event handlers ===*/
  695. static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
  696. {
  697. struct wil6210_priv *wil = vif_to_wil(vif);
  698. struct wiphy *wiphy = wil_to_wiphy(wil);
  699. struct wmi_ready_event *evt = d;
  700. wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
  701. wil->fw_version, le32_to_cpu(evt->sw_version),
  702. evt->mac, evt->numof_additional_mids);
  703. if (evt->numof_additional_mids + 1 < wil->max_vifs) {
  704. wil_err(wil, "FW does not support enough MIDs (need %d)",
  705. wil->max_vifs - 1);
  706. return; /* FW load will fail after timeout */
  707. }
  708. /* ignore MAC address, we already have it from the boot loader */
  709. strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
  710. if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
  711. wil_dbg_wmi(wil, "rfc calibration result %d\n",
  712. evt->rfc_read_calib_result);
  713. wil->fw_calib_result = evt->rfc_read_calib_result;
  714. }
  715. wil_set_recovery_state(wil, fw_recovery_idle);
  716. set_bit(wil_status_fwready, wil->status);
  717. /* let the reset sequence continue */
  718. complete(&wil->wmi_ready);
  719. }
  720. static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
  721. {
  722. struct wil6210_priv *wil = vif_to_wil(vif);
  723. struct wmi_rx_mgmt_packet_event *data = d;
  724. struct wiphy *wiphy = wil_to_wiphy(wil);
  725. struct ieee80211_mgmt *rx_mgmt_frame =
  726. (struct ieee80211_mgmt *)data->payload;
  727. int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
  728. int ch_no;
  729. u32 freq;
  730. struct ieee80211_channel *channel;
  731. s32 signal;
  732. __le16 fc;
  733. u32 d_len;
  734. u16 d_status;
  735. if (flen < 0) {
  736. wil_err(wil, "MGMT Rx: short event, len %d\n", len);
  737. return;
  738. }
  739. d_len = le32_to_cpu(data->info.len);
  740. if (d_len != flen) {
  741. wil_err(wil,
  742. "MGMT Rx: length mismatch, d_len %d should be %d\n",
  743. d_len, flen);
  744. return;
  745. }
  746. ch_no = data->info.channel + 1;
  747. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  748. channel = ieee80211_get_channel(wiphy, freq);
  749. if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
  750. signal = 100 * data->info.rssi;
  751. else
  752. signal = data->info.sqi;
  753. d_status = le16_to_cpu(data->info.status);
  754. fc = rx_mgmt_frame->frame_control;
  755. wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
  756. data->info.channel, data->info.mcs, data->info.rssi,
  757. data->info.sqi);
  758. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  759. le16_to_cpu(fc));
  760. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  761. data->info.qid, data->info.mid, data->info.cid);
  762. wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  763. d_len, true);
  764. if (!channel) {
  765. wil_err(wil, "Frame on unsupported channel\n");
  766. return;
  767. }
  768. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  769. struct cfg80211_bss *bss;
  770. u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
  771. u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
  772. u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
  773. const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
  774. size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
  775. u.beacon.variable);
  776. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  777. wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
  778. wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
  779. wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
  780. ie_len, true);
  781. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  782. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  783. d_len, signal, GFP_KERNEL);
  784. if (bss) {
  785. wil_dbg_wmi(wil, "Added BSS %pM\n",
  786. rx_mgmt_frame->bssid);
  787. cfg80211_put_bss(wiphy, bss);
  788. } else {
  789. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  790. }
  791. } else {
  792. mutex_lock(&wil->vif_mutex);
  793. cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
  794. (void *)rx_mgmt_frame, d_len, 0);
  795. mutex_unlock(&wil->vif_mutex);
  796. }
  797. }
  798. static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
  799. {
  800. struct wmi_tx_mgmt_packet_event *data = d;
  801. struct ieee80211_mgmt *mgmt_frame =
  802. (struct ieee80211_mgmt *)data->payload;
  803. int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
  804. wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
  805. flen, true);
  806. }
  807. static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
  808. void *d, int len)
  809. {
  810. struct wil6210_priv *wil = vif_to_wil(vif);
  811. mutex_lock(&wil->vif_mutex);
  812. if (vif->scan_request) {
  813. struct wmi_scan_complete_event *data = d;
  814. int status = le32_to_cpu(data->status);
  815. struct cfg80211_scan_info info = {
  816. .aborted = ((status != WMI_SCAN_SUCCESS) &&
  817. (status != WMI_SCAN_ABORT_REJECTED)),
  818. };
  819. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
  820. wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
  821. vif->scan_request, info.aborted);
  822. del_timer_sync(&vif->scan_timer);
  823. cfg80211_scan_done(vif->scan_request, &info);
  824. if (vif->mid == 0)
  825. wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
  826. vif->scan_request = NULL;
  827. wake_up_interruptible(&wil->wq);
  828. if (vif->p2p.pending_listen_wdev) {
  829. wil_dbg_misc(wil, "Scheduling delayed listen\n");
  830. schedule_work(&vif->p2p.delayed_listen_work);
  831. }
  832. } else {
  833. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  834. }
  835. mutex_unlock(&wil->vif_mutex);
  836. }
  837. static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
  838. {
  839. struct wil6210_priv *wil = vif_to_wil(vif);
  840. struct net_device *ndev = vif_to_ndev(vif);
  841. struct wireless_dev *wdev = vif_to_wdev(vif);
  842. struct wmi_connect_event *evt = d;
  843. int ch; /* channel number */
  844. struct station_info *sinfo;
  845. u8 *assoc_req_ie, *assoc_resp_ie;
  846. size_t assoc_req_ielen, assoc_resp_ielen;
  847. /* capinfo(u16) + listen_interval(u16) + IEs */
  848. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  849. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  850. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  851. int rc;
  852. if (len < sizeof(*evt)) {
  853. wil_err(wil, "Connect event too short : %d bytes\n", len);
  854. return;
  855. }
  856. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  857. evt->assoc_resp_len) {
  858. wil_err(wil,
  859. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  860. len, (int)sizeof(*evt), evt->beacon_ie_len,
  861. evt->assoc_req_len, evt->assoc_resp_len);
  862. return;
  863. }
  864. if (evt->cid >= WIL6210_MAX_CID) {
  865. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  866. return;
  867. }
  868. ch = evt->channel + 1;
  869. wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
  870. evt->bssid, ch, evt->cid, evt->aid);
  871. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  872. evt->assoc_info, len - sizeof(*evt), true);
  873. /* figure out IE's */
  874. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  875. assoc_req_ie_offset];
  876. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  877. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  878. assoc_req_ie = NULL;
  879. assoc_req_ielen = 0;
  880. }
  881. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  882. evt->assoc_req_len +
  883. assoc_resp_ie_offset];
  884. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  885. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  886. assoc_resp_ie = NULL;
  887. assoc_resp_ielen = 0;
  888. }
  889. if (test_bit(wil_status_resetting, wil->status) ||
  890. !test_bit(wil_status_fwready, wil->status)) {
  891. wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
  892. evt->cid);
  893. /* no need for cleanup, wil_reset will do that */
  894. return;
  895. }
  896. mutex_lock(&wil->mutex);
  897. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  898. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  899. if (!test_bit(wil_vif_fwconnecting, vif->status)) {
  900. wil_err(wil, "Not in connecting state\n");
  901. mutex_unlock(&wil->mutex);
  902. return;
  903. }
  904. del_timer_sync(&vif->connect_timer);
  905. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  906. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  907. if (wil->sta[evt->cid].status != wil_sta_unused) {
  908. wil_err(wil, "AP: Invalid status %d for CID %d\n",
  909. wil->sta[evt->cid].status, evt->cid);
  910. mutex_unlock(&wil->mutex);
  911. return;
  912. }
  913. }
  914. ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
  915. wil->sta[evt->cid].mid = vif->mid;
  916. wil->sta[evt->cid].status = wil_sta_conn_pending;
  917. rc = wil_ring_init_tx(vif, evt->cid);
  918. if (rc) {
  919. wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
  920. evt->cid, rc);
  921. wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
  922. WLAN_REASON_UNSPECIFIED, false, false);
  923. } else {
  924. wil_info(wil, "successful connection to CID %d\n", evt->cid);
  925. }
  926. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  927. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  928. if (rc) {
  929. netif_carrier_off(ndev);
  930. wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
  931. wil_err(wil, "cfg80211_connect_result with failure\n");
  932. cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
  933. NULL, 0,
  934. WLAN_STATUS_UNSPECIFIED_FAILURE,
  935. GFP_KERNEL);
  936. goto out;
  937. } else {
  938. struct wiphy *wiphy = wil_to_wiphy(wil);
  939. cfg80211_ref_bss(wiphy, vif->bss);
  940. cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
  941. assoc_req_ie, assoc_req_ielen,
  942. assoc_resp_ie, assoc_resp_ielen,
  943. WLAN_STATUS_SUCCESS, GFP_KERNEL,
  944. NL80211_TIMEOUT_UNSPECIFIED);
  945. }
  946. vif->bss = NULL;
  947. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  948. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  949. if (rc) {
  950. if (disable_ap_sme)
  951. /* notify new_sta has failed */
  952. cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
  953. goto out;
  954. }
  955. sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
  956. if (!sinfo) {
  957. rc = -ENOMEM;
  958. goto out;
  959. }
  960. sinfo->generation = wil->sinfo_gen++;
  961. if (assoc_req_ie) {
  962. sinfo->assoc_req_ies = assoc_req_ie;
  963. sinfo->assoc_req_ies_len = assoc_req_ielen;
  964. }
  965. cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL);
  966. kfree(sinfo);
  967. } else {
  968. wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
  969. evt->cid);
  970. goto out;
  971. }
  972. wil->sta[evt->cid].status = wil_sta_connected;
  973. wil->sta[evt->cid].aid = evt->aid;
  974. if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
  975. atomic_inc(&wil->connected_vifs);
  976. wil_update_net_queues_bh(wil, vif, NULL, false);
  977. out:
  978. if (rc) {
  979. wil->sta[evt->cid].status = wil_sta_unused;
  980. wil->sta[evt->cid].mid = U8_MAX;
  981. }
  982. clear_bit(wil_vif_fwconnecting, vif->status);
  983. mutex_unlock(&wil->mutex);
  984. }
  985. static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
  986. void *d, int len)
  987. {
  988. struct wil6210_priv *wil = vif_to_wil(vif);
  989. struct wmi_disconnect_event *evt = d;
  990. u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
  991. wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  992. evt->bssid, reason_code, evt->disconnect_reason);
  993. wil->sinfo_gen++;
  994. if (test_bit(wil_status_resetting, wil->status) ||
  995. !test_bit(wil_status_fwready, wil->status)) {
  996. wil_err(wil, "status_resetting, cancel disconnect event\n");
  997. /* no need for cleanup, wil_reset will do that */
  998. return;
  999. }
  1000. mutex_lock(&wil->mutex);
  1001. wil6210_disconnect(vif, evt->bssid, reason_code, true);
  1002. mutex_unlock(&wil->mutex);
  1003. }
  1004. /*
  1005. * Firmware reports EAPOL frame using WME event.
  1006. * Reconstruct Ethernet frame and deliver it via normal Rx
  1007. */
  1008. static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
  1009. {
  1010. struct wil6210_priv *wil = vif_to_wil(vif);
  1011. struct net_device *ndev = vif_to_ndev(vif);
  1012. struct wmi_eapol_rx_event *evt = d;
  1013. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  1014. int sz = eapol_len + ETH_HLEN;
  1015. struct sk_buff *skb;
  1016. struct ethhdr *eth;
  1017. int cid;
  1018. struct wil_net_stats *stats = NULL;
  1019. wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
  1020. evt->src_mac, vif->mid);
  1021. cid = wil_find_cid(wil, vif->mid, evt->src_mac);
  1022. if (cid >= 0)
  1023. stats = &wil->sta[cid].stats;
  1024. if (eapol_len > 196) { /* TODO: revisit size limit */
  1025. wil_err(wil, "EAPOL too large\n");
  1026. return;
  1027. }
  1028. skb = alloc_skb(sz, GFP_KERNEL);
  1029. if (!skb) {
  1030. wil_err(wil, "Failed to allocate skb\n");
  1031. return;
  1032. }
  1033. eth = skb_put(skb, ETH_HLEN);
  1034. ether_addr_copy(eth->h_dest, ndev->dev_addr);
  1035. ether_addr_copy(eth->h_source, evt->src_mac);
  1036. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  1037. skb_put_data(skb, evt->eapol, eapol_len);
  1038. skb->protocol = eth_type_trans(skb, ndev);
  1039. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  1040. ndev->stats.rx_packets++;
  1041. ndev->stats.rx_bytes += sz;
  1042. if (stats) {
  1043. stats->rx_packets++;
  1044. stats->rx_bytes += sz;
  1045. }
  1046. } else {
  1047. ndev->stats.rx_dropped++;
  1048. if (stats)
  1049. stats->rx_dropped++;
  1050. }
  1051. }
  1052. static void wmi_evt_ring_en(struct wil6210_vif *vif, int id, void *d, int len)
  1053. {
  1054. struct wil6210_priv *wil = vif_to_wil(vif);
  1055. struct wmi_ring_en_event *evt = d;
  1056. u8 vri = evt->ring_index;
  1057. struct wireless_dev *wdev = vif_to_wdev(vif);
  1058. wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
  1059. if (vri >= ARRAY_SIZE(wil->ring_tx)) {
  1060. wil_err(wil, "Enable for invalid vring %d\n", vri);
  1061. return;
  1062. }
  1063. if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme)
  1064. /* in AP mode with disable_ap_sme, this is done by
  1065. * wil_cfg80211_change_station()
  1066. */
  1067. wil->ring_tx_data[vri].dot1x_open = true;
  1068. if (vri == vif->bcast_ring) /* no BA for bcast */
  1069. return;
  1070. if (agg_wsize >= 0)
  1071. wil_addba_tx_request(wil, vri, agg_wsize);
  1072. }
  1073. static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
  1074. void *d, int len)
  1075. {
  1076. struct wil6210_priv *wil = vif_to_wil(vif);
  1077. struct wmi_ba_status_event *evt = d;
  1078. struct wil_ring_tx_data *txdata;
  1079. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
  1080. evt->ringid,
  1081. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  1082. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
  1083. evt->amsdu ? "+" : "-");
  1084. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  1085. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  1086. return;
  1087. }
  1088. if (evt->status != WMI_BA_AGREED) {
  1089. evt->ba_timeout = 0;
  1090. evt->agg_wsize = 0;
  1091. evt->amsdu = 0;
  1092. }
  1093. txdata = &wil->ring_tx_data[evt->ringid];
  1094. txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
  1095. txdata->agg_wsize = evt->agg_wsize;
  1096. txdata->agg_amsdu = evt->amsdu;
  1097. txdata->addba_in_progress = false;
  1098. }
  1099. static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
  1100. void *d, int len)
  1101. {
  1102. struct wil6210_priv *wil = vif_to_wil(vif);
  1103. struct wmi_rcp_addba_req_event *evt = d;
  1104. wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token,
  1105. evt->ba_param_set, evt->ba_timeout,
  1106. evt->ba_seq_ctrl);
  1107. }
  1108. static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
  1109. __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
  1110. {
  1111. struct wil6210_priv *wil = vif_to_wil(vif);
  1112. struct wmi_delba_event *evt = d;
  1113. u8 cid, tid;
  1114. u16 reason = __le16_to_cpu(evt->reason);
  1115. struct wil_sta_info *sta;
  1116. struct wil_tid_ampdu_rx *r;
  1117. might_sleep();
  1118. parse_cidxtid(evt->cidxtid, &cid, &tid);
  1119. wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
  1120. vif->mid, cid, tid,
  1121. evt->from_initiator ? "originator" : "recipient",
  1122. reason);
  1123. if (!evt->from_initiator) {
  1124. int i;
  1125. /* find Tx vring it belongs to */
  1126. for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
  1127. if (wil->ring2cid_tid[i][0] == cid &&
  1128. wil->ring2cid_tid[i][1] == tid) {
  1129. struct wil_ring_tx_data *txdata =
  1130. &wil->ring_tx_data[i];
  1131. wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
  1132. txdata->agg_timeout = 0;
  1133. txdata->agg_wsize = 0;
  1134. txdata->addba_in_progress = false;
  1135. break; /* max. 1 matching ring */
  1136. }
  1137. }
  1138. if (i >= ARRAY_SIZE(wil->ring2cid_tid))
  1139. wil_err(wil, "DELBA: unable to find Tx vring\n");
  1140. return;
  1141. }
  1142. sta = &wil->sta[cid];
  1143. spin_lock_bh(&sta->tid_rx_lock);
  1144. r = sta->tid_rx[tid];
  1145. sta->tid_rx[tid] = NULL;
  1146. wil_tid_ampdu_rx_free(wil, r);
  1147. spin_unlock_bh(&sta->tid_rx_lock);
  1148. }
  1149. static void
  1150. wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
  1151. {
  1152. struct wil6210_priv *wil = vif_to_wil(vif);
  1153. struct wmi_sched_scan_result_event *data = d;
  1154. struct wiphy *wiphy = wil_to_wiphy(wil);
  1155. struct ieee80211_mgmt *rx_mgmt_frame =
  1156. (struct ieee80211_mgmt *)data->payload;
  1157. int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
  1158. int ch_no;
  1159. u32 freq;
  1160. struct ieee80211_channel *channel;
  1161. s32 signal;
  1162. __le16 fc;
  1163. u32 d_len;
  1164. struct cfg80211_bss *bss;
  1165. if (flen < 0) {
  1166. wil_err(wil, "sched scan result event too short, len %d\n",
  1167. len);
  1168. return;
  1169. }
  1170. d_len = le32_to_cpu(data->info.len);
  1171. if (d_len != flen) {
  1172. wil_err(wil,
  1173. "sched scan result length mismatch, d_len %d should be %d\n",
  1174. d_len, flen);
  1175. return;
  1176. }
  1177. fc = rx_mgmt_frame->frame_control;
  1178. if (!ieee80211_is_probe_resp(fc)) {
  1179. wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
  1180. fc);
  1181. return;
  1182. }
  1183. ch_no = data->info.channel + 1;
  1184. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  1185. channel = ieee80211_get_channel(wiphy, freq);
  1186. if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
  1187. signal = 100 * data->info.rssi;
  1188. else
  1189. signal = data->info.sqi;
  1190. wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
  1191. data->info.channel, data->info.mcs, data->info.rssi);
  1192. wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
  1193. d_len, data->info.qid, data->info.mid, data->info.cid);
  1194. wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  1195. d_len, true);
  1196. if (!channel) {
  1197. wil_err(wil, "Frame on unsupported channel\n");
  1198. return;
  1199. }
  1200. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  1201. d_len, signal, GFP_KERNEL);
  1202. if (bss) {
  1203. wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
  1204. cfg80211_put_bss(wiphy, bss);
  1205. } else {
  1206. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  1207. }
  1208. cfg80211_sched_scan_results(wiphy, 0);
  1209. }
  1210. static void wil_link_stats_store_basic(struct wil6210_vif *vif,
  1211. struct wmi_link_stats_basic *basic)
  1212. {
  1213. struct wil6210_priv *wil = vif_to_wil(vif);
  1214. u8 cid = basic->cid;
  1215. struct wil_sta_info *sta;
  1216. if (cid < 0 || cid >= WIL6210_MAX_CID) {
  1217. wil_err(wil, "invalid cid %d\n", cid);
  1218. return;
  1219. }
  1220. sta = &wil->sta[cid];
  1221. sta->fw_stats_basic = *basic;
  1222. }
  1223. static void wil_link_stats_store_global(struct wil6210_vif *vif,
  1224. struct wmi_link_stats_global *global)
  1225. {
  1226. struct wil6210_priv *wil = vif_to_wil(vif);
  1227. wil->fw_stats_global.stats = *global;
  1228. }
  1229. static void wmi_link_stats_parse(struct wil6210_vif *vif, u64 tsf,
  1230. bool has_next, void *payload,
  1231. size_t payload_size)
  1232. {
  1233. struct wil6210_priv *wil = vif_to_wil(vif);
  1234. size_t hdr_size = sizeof(struct wmi_link_stats_record);
  1235. size_t stats_size, record_size, expected_size;
  1236. struct wmi_link_stats_record *hdr;
  1237. if (payload_size < hdr_size) {
  1238. wil_err(wil, "link stats wrong event size %zu\n", payload_size);
  1239. return;
  1240. }
  1241. while (payload_size >= hdr_size) {
  1242. hdr = payload;
  1243. stats_size = le16_to_cpu(hdr->record_size);
  1244. record_size = hdr_size + stats_size;
  1245. if (payload_size < record_size) {
  1246. wil_err(wil, "link stats payload ended unexpectedly, size %zu < %zu\n",
  1247. payload_size, record_size);
  1248. return;
  1249. }
  1250. switch (hdr->record_type_id) {
  1251. case WMI_LINK_STATS_TYPE_BASIC:
  1252. expected_size = sizeof(struct wmi_link_stats_basic);
  1253. if (stats_size < expected_size) {
  1254. wil_err(wil, "link stats invalid basic record size %zu < %zu\n",
  1255. stats_size, expected_size);
  1256. return;
  1257. }
  1258. if (vif->fw_stats_ready) {
  1259. /* clean old statistics */
  1260. vif->fw_stats_tsf = 0;
  1261. vif->fw_stats_ready = 0;
  1262. }
  1263. wil_link_stats_store_basic(vif, payload + hdr_size);
  1264. if (!has_next) {
  1265. vif->fw_stats_tsf = tsf;
  1266. vif->fw_stats_ready = 1;
  1267. }
  1268. break;
  1269. case WMI_LINK_STATS_TYPE_GLOBAL:
  1270. expected_size = sizeof(struct wmi_link_stats_global);
  1271. if (stats_size < sizeof(struct wmi_link_stats_global)) {
  1272. wil_err(wil, "link stats invalid global record size %zu < %zu\n",
  1273. stats_size, expected_size);
  1274. return;
  1275. }
  1276. if (wil->fw_stats_global.ready) {
  1277. /* clean old statistics */
  1278. wil->fw_stats_global.tsf = 0;
  1279. wil->fw_stats_global.ready = 0;
  1280. }
  1281. wil_link_stats_store_global(vif, payload + hdr_size);
  1282. if (!has_next) {
  1283. wil->fw_stats_global.tsf = tsf;
  1284. wil->fw_stats_global.ready = 1;
  1285. }
  1286. break;
  1287. default:
  1288. break;
  1289. }
  1290. /* skip to next record */
  1291. payload += record_size;
  1292. payload_size -= record_size;
  1293. }
  1294. }
  1295. static void
  1296. wmi_evt_link_stats(struct wil6210_vif *vif, int id, void *d, int len)
  1297. {
  1298. struct wil6210_priv *wil = vif_to_wil(vif);
  1299. struct wmi_link_stats_event *evt = d;
  1300. size_t payload_size;
  1301. if (len < offsetof(struct wmi_link_stats_event, payload)) {
  1302. wil_err(wil, "stats event way too short %d\n", len);
  1303. return;
  1304. }
  1305. payload_size = le16_to_cpu(evt->payload_size);
  1306. if (len < sizeof(struct wmi_link_stats_event) + payload_size) {
  1307. wil_err(wil, "stats event too short %d\n", len);
  1308. return;
  1309. }
  1310. wmi_link_stats_parse(vif, le64_to_cpu(evt->tsf), evt->has_next,
  1311. evt->payload, payload_size);
  1312. }
  1313. /**
  1314. * Some events are ignored for purpose; and need not be interpreted as
  1315. * "unhandled events"
  1316. */
  1317. static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
  1318. {
  1319. struct wil6210_priv *wil = vif_to_wil(vif);
  1320. wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
  1321. }
  1322. static const struct {
  1323. int eventid;
  1324. void (*handler)(struct wil6210_vif *vif,
  1325. int eventid, void *data, int data_len);
  1326. } wmi_evt_handlers[] = {
  1327. {WMI_READY_EVENTID, wmi_evt_ready},
  1328. {WMI_FW_READY_EVENTID, wmi_evt_ignore},
  1329. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  1330. {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt},
  1331. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  1332. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  1333. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  1334. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  1335. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  1336. {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req},
  1337. {WMI_DELBA_EVENTID, wmi_evt_delba},
  1338. {WMI_RING_EN_EVENTID, wmi_evt_ring_en},
  1339. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore},
  1340. {WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result},
  1341. {WMI_LINK_STATS_EVENTID, wmi_evt_link_stats},
  1342. };
  1343. /*
  1344. * Run in IRQ context
  1345. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  1346. * that will be eventually handled by the @wmi_event_worker in the thread
  1347. * context of thread "wil6210_wmi"
  1348. */
  1349. void wmi_recv_cmd(struct wil6210_priv *wil)
  1350. {
  1351. struct wil6210_mbox_ring_desc d_tail;
  1352. struct wil6210_mbox_hdr hdr;
  1353. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  1354. struct pending_wmi_event *evt;
  1355. u8 *cmd;
  1356. void __iomem *src;
  1357. ulong flags;
  1358. unsigned n;
  1359. unsigned int num_immed_reply = 0;
  1360. if (!test_bit(wil_status_mbox_ready, wil->status)) {
  1361. wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
  1362. return;
  1363. }
  1364. if (test_bit(wil_status_suspended, wil->status)) {
  1365. wil_err(wil, "suspended. cannot handle WMI event\n");
  1366. return;
  1367. }
  1368. for (n = 0;; n++) {
  1369. u16 len;
  1370. bool q;
  1371. bool immed_reply = false;
  1372. r->head = wil_r(wil, RGF_MBOX +
  1373. offsetof(struct wil6210_mbox_ctl, rx.head));
  1374. if (r->tail == r->head)
  1375. break;
  1376. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  1377. r->head, r->tail);
  1378. /* read cmd descriptor from tail */
  1379. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  1380. sizeof(struct wil6210_mbox_ring_desc));
  1381. if (d_tail.sync == 0) {
  1382. wil_err(wil, "Mbox evt not owned by FW?\n");
  1383. break;
  1384. }
  1385. /* read cmd header from descriptor */
  1386. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  1387. wil_err(wil, "Mbox evt at 0x%08x?\n",
  1388. le32_to_cpu(d_tail.addr));
  1389. break;
  1390. }
  1391. len = le16_to_cpu(hdr.len);
  1392. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  1393. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  1394. hdr.flags);
  1395. /* read cmd buffer from descriptor */
  1396. src = wmi_buffer(wil, d_tail.addr) +
  1397. sizeof(struct wil6210_mbox_hdr);
  1398. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  1399. event.wmi) + len, 4),
  1400. GFP_KERNEL);
  1401. if (!evt)
  1402. break;
  1403. evt->event.hdr = hdr;
  1404. cmd = (void *)&evt->event.wmi;
  1405. wil_memcpy_fromio_32(cmd, src, len);
  1406. /* mark entry as empty */
  1407. wil_w(wil, r->tail +
  1408. offsetof(struct wil6210_mbox_ring_desc, sync), 0);
  1409. /* indicate */
  1410. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  1411. (len >= sizeof(struct wmi_cmd_hdr))) {
  1412. struct wmi_cmd_hdr *wmi = &evt->event.wmi;
  1413. u16 id = le16_to_cpu(wmi->command_id);
  1414. u8 mid = wmi->mid;
  1415. u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
  1416. if (test_bit(wil_status_resuming, wil->status)) {
  1417. if (id == WMI_TRAFFIC_RESUME_EVENTID)
  1418. clear_bit(wil_status_resuming,
  1419. wil->status);
  1420. else
  1421. wil_err(wil,
  1422. "WMI evt %d while resuming\n",
  1423. id);
  1424. }
  1425. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1426. if (wil->reply_id && wil->reply_id == id &&
  1427. wil->reply_mid == mid) {
  1428. if (wil->reply_buf) {
  1429. memcpy(wil->reply_buf, wmi,
  1430. min(len, wil->reply_size));
  1431. immed_reply = true;
  1432. }
  1433. if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
  1434. wil_dbg_wmi(wil,
  1435. "set suspend_resp_rcvd\n");
  1436. wil->suspend_resp_rcvd = true;
  1437. }
  1438. }
  1439. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1440. wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
  1441. eventid2name(id), id, wmi->mid, tstamp);
  1442. trace_wil6210_wmi_event(wmi, &wmi[1],
  1443. len - sizeof(*wmi));
  1444. }
  1445. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  1446. &evt->event.hdr, sizeof(hdr) + len, true);
  1447. /* advance tail */
  1448. r->tail = r->base + ((r->tail - r->base +
  1449. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  1450. wil_w(wil, RGF_MBOX +
  1451. offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
  1452. if (immed_reply) {
  1453. wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
  1454. wil->reply_id);
  1455. kfree(evt);
  1456. num_immed_reply++;
  1457. complete(&wil->wmi_call);
  1458. } else {
  1459. /* add to the pending list */
  1460. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1461. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  1462. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1463. q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
  1464. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  1465. }
  1466. }
  1467. /* normally, 1 event per IRQ should be processed */
  1468. wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
  1469. n - num_immed_reply, num_immed_reply);
  1470. }
  1471. int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
  1472. u16 reply_id, void *reply, u16 reply_size, int to_msec)
  1473. {
  1474. int rc;
  1475. unsigned long remain;
  1476. ulong flags;
  1477. mutex_lock(&wil->wmi_mutex);
  1478. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1479. wil->reply_id = reply_id;
  1480. wil->reply_mid = mid;
  1481. wil->reply_buf = reply;
  1482. wil->reply_size = reply_size;
  1483. reinit_completion(&wil->wmi_call);
  1484. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1485. rc = __wmi_send(wil, cmdid, mid, buf, len);
  1486. if (rc)
  1487. goto out;
  1488. remain = wait_for_completion_timeout(&wil->wmi_call,
  1489. msecs_to_jiffies(to_msec));
  1490. if (0 == remain) {
  1491. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  1492. cmdid, reply_id, to_msec);
  1493. rc = -ETIME;
  1494. } else {
  1495. wil_dbg_wmi(wil,
  1496. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  1497. cmdid, reply_id,
  1498. to_msec - jiffies_to_msecs(remain));
  1499. }
  1500. out:
  1501. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1502. wil->reply_id = 0;
  1503. wil->reply_mid = U8_MAX;
  1504. wil->reply_buf = NULL;
  1505. wil->reply_size = 0;
  1506. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1507. mutex_unlock(&wil->wmi_mutex);
  1508. return rc;
  1509. }
  1510. int wmi_echo(struct wil6210_priv *wil)
  1511. {
  1512. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1513. struct wmi_echo_cmd cmd = {
  1514. .value = cpu_to_le32(0x12345678),
  1515. };
  1516. return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
  1517. WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
  1518. }
  1519. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  1520. {
  1521. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1522. struct wmi_set_mac_address_cmd cmd;
  1523. ether_addr_copy(cmd.mac, addr);
  1524. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  1525. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
  1526. &cmd, sizeof(cmd));
  1527. }
  1528. int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
  1529. {
  1530. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1531. int rc = 0;
  1532. struct wmi_led_cfg_cmd cmd = {
  1533. .led_mode = enable,
  1534. .id = led_id,
  1535. .slow_blink_cfg.blink_on =
  1536. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
  1537. .slow_blink_cfg.blink_off =
  1538. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
  1539. .medium_blink_cfg.blink_on =
  1540. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
  1541. .medium_blink_cfg.blink_off =
  1542. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
  1543. .fast_blink_cfg.blink_on =
  1544. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
  1545. .fast_blink_cfg.blink_off =
  1546. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
  1547. .led_polarity = led_polarity,
  1548. };
  1549. struct {
  1550. struct wmi_cmd_hdr wmi;
  1551. struct wmi_led_cfg_done_event evt;
  1552. } __packed reply = {
  1553. .evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)},
  1554. };
  1555. if (led_id == WIL_LED_INVALID_ID)
  1556. goto out;
  1557. if (led_id > WIL_LED_MAX_ID) {
  1558. wil_err(wil, "Invalid led id %d\n", led_id);
  1559. rc = -EINVAL;
  1560. goto out;
  1561. }
  1562. wil_dbg_wmi(wil,
  1563. "%s led %d\n",
  1564. enable ? "enabling" : "disabling", led_id);
  1565. rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
  1566. WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
  1567. 100);
  1568. if (rc)
  1569. goto out;
  1570. if (reply.evt.status) {
  1571. wil_err(wil, "led %d cfg failed with status %d\n",
  1572. led_id, le32_to_cpu(reply.evt.status));
  1573. rc = -EINVAL;
  1574. }
  1575. out:
  1576. return rc;
  1577. }
  1578. int wmi_pcp_start(struct wil6210_vif *vif,
  1579. int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go)
  1580. {
  1581. struct wil6210_priv *wil = vif_to_wil(vif);
  1582. int rc;
  1583. struct wmi_pcp_start_cmd cmd = {
  1584. .bcon_interval = cpu_to_le16(bi),
  1585. .network_type = wmi_nettype,
  1586. .disable_sec_offload = 1,
  1587. .channel = chan - 1,
  1588. .pcp_max_assoc_sta = max_assoc_sta,
  1589. .hidden_ssid = hidden_ssid,
  1590. .is_go = is_go,
  1591. .ap_sme_offload_mode = disable_ap_sme ?
  1592. WMI_AP_SME_OFFLOAD_PARTIAL :
  1593. WMI_AP_SME_OFFLOAD_FULL,
  1594. .abft_len = wil->abft_len,
  1595. };
  1596. struct {
  1597. struct wmi_cmd_hdr wmi;
  1598. struct wmi_pcp_started_event evt;
  1599. } __packed reply = {
  1600. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1601. };
  1602. if (!vif->privacy)
  1603. cmd.disable_sec = 1;
  1604. if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
  1605. (cmd.pcp_max_assoc_sta <= 0)) {
  1606. wil_info(wil,
  1607. "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
  1608. max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
  1609. cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
  1610. }
  1611. if (disable_ap_sme &&
  1612. !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL,
  1613. wil->fw_capabilities)) {
  1614. wil_err(wil, "disable_ap_sme not supported by FW\n");
  1615. return -EOPNOTSUPP;
  1616. }
  1617. /*
  1618. * Processing time may be huge, in case of secure AP it takes about
  1619. * 3500ms for FW to start AP
  1620. */
  1621. rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
  1622. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  1623. if (rc)
  1624. return rc;
  1625. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  1626. rc = -EINVAL;
  1627. if (wmi_nettype != WMI_NETTYPE_P2P)
  1628. /* Don't fail due to error in the led configuration */
  1629. wmi_led_cfg(wil, true);
  1630. return rc;
  1631. }
  1632. int wmi_pcp_stop(struct wil6210_vif *vif)
  1633. {
  1634. struct wil6210_priv *wil = vif_to_wil(vif);
  1635. int rc;
  1636. rc = wmi_led_cfg(wil, false);
  1637. if (rc)
  1638. return rc;
  1639. return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
  1640. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  1641. }
  1642. int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
  1643. {
  1644. struct wil6210_priv *wil = vif_to_wil(vif);
  1645. struct wmi_set_ssid_cmd cmd = {
  1646. .ssid_len = cpu_to_le32(ssid_len),
  1647. };
  1648. if (ssid_len > sizeof(cmd.ssid))
  1649. return -EINVAL;
  1650. memcpy(cmd.ssid, ssid, ssid_len);
  1651. return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
  1652. }
  1653. int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
  1654. {
  1655. struct wil6210_priv *wil = vif_to_wil(vif);
  1656. int rc;
  1657. struct {
  1658. struct wmi_cmd_hdr wmi;
  1659. struct wmi_set_ssid_cmd cmd;
  1660. } __packed reply;
  1661. int len; /* reply.cmd.ssid_len in CPU order */
  1662. memset(&reply, 0, sizeof(reply));
  1663. rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
  1664. WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20);
  1665. if (rc)
  1666. return rc;
  1667. len = le32_to_cpu(reply.cmd.ssid_len);
  1668. if (len > sizeof(reply.cmd.ssid))
  1669. return -EINVAL;
  1670. *ssid_len = len;
  1671. memcpy(ssid, reply.cmd.ssid, len);
  1672. return 0;
  1673. }
  1674. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  1675. {
  1676. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1677. struct wmi_set_pcp_channel_cmd cmd = {
  1678. .channel = channel - 1,
  1679. };
  1680. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
  1681. &cmd, sizeof(cmd));
  1682. }
  1683. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  1684. {
  1685. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1686. int rc;
  1687. struct {
  1688. struct wmi_cmd_hdr wmi;
  1689. struct wmi_set_pcp_channel_cmd cmd;
  1690. } __packed reply;
  1691. memset(&reply, 0, sizeof(reply));
  1692. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
  1693. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  1694. if (rc)
  1695. return rc;
  1696. if (reply.cmd.channel > 3)
  1697. return -EINVAL;
  1698. *channel = reply.cmd.channel + 1;
  1699. return 0;
  1700. }
  1701. int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
  1702. {
  1703. struct wil6210_priv *wil = vif_to_wil(vif);
  1704. int rc;
  1705. struct wmi_p2p_cfg_cmd cmd = {
  1706. .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
  1707. .bcon_interval = cpu_to_le16(bi),
  1708. .channel = channel - 1,
  1709. };
  1710. struct {
  1711. struct wmi_cmd_hdr wmi;
  1712. struct wmi_p2p_cfg_done_event evt;
  1713. } __packed reply = {
  1714. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1715. };
  1716. wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
  1717. rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
  1718. WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
  1719. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1720. wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
  1721. rc = -EINVAL;
  1722. }
  1723. return rc;
  1724. }
  1725. int wmi_start_listen(struct wil6210_vif *vif)
  1726. {
  1727. struct wil6210_priv *wil = vif_to_wil(vif);
  1728. int rc;
  1729. struct {
  1730. struct wmi_cmd_hdr wmi;
  1731. struct wmi_listen_started_event evt;
  1732. } __packed reply = {
  1733. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1734. };
  1735. wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
  1736. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
  1737. WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1738. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1739. wil_err(wil, "device failed to start listen. status %d\n",
  1740. reply.evt.status);
  1741. rc = -EINVAL;
  1742. }
  1743. return rc;
  1744. }
  1745. int wmi_start_search(struct wil6210_vif *vif)
  1746. {
  1747. struct wil6210_priv *wil = vif_to_wil(vif);
  1748. int rc;
  1749. struct {
  1750. struct wmi_cmd_hdr wmi;
  1751. struct wmi_search_started_event evt;
  1752. } __packed reply = {
  1753. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1754. };
  1755. wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
  1756. rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
  1757. WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1758. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1759. wil_err(wil, "device failed to start search. status %d\n",
  1760. reply.evt.status);
  1761. rc = -EINVAL;
  1762. }
  1763. return rc;
  1764. }
  1765. int wmi_stop_discovery(struct wil6210_vif *vif)
  1766. {
  1767. struct wil6210_priv *wil = vif_to_wil(vif);
  1768. int rc;
  1769. wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
  1770. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
  1771. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
  1772. if (rc)
  1773. wil_err(wil, "Failed to stop discovery\n");
  1774. return rc;
  1775. }
  1776. int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
  1777. const void *mac_addr, int key_usage)
  1778. {
  1779. struct wil6210_priv *wil = vif_to_wil(vif);
  1780. struct wmi_delete_cipher_key_cmd cmd = {
  1781. .key_index = key_index,
  1782. };
  1783. if (mac_addr)
  1784. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1785. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
  1786. &cmd, sizeof(cmd));
  1787. }
  1788. int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
  1789. const void *mac_addr, int key_len, const void *key,
  1790. int key_usage)
  1791. {
  1792. struct wil6210_priv *wil = vif_to_wil(vif);
  1793. struct wmi_add_cipher_key_cmd cmd = {
  1794. .key_index = key_index,
  1795. .key_usage = key_usage,
  1796. .key_len = key_len,
  1797. };
  1798. if (!key || (key_len > sizeof(cmd.key)))
  1799. return -EINVAL;
  1800. memcpy(cmd.key, key, key_len);
  1801. if (mac_addr)
  1802. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1803. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
  1804. &cmd, sizeof(cmd));
  1805. }
  1806. int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
  1807. {
  1808. struct wil6210_priv *wil = vif_to_wil(vif);
  1809. static const char *const names[] = {
  1810. [WMI_FRAME_BEACON] = "BEACON",
  1811. [WMI_FRAME_PROBE_REQ] = "PROBE_REQ",
  1812. [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP",
  1813. [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ",
  1814. [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP",
  1815. };
  1816. int rc;
  1817. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  1818. struct wmi_set_appie_cmd *cmd;
  1819. if (len < ie_len) {
  1820. rc = -EINVAL;
  1821. goto out;
  1822. }
  1823. cmd = kzalloc(len, GFP_KERNEL);
  1824. if (!cmd) {
  1825. rc = -ENOMEM;
  1826. goto out;
  1827. }
  1828. if (!ie)
  1829. ie_len = 0;
  1830. cmd->mgmt_frm_type = type;
  1831. /* BUG: FW API define ieLen as u8. Will fix FW */
  1832. cmd->ie_len = cpu_to_le16(ie_len);
  1833. memcpy(cmd->ie_info, ie, ie_len);
  1834. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
  1835. kfree(cmd);
  1836. out:
  1837. if (rc) {
  1838. const char *name = type < ARRAY_SIZE(names) ?
  1839. names[type] : "??";
  1840. wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
  1841. }
  1842. return rc;
  1843. }
  1844. /**
  1845. * wmi_rxon - turn radio on/off
  1846. * @on: turn on if true, off otherwise
  1847. *
  1848. * Only switch radio. Channel should be set separately.
  1849. * No timeout for rxon - radio turned on forever unless some other call
  1850. * turns it off
  1851. */
  1852. int wmi_rxon(struct wil6210_priv *wil, bool on)
  1853. {
  1854. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1855. int rc;
  1856. struct {
  1857. struct wmi_cmd_hdr wmi;
  1858. struct wmi_listen_started_event evt;
  1859. } __packed reply = {
  1860. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1861. };
  1862. wil_info(wil, "(%s)\n", on ? "on" : "off");
  1863. if (on) {
  1864. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
  1865. WMI_LISTEN_STARTED_EVENTID,
  1866. &reply, sizeof(reply), 100);
  1867. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  1868. rc = -EINVAL;
  1869. } else {
  1870. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
  1871. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  1872. }
  1873. return rc;
  1874. }
  1875. int wmi_rx_chain_add(struct wil6210_priv *wil, struct wil_ring *vring)
  1876. {
  1877. struct net_device *ndev = wil->main_ndev;
  1878. struct wireless_dev *wdev = ndev->ieee80211_ptr;
  1879. struct wil6210_vif *vif = ndev_to_vif(ndev);
  1880. struct wmi_cfg_rx_chain_cmd cmd = {
  1881. .action = WMI_RX_CHAIN_ADD,
  1882. .rx_sw_ring = {
  1883. .max_mpdu_size = cpu_to_le16(
  1884. wil_mtu2macbuf(wil->rx_buf_len)),
  1885. .ring_mem_base = cpu_to_le64(vring->pa),
  1886. .ring_size = cpu_to_le16(vring->size),
  1887. },
  1888. .mid = 0, /* TODO - what is it? */
  1889. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  1890. .reorder_type = WMI_RX_SW_REORDER,
  1891. .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
  1892. };
  1893. struct {
  1894. struct wmi_cmd_hdr wmi;
  1895. struct wmi_cfg_rx_chain_done_event evt;
  1896. } __packed evt;
  1897. int rc;
  1898. memset(&evt, 0, sizeof(evt));
  1899. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  1900. struct ieee80211_channel *ch = wil->monitor_chandef.chan;
  1901. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  1902. if (ch)
  1903. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  1904. cmd.sniffer_cfg.phy_info_mode =
  1905. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  1906. cmd.sniffer_cfg.phy_support =
  1907. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  1908. ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
  1909. } else {
  1910. /* Initialize offload (in non-sniffer mode).
  1911. * Linux IP stack always calculates IP checksum
  1912. * HW always calculate TCP/UDP checksum
  1913. */
  1914. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  1915. }
  1916. if (rx_align_2)
  1917. cmd.l2_802_3_offload_ctrl |=
  1918. L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
  1919. /* typical time for secure PCP is 840ms */
  1920. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
  1921. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  1922. if (rc)
  1923. return rc;
  1924. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  1925. rc = -EINVAL;
  1926. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  1927. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  1928. le32_to_cpu(evt.evt.status), vring->hwtail);
  1929. return rc;
  1930. }
  1931. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
  1932. {
  1933. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1934. int rc;
  1935. struct wmi_temp_sense_cmd cmd = {
  1936. .measure_baseband_en = cpu_to_le32(!!t_bb),
  1937. .measure_rf_en = cpu_to_le32(!!t_rf),
  1938. .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
  1939. };
  1940. struct {
  1941. struct wmi_cmd_hdr wmi;
  1942. struct wmi_temp_sense_done_event evt;
  1943. } __packed reply;
  1944. memset(&reply, 0, sizeof(reply));
  1945. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
  1946. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  1947. if (rc)
  1948. return rc;
  1949. if (t_bb)
  1950. *t_bb = le32_to_cpu(reply.evt.baseband_t1000);
  1951. if (t_rf)
  1952. *t_rf = le32_to_cpu(reply.evt.rf_t1000);
  1953. return 0;
  1954. }
  1955. int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac,
  1956. u16 reason, bool full_disconnect, bool del_sta)
  1957. {
  1958. struct wil6210_priv *wil = vif_to_wil(vif);
  1959. int rc;
  1960. u16 reason_code;
  1961. struct wmi_disconnect_sta_cmd disc_sta_cmd = {
  1962. .disconnect_reason = cpu_to_le16(reason),
  1963. };
  1964. struct wmi_del_sta_cmd del_sta_cmd = {
  1965. .disconnect_reason = cpu_to_le16(reason),
  1966. };
  1967. struct {
  1968. struct wmi_cmd_hdr wmi;
  1969. struct wmi_disconnect_event evt;
  1970. } __packed reply;
  1971. wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
  1972. memset(&reply, 0, sizeof(reply));
  1973. vif->locally_generated_disc = true;
  1974. if (del_sta) {
  1975. ether_addr_copy(del_sta_cmd.dst_mac, mac);
  1976. rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
  1977. sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
  1978. &reply, sizeof(reply), 1000);
  1979. } else {
  1980. ether_addr_copy(disc_sta_cmd.dst_mac, mac);
  1981. rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
  1982. &disc_sta_cmd, sizeof(disc_sta_cmd),
  1983. WMI_DISCONNECT_EVENTID,
  1984. &reply, sizeof(reply), 1000);
  1985. }
  1986. /* failure to disconnect in reasonable time treated as FW error */
  1987. if (rc) {
  1988. wil_fw_error_recovery(wil);
  1989. return rc;
  1990. }
  1991. if (full_disconnect) {
  1992. /* call event handler manually after processing wmi_call,
  1993. * to avoid deadlock - disconnect event handler acquires
  1994. * wil->mutex while it is already held here
  1995. */
  1996. reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
  1997. wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  1998. reply.evt.bssid, reason_code,
  1999. reply.evt.disconnect_reason);
  2000. wil->sinfo_gen++;
  2001. wil6210_disconnect(vif, reply.evt.bssid, reason_code, true);
  2002. }
  2003. return 0;
  2004. }
  2005. int wmi_addba(struct wil6210_priv *wil, u8 mid,
  2006. u8 ringid, u8 size, u16 timeout)
  2007. {
  2008. u8 amsdu = wil->use_enhanced_dma_hw && wil->use_rx_hw_reordering &&
  2009. test_bit(WMI_FW_CAPABILITY_AMSDU, wil->fw_capabilities) &&
  2010. wil->amsdu_en;
  2011. struct wmi_ring_ba_en_cmd cmd = {
  2012. .ring_id = ringid,
  2013. .agg_max_wsize = size,
  2014. .ba_timeout = cpu_to_le16(timeout),
  2015. .amsdu = amsdu,
  2016. };
  2017. wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d amsdu %d)\n",
  2018. ringid, size, timeout, amsdu);
  2019. return wmi_send(wil, WMI_RING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
  2020. }
  2021. int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
  2022. {
  2023. struct wmi_ring_ba_dis_cmd cmd = {
  2024. .ring_id = ringid,
  2025. .reason = cpu_to_le16(reason),
  2026. };
  2027. wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
  2028. return wmi_send(wil, WMI_RING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
  2029. }
  2030. int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason)
  2031. {
  2032. struct wmi_rcp_delba_cmd cmd = {
  2033. .cidxtid = cidxtid,
  2034. .reason = cpu_to_le16(reason),
  2035. };
  2036. wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf,
  2037. (cidxtid >> 4) & 0xf, reason);
  2038. return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
  2039. }
  2040. int wmi_addba_rx_resp(struct wil6210_priv *wil,
  2041. u8 mid, u8 cid, u8 tid, u8 token,
  2042. u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
  2043. {
  2044. int rc;
  2045. struct wmi_rcp_addba_resp_cmd cmd = {
  2046. .cidxtid = mk_cidxtid(cid, tid),
  2047. .dialog_token = token,
  2048. .status_code = cpu_to_le16(status),
  2049. /* bit 0: A-MSDU supported
  2050. * bit 1: policy (should be 0 for us)
  2051. * bits 2..5: TID
  2052. * bits 6..15: buffer size
  2053. */
  2054. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  2055. (agg_wsize << 6)),
  2056. .ba_timeout = cpu_to_le16(timeout),
  2057. };
  2058. struct {
  2059. struct wmi_cmd_hdr wmi;
  2060. struct wmi_rcp_addba_resp_sent_event evt;
  2061. } __packed reply = {
  2062. .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
  2063. };
  2064. wil_dbg_wmi(wil,
  2065. "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
  2066. mid, cid, tid, agg_wsize,
  2067. timeout, status, amsdu ? "+" : "-");
  2068. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
  2069. WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
  2070. 100);
  2071. if (rc)
  2072. return rc;
  2073. if (reply.evt.status) {
  2074. wil_err(wil, "ADDBA response failed with status %d\n",
  2075. le16_to_cpu(reply.evt.status));
  2076. rc = -EINVAL;
  2077. }
  2078. return rc;
  2079. }
  2080. int wmi_addba_rx_resp_edma(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid,
  2081. u8 token, u16 status, bool amsdu, u16 agg_wsize,
  2082. u16 timeout)
  2083. {
  2084. int rc;
  2085. struct wmi_rcp_addba_resp_edma_cmd cmd = {
  2086. .cid = cid,
  2087. .tid = tid,
  2088. .dialog_token = token,
  2089. .status_code = cpu_to_le16(status),
  2090. /* bit 0: A-MSDU supported
  2091. * bit 1: policy (should be 0 for us)
  2092. * bits 2..5: TID
  2093. * bits 6..15: buffer size
  2094. */
  2095. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  2096. (agg_wsize << 6)),
  2097. .ba_timeout = cpu_to_le16(timeout),
  2098. /* route all the connections to status ring 0 */
  2099. .status_ring_id = WIL_DEFAULT_RX_STATUS_RING_ID,
  2100. };
  2101. struct {
  2102. struct wmi_cmd_hdr wmi;
  2103. struct wmi_rcp_addba_resp_sent_event evt;
  2104. } __packed reply = {
  2105. .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
  2106. };
  2107. wil_dbg_wmi(wil,
  2108. "ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s, sring_id %d\n",
  2109. cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-",
  2110. WIL_DEFAULT_RX_STATUS_RING_ID);
  2111. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_EDMA_CMDID, mid, &cmd,
  2112. sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply,
  2113. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2114. if (rc)
  2115. return rc;
  2116. if (reply.evt.status) {
  2117. wil_err(wil, "ADDBA response failed with status %d\n",
  2118. le16_to_cpu(reply.evt.status));
  2119. rc = -EINVAL;
  2120. }
  2121. return rc;
  2122. }
  2123. int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
  2124. enum wmi_ps_profile_type ps_profile)
  2125. {
  2126. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2127. int rc;
  2128. struct wmi_ps_dev_profile_cfg_cmd cmd = {
  2129. .ps_profile = ps_profile,
  2130. };
  2131. struct {
  2132. struct wmi_cmd_hdr wmi;
  2133. struct wmi_ps_dev_profile_cfg_event evt;
  2134. } __packed reply = {
  2135. .evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)},
  2136. };
  2137. u32 status;
  2138. wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
  2139. rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
  2140. &cmd, sizeof(cmd),
  2141. WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
  2142. 100);
  2143. if (rc)
  2144. return rc;
  2145. status = le32_to_cpu(reply.evt.status);
  2146. if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
  2147. wil_err(wil, "ps dev profile cfg failed with status %d\n",
  2148. status);
  2149. rc = -EINVAL;
  2150. }
  2151. return rc;
  2152. }
  2153. int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
  2154. {
  2155. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2156. int rc;
  2157. struct wmi_set_mgmt_retry_limit_cmd cmd = {
  2158. .mgmt_retry_limit = retry_short,
  2159. };
  2160. struct {
  2161. struct wmi_cmd_hdr wmi;
  2162. struct wmi_set_mgmt_retry_limit_event evt;
  2163. } __packed reply = {
  2164. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2165. };
  2166. wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
  2167. if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
  2168. return -ENOTSUPP;
  2169. rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
  2170. &cmd, sizeof(cmd),
  2171. WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
  2172. 100);
  2173. if (rc)
  2174. return rc;
  2175. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2176. wil_err(wil, "set mgmt retry limit failed with status %d\n",
  2177. reply.evt.status);
  2178. rc = -EINVAL;
  2179. }
  2180. return rc;
  2181. }
  2182. int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
  2183. {
  2184. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2185. int rc;
  2186. struct {
  2187. struct wmi_cmd_hdr wmi;
  2188. struct wmi_get_mgmt_retry_limit_event evt;
  2189. } __packed reply;
  2190. wil_dbg_wmi(wil, "getting mgmt retry short\n");
  2191. if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
  2192. return -ENOTSUPP;
  2193. memset(&reply, 0, sizeof(reply));
  2194. rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
  2195. WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
  2196. 100);
  2197. if (rc)
  2198. return rc;
  2199. if (retry_short)
  2200. *retry_short = reply.evt.mgmt_retry_limit;
  2201. return 0;
  2202. }
  2203. int wmi_abort_scan(struct wil6210_vif *vif)
  2204. {
  2205. struct wil6210_priv *wil = vif_to_wil(vif);
  2206. int rc;
  2207. wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
  2208. rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
  2209. if (rc)
  2210. wil_err(wil, "Failed to abort scan (%d)\n", rc);
  2211. return rc;
  2212. }
  2213. int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
  2214. {
  2215. struct wil6210_priv *wil = vif_to_wil(vif);
  2216. int rc;
  2217. struct wmi_new_sta_cmd cmd = {
  2218. .aid = aid,
  2219. };
  2220. wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
  2221. ether_addr_copy(cmd.dst_mac, mac);
  2222. rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
  2223. if (rc)
  2224. wil_err(wil, "Failed to send new sta (%d)\n", rc);
  2225. return rc;
  2226. }
  2227. void wmi_event_flush(struct wil6210_priv *wil)
  2228. {
  2229. ulong flags;
  2230. struct pending_wmi_event *evt, *t;
  2231. wil_dbg_wmi(wil, "event_flush\n");
  2232. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2233. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  2234. list_del(&evt->list);
  2235. kfree(evt);
  2236. }
  2237. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2238. }
  2239. static const char *suspend_status2name(u8 status)
  2240. {
  2241. switch (status) {
  2242. case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
  2243. return "LINK_NOT_IDLE";
  2244. default:
  2245. return "Untracked status";
  2246. }
  2247. }
  2248. int wmi_suspend(struct wil6210_priv *wil)
  2249. {
  2250. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2251. int rc;
  2252. struct wmi_traffic_suspend_cmd cmd = {
  2253. .wakeup_trigger = wil->wakeup_trigger,
  2254. };
  2255. struct {
  2256. struct wmi_cmd_hdr wmi;
  2257. struct wmi_traffic_suspend_event evt;
  2258. } __packed reply = {
  2259. .evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE},
  2260. };
  2261. u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
  2262. wil->suspend_resp_rcvd = false;
  2263. wil->suspend_resp_comp = false;
  2264. rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
  2265. &cmd, sizeof(cmd),
  2266. WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
  2267. suspend_to);
  2268. if (rc) {
  2269. wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
  2270. if (rc == -ETIME)
  2271. /* wmi_call TO */
  2272. wil->suspend_stats.rejected_by_device++;
  2273. else
  2274. wil->suspend_stats.rejected_by_host++;
  2275. goto out;
  2276. }
  2277. wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
  2278. rc = wait_event_interruptible_timeout(wil->wq,
  2279. wil->suspend_resp_comp,
  2280. msecs_to_jiffies(suspend_to));
  2281. if (rc == 0) {
  2282. wil_err(wil, "TO waiting for suspend_response_completed\n");
  2283. if (wil->suspend_resp_rcvd)
  2284. /* Device responded but we TO due to another reason */
  2285. wil->suspend_stats.rejected_by_host++;
  2286. else
  2287. wil->suspend_stats.rejected_by_device++;
  2288. rc = -EBUSY;
  2289. goto out;
  2290. }
  2291. wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
  2292. if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
  2293. wil_dbg_pm(wil, "device rejected the suspend, %s\n",
  2294. suspend_status2name(reply.evt.status));
  2295. wil->suspend_stats.rejected_by_device++;
  2296. }
  2297. rc = reply.evt.status;
  2298. out:
  2299. wil->suspend_resp_rcvd = false;
  2300. wil->suspend_resp_comp = false;
  2301. return rc;
  2302. }
  2303. static void resume_triggers2string(u32 triggers, char *string, int str_size)
  2304. {
  2305. string[0] = '\0';
  2306. if (!triggers) {
  2307. strlcat(string, " UNKNOWN", str_size);
  2308. return;
  2309. }
  2310. if (triggers & WMI_RESUME_TRIGGER_HOST)
  2311. strlcat(string, " HOST", str_size);
  2312. if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
  2313. strlcat(string, " UCAST_RX", str_size);
  2314. if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
  2315. strlcat(string, " BCAST_RX", str_size);
  2316. if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
  2317. strlcat(string, " WMI_EVT", str_size);
  2318. }
  2319. int wmi_resume(struct wil6210_priv *wil)
  2320. {
  2321. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2322. int rc;
  2323. char string[100];
  2324. struct {
  2325. struct wmi_cmd_hdr wmi;
  2326. struct wmi_traffic_resume_event evt;
  2327. } __packed reply = {
  2328. .evt = {.status = WMI_TRAFFIC_RESUME_FAILED,
  2329. .resume_triggers =
  2330. cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)},
  2331. };
  2332. rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
  2333. WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
  2334. WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
  2335. if (rc)
  2336. return rc;
  2337. resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
  2338. sizeof(string));
  2339. wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
  2340. reply.evt.status ? "failed" : "passed", string,
  2341. le32_to_cpu(reply.evt.resume_triggers));
  2342. return reply.evt.status;
  2343. }
  2344. int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
  2345. const u8 *mac, enum nl80211_iftype iftype)
  2346. {
  2347. int rc;
  2348. struct wmi_port_allocate_cmd cmd = {
  2349. .mid = mid,
  2350. };
  2351. struct {
  2352. struct wmi_cmd_hdr wmi;
  2353. struct wmi_port_allocated_event evt;
  2354. } __packed reply = {
  2355. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2356. };
  2357. wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
  2358. mid, iftype, mac);
  2359. ether_addr_copy(cmd.mac, mac);
  2360. switch (iftype) {
  2361. case NL80211_IFTYPE_STATION:
  2362. cmd.port_role = WMI_PORT_STA;
  2363. break;
  2364. case NL80211_IFTYPE_AP:
  2365. cmd.port_role = WMI_PORT_AP;
  2366. break;
  2367. case NL80211_IFTYPE_P2P_CLIENT:
  2368. cmd.port_role = WMI_PORT_P2P_CLIENT;
  2369. break;
  2370. case NL80211_IFTYPE_P2P_GO:
  2371. cmd.port_role = WMI_PORT_P2P_GO;
  2372. break;
  2373. /* what about monitor??? */
  2374. default:
  2375. wil_err(wil, "unsupported iftype: %d\n", iftype);
  2376. return -EINVAL;
  2377. }
  2378. rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
  2379. &cmd, sizeof(cmd),
  2380. WMI_PORT_ALLOCATED_EVENTID, &reply,
  2381. sizeof(reply), 300);
  2382. if (rc) {
  2383. wil_err(wil, "failed to allocate port, status %d\n", rc);
  2384. return rc;
  2385. }
  2386. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2387. wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
  2388. reply.evt.status);
  2389. return -EINVAL;
  2390. }
  2391. return 0;
  2392. }
  2393. int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
  2394. {
  2395. int rc;
  2396. struct wmi_port_delete_cmd cmd = {
  2397. .mid = mid,
  2398. };
  2399. struct {
  2400. struct wmi_cmd_hdr wmi;
  2401. struct wmi_port_deleted_event evt;
  2402. } __packed reply = {
  2403. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2404. };
  2405. wil_dbg_misc(wil, "port delete, mid %d\n", mid);
  2406. rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
  2407. &cmd, sizeof(cmd),
  2408. WMI_PORT_DELETED_EVENTID, &reply,
  2409. sizeof(reply), 2000);
  2410. if (rc) {
  2411. wil_err(wil, "failed to delete port, status %d\n", rc);
  2412. return rc;
  2413. }
  2414. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2415. wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
  2416. reply.evt.status);
  2417. return -EINVAL;
  2418. }
  2419. return 0;
  2420. }
  2421. static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
  2422. void *d, int len)
  2423. {
  2424. uint i;
  2425. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  2426. if (wmi_evt_handlers[i].eventid == id) {
  2427. wmi_evt_handlers[i].handler(vif, id, d, len);
  2428. return true;
  2429. }
  2430. }
  2431. return false;
  2432. }
  2433. static void wmi_event_handle(struct wil6210_priv *wil,
  2434. struct wil6210_mbox_hdr *hdr)
  2435. {
  2436. u16 len = le16_to_cpu(hdr->len);
  2437. struct wil6210_vif *vif;
  2438. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  2439. (len >= sizeof(struct wmi_cmd_hdr))) {
  2440. struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
  2441. void *evt_data = (void *)(&wmi[1]);
  2442. u16 id = le16_to_cpu(wmi->command_id);
  2443. u8 mid = wmi->mid;
  2444. wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
  2445. eventid2name(id), id, wil->reply_id,
  2446. wil->reply_mid);
  2447. if (mid == MID_BROADCAST)
  2448. mid = 0;
  2449. if (mid >= wil->max_vifs) {
  2450. wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
  2451. mid);
  2452. return;
  2453. }
  2454. vif = wil->vifs[mid];
  2455. if (!vif) {
  2456. wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
  2457. mid);
  2458. return;
  2459. }
  2460. /* check if someone waits for this event */
  2461. if (wil->reply_id && wil->reply_id == id &&
  2462. wil->reply_mid == mid) {
  2463. if (wil->reply_buf) {
  2464. /* event received while wmi_call is waiting
  2465. * with a buffer. Such event should be handled
  2466. * in wmi_recv_cmd function. Handling the event
  2467. * here means a previous wmi_call was timeout.
  2468. * Drop the event and do not handle it.
  2469. */
  2470. wil_err(wil,
  2471. "Old event (%d, %s) while wmi_call is waiting. Drop it and Continue waiting\n",
  2472. id, eventid2name(id));
  2473. return;
  2474. }
  2475. wmi_evt_call_handler(vif, id, evt_data,
  2476. len - sizeof(*wmi));
  2477. wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
  2478. id);
  2479. complete(&wil->wmi_call);
  2480. return;
  2481. }
  2482. /* unsolicited event */
  2483. /* search for handler */
  2484. if (!wmi_evt_call_handler(vif, id, evt_data,
  2485. len - sizeof(*wmi))) {
  2486. wil_info(wil, "Unhandled event 0x%04x\n", id);
  2487. }
  2488. } else {
  2489. wil_err(wil, "Unknown event type\n");
  2490. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  2491. hdr, sizeof(*hdr) + len, true);
  2492. }
  2493. }
  2494. /*
  2495. * Retrieve next WMI event from the pending list
  2496. */
  2497. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  2498. {
  2499. ulong flags;
  2500. struct list_head *ret = NULL;
  2501. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2502. if (!list_empty(&wil->pending_wmi_ev)) {
  2503. ret = wil->pending_wmi_ev.next;
  2504. list_del(ret);
  2505. }
  2506. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2507. return ret;
  2508. }
  2509. /*
  2510. * Handler for the WMI events
  2511. */
  2512. void wmi_event_worker(struct work_struct *work)
  2513. {
  2514. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  2515. wmi_event_worker);
  2516. struct pending_wmi_event *evt;
  2517. struct list_head *lh;
  2518. wil_dbg_wmi(wil, "event_worker: Start\n");
  2519. while ((lh = next_wmi_ev(wil)) != NULL) {
  2520. evt = list_entry(lh, struct pending_wmi_event, list);
  2521. wmi_event_handle(wil, &evt->event.hdr);
  2522. kfree(evt);
  2523. }
  2524. wil_dbg_wmi(wil, "event_worker: Finished\n");
  2525. }
  2526. bool wil_is_wmi_idle(struct wil6210_priv *wil)
  2527. {
  2528. ulong flags;
  2529. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  2530. bool rc = false;
  2531. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2532. /* Check if there are pending WMI events in the events queue */
  2533. if (!list_empty(&wil->pending_wmi_ev)) {
  2534. wil_dbg_pm(wil, "Pending WMI events in queue\n");
  2535. goto out;
  2536. }
  2537. /* Check if there is a pending WMI call */
  2538. if (wil->reply_id) {
  2539. wil_dbg_pm(wil, "Pending WMI call\n");
  2540. goto out;
  2541. }
  2542. /* Check if there are pending RX events in mbox */
  2543. r->head = wil_r(wil, RGF_MBOX +
  2544. offsetof(struct wil6210_mbox_ctl, rx.head));
  2545. if (r->tail != r->head)
  2546. wil_dbg_pm(wil, "Pending WMI mbox events\n");
  2547. else
  2548. rc = true;
  2549. out:
  2550. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2551. return rc;
  2552. }
  2553. static void
  2554. wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
  2555. struct wmi_start_sched_scan_cmd *cmd,
  2556. struct cfg80211_ssid *ssids, int n_ssids,
  2557. struct cfg80211_match_set *match_sets,
  2558. int n_match_sets)
  2559. {
  2560. int i;
  2561. if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
  2562. wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
  2563. n_match_sets, WMI_MAX_PNO_SSID_NUM);
  2564. n_match_sets = WMI_MAX_PNO_SSID_NUM;
  2565. }
  2566. cmd->num_of_ssids = n_match_sets;
  2567. for (i = 0; i < n_match_sets; i++) {
  2568. struct wmi_sched_scan_ssid_match *wmi_match =
  2569. &cmd->ssid_for_match[i];
  2570. struct cfg80211_match_set *cfg_match = &match_sets[i];
  2571. int j;
  2572. wmi_match->ssid_len = cfg_match->ssid.ssid_len;
  2573. memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
  2574. min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
  2575. wmi_match->rssi_threshold = S8_MIN;
  2576. if (cfg_match->rssi_thold >= S8_MIN &&
  2577. cfg_match->rssi_thold <= S8_MAX)
  2578. wmi_match->rssi_threshold = cfg_match->rssi_thold;
  2579. for (j = 0; j < n_ssids; j++)
  2580. if (wmi_match->ssid_len == ssids[j].ssid_len &&
  2581. memcmp(wmi_match->ssid, ssids[j].ssid,
  2582. wmi_match->ssid_len) == 0)
  2583. wmi_match->add_ssid_to_probe = true;
  2584. }
  2585. }
  2586. static void
  2587. wmi_sched_scan_set_channels(struct wil6210_priv *wil,
  2588. struct wmi_start_sched_scan_cmd *cmd,
  2589. u32 n_channels,
  2590. struct ieee80211_channel **channels)
  2591. {
  2592. int i;
  2593. if (n_channels > WMI_MAX_CHANNEL_NUM) {
  2594. wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
  2595. n_channels, WMI_MAX_CHANNEL_NUM);
  2596. n_channels = WMI_MAX_CHANNEL_NUM;
  2597. }
  2598. cmd->num_of_channels = n_channels;
  2599. for (i = 0; i < n_channels; i++) {
  2600. struct ieee80211_channel *cfg_chan = channels[i];
  2601. cmd->channel_list[i] = cfg_chan->hw_value - 1;
  2602. }
  2603. }
  2604. static void
  2605. wmi_sched_scan_set_plans(struct wil6210_priv *wil,
  2606. struct wmi_start_sched_scan_cmd *cmd,
  2607. struct cfg80211_sched_scan_plan *scan_plans,
  2608. int n_scan_plans)
  2609. {
  2610. int i;
  2611. if (n_scan_plans > WMI_MAX_PLANS_NUM) {
  2612. wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
  2613. n_scan_plans, WMI_MAX_PLANS_NUM);
  2614. n_scan_plans = WMI_MAX_PLANS_NUM;
  2615. }
  2616. for (i = 0; i < n_scan_plans; i++) {
  2617. struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
  2618. cmd->scan_plans[i].interval_sec =
  2619. cpu_to_le16(cfg_plan->interval);
  2620. cmd->scan_plans[i].num_of_iterations =
  2621. cpu_to_le16(cfg_plan->iterations);
  2622. }
  2623. }
  2624. int wmi_start_sched_scan(struct wil6210_priv *wil,
  2625. struct cfg80211_sched_scan_request *request)
  2626. {
  2627. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2628. int rc;
  2629. struct wmi_start_sched_scan_cmd cmd = {
  2630. .min_rssi_threshold = S8_MIN,
  2631. .initial_delay_sec = cpu_to_le16(request->delay),
  2632. };
  2633. struct {
  2634. struct wmi_cmd_hdr wmi;
  2635. struct wmi_start_sched_scan_event evt;
  2636. } __packed reply = {
  2637. .evt = {.result = WMI_PNO_REJECT},
  2638. };
  2639. if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
  2640. return -ENOTSUPP;
  2641. if (request->min_rssi_thold >= S8_MIN &&
  2642. request->min_rssi_thold <= S8_MAX)
  2643. cmd.min_rssi_threshold = request->min_rssi_thold;
  2644. wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
  2645. request->match_sets, request->n_match_sets);
  2646. wmi_sched_scan_set_channels(wil, &cmd,
  2647. request->n_channels, request->channels);
  2648. wmi_sched_scan_set_plans(wil, &cmd,
  2649. request->scan_plans, request->n_scan_plans);
  2650. rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
  2651. &cmd, sizeof(cmd),
  2652. WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
  2653. WIL_WMI_CALL_GENERAL_TO_MS);
  2654. if (rc)
  2655. return rc;
  2656. if (reply.evt.result != WMI_PNO_SUCCESS) {
  2657. wil_err(wil, "start sched scan failed, result %d\n",
  2658. reply.evt.result);
  2659. return -EINVAL;
  2660. }
  2661. return 0;
  2662. }
  2663. int wmi_stop_sched_scan(struct wil6210_priv *wil)
  2664. {
  2665. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2666. int rc;
  2667. struct {
  2668. struct wmi_cmd_hdr wmi;
  2669. struct wmi_stop_sched_scan_event evt;
  2670. } __packed reply = {
  2671. .evt = {.result = WMI_PNO_REJECT},
  2672. };
  2673. if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
  2674. return -ENOTSUPP;
  2675. rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
  2676. WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
  2677. WIL_WMI_CALL_GENERAL_TO_MS);
  2678. if (rc)
  2679. return rc;
  2680. if (reply.evt.result != WMI_PNO_SUCCESS) {
  2681. wil_err(wil, "stop sched scan failed, result %d\n",
  2682. reply.evt.result);
  2683. return -EINVAL;
  2684. }
  2685. return 0;
  2686. }
  2687. int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len)
  2688. {
  2689. size_t total;
  2690. struct wil6210_priv *wil = vif_to_wil(vif);
  2691. struct ieee80211_mgmt *mgmt_frame = (void *)buf;
  2692. struct wmi_sw_tx_req_cmd *cmd;
  2693. struct {
  2694. struct wmi_cmd_hdr wmi;
  2695. struct wmi_sw_tx_complete_event evt;
  2696. } __packed evt = {
  2697. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2698. };
  2699. int rc;
  2700. wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid);
  2701. wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  2702. len, true);
  2703. if (len < sizeof(struct ieee80211_hdr_3addr))
  2704. return -EINVAL;
  2705. total = sizeof(*cmd) + len;
  2706. if (total < len) {
  2707. wil_err(wil, "mgmt_tx invalid len %zu\n", len);
  2708. return -EINVAL;
  2709. }
  2710. cmd = kmalloc(total, GFP_KERNEL);
  2711. if (!cmd)
  2712. return -ENOMEM;
  2713. memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
  2714. cmd->len = cpu_to_le16(len);
  2715. memcpy(cmd->payload, buf, len);
  2716. rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total,
  2717. WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
  2718. if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
  2719. wil_dbg_wmi(wil, "mgmt_tx failed with status %d\n",
  2720. evt.evt.status);
  2721. rc = -EAGAIN;
  2722. }
  2723. kfree(cmd);
  2724. return rc;
  2725. }
  2726. int wmi_mgmt_tx_ext(struct wil6210_vif *vif, const u8 *buf, size_t len,
  2727. u8 channel, u16 duration_ms)
  2728. {
  2729. size_t total;
  2730. struct wil6210_priv *wil = vif_to_wil(vif);
  2731. struct ieee80211_mgmt *mgmt_frame = (void *)buf;
  2732. struct wmi_sw_tx_req_ext_cmd *cmd;
  2733. struct {
  2734. struct wmi_cmd_hdr wmi;
  2735. struct wmi_sw_tx_complete_event evt;
  2736. } __packed evt = {
  2737. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2738. };
  2739. int rc;
  2740. wil_dbg_wmi(wil, "mgmt_tx_ext mid %d channel %d duration %d\n",
  2741. vif->mid, channel, duration_ms);
  2742. wil_hex_dump_wmi("mgmt_tx_ext frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  2743. len, true);
  2744. if (len < sizeof(struct ieee80211_hdr_3addr)) {
  2745. wil_err(wil, "short frame. len %zu\n", len);
  2746. return -EINVAL;
  2747. }
  2748. total = sizeof(*cmd) + len;
  2749. if (total < len) {
  2750. wil_err(wil, "mgmt_tx_ext invalid len %zu\n", len);
  2751. return -EINVAL;
  2752. }
  2753. cmd = kzalloc(total, GFP_KERNEL);
  2754. if (!cmd)
  2755. return -ENOMEM;
  2756. memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
  2757. cmd->len = cpu_to_le16(len);
  2758. memcpy(cmd->payload, buf, len);
  2759. cmd->channel = channel - 1;
  2760. cmd->duration_ms = cpu_to_le16(duration_ms);
  2761. rc = wmi_call(wil, WMI_SW_TX_REQ_EXT_CMDID, vif->mid, cmd, total,
  2762. WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
  2763. if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
  2764. wil_dbg_wmi(wil, "mgmt_tx_ext failed with status %d\n",
  2765. evt.evt.status);
  2766. rc = -EAGAIN;
  2767. }
  2768. kfree(cmd);
  2769. return rc;
  2770. }
  2771. int wil_wmi_tx_sring_cfg(struct wil6210_priv *wil, int ring_id)
  2772. {
  2773. int rc;
  2774. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2775. struct wil_status_ring *sring = &wil->srings[ring_id];
  2776. struct wmi_tx_status_ring_add_cmd cmd = {
  2777. .ring_cfg = {
  2778. .ring_size = cpu_to_le16(sring->size),
  2779. },
  2780. .irq_index = WIL_TX_STATUS_IRQ_IDX
  2781. };
  2782. struct {
  2783. struct wmi_cmd_hdr hdr;
  2784. struct wmi_tx_status_ring_cfg_done_event evt;
  2785. } __packed reply = {
  2786. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2787. };
  2788. cmd.ring_cfg.ring_id = ring_id;
  2789. cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
  2790. rc = wmi_call(wil, WMI_TX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
  2791. sizeof(cmd), WMI_TX_STATUS_RING_CFG_DONE_EVENTID,
  2792. &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2793. if (rc) {
  2794. wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
  2795. return rc;
  2796. }
  2797. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2798. wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, status %d\n",
  2799. reply.evt.status);
  2800. return -EINVAL;
  2801. }
  2802. sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2803. return 0;
  2804. }
  2805. int wil_wmi_cfg_def_rx_offload(struct wil6210_priv *wil, u16 max_rx_pl_per_desc)
  2806. {
  2807. struct net_device *ndev = wil->main_ndev;
  2808. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2809. int rc;
  2810. struct wmi_cfg_def_rx_offload_cmd cmd = {
  2811. .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(WIL_MAX_ETH_MTU)),
  2812. .max_rx_pl_per_desc = cpu_to_le16(max_rx_pl_per_desc),
  2813. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  2814. .l2_802_3_offload_ctrl = 0,
  2815. .l3_l4_ctrl = 1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS,
  2816. };
  2817. struct {
  2818. struct wmi_cmd_hdr hdr;
  2819. struct wmi_cfg_def_rx_offload_done_event evt;
  2820. } __packed reply = {
  2821. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2822. };
  2823. rc = wmi_call(wil, WMI_CFG_DEF_RX_OFFLOAD_CMDID, vif->mid, &cmd,
  2824. sizeof(cmd), WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID, &reply,
  2825. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2826. if (rc) {
  2827. wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, rc %d\n", rc);
  2828. return rc;
  2829. }
  2830. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2831. wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, status %d\n",
  2832. reply.evt.status);
  2833. return -EINVAL;
  2834. }
  2835. return 0;
  2836. }
  2837. int wil_wmi_rx_sring_add(struct wil6210_priv *wil, u16 ring_id)
  2838. {
  2839. struct net_device *ndev = wil->main_ndev;
  2840. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2841. struct wil_status_ring *sring = &wil->srings[ring_id];
  2842. int rc;
  2843. struct wmi_rx_status_ring_add_cmd cmd = {
  2844. .ring_cfg = {
  2845. .ring_size = cpu_to_le16(sring->size),
  2846. .ring_id = ring_id,
  2847. },
  2848. .rx_msg_type = wil->use_compressed_rx_status ?
  2849. WMI_RX_MSG_TYPE_COMPRESSED :
  2850. WMI_RX_MSG_TYPE_EXTENDED,
  2851. .irq_index = WIL_RX_STATUS_IRQ_IDX,
  2852. };
  2853. struct {
  2854. struct wmi_cmd_hdr hdr;
  2855. struct wmi_rx_status_ring_cfg_done_event evt;
  2856. } __packed reply = {
  2857. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2858. };
  2859. cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
  2860. rc = wmi_call(wil, WMI_RX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
  2861. sizeof(cmd), WMI_RX_STATUS_RING_CFG_DONE_EVENTID, &reply,
  2862. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2863. if (rc) {
  2864. wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
  2865. return rc;
  2866. }
  2867. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2868. wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, status %d\n",
  2869. reply.evt.status);
  2870. return -EINVAL;
  2871. }
  2872. sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2873. return 0;
  2874. }
  2875. int wil_wmi_rx_desc_ring_add(struct wil6210_priv *wil, int status_ring_id)
  2876. {
  2877. struct net_device *ndev = wil->main_ndev;
  2878. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2879. struct wil_ring *ring = &wil->ring_rx;
  2880. int rc;
  2881. struct wmi_rx_desc_ring_add_cmd cmd = {
  2882. .ring_cfg = {
  2883. .ring_size = cpu_to_le16(ring->size),
  2884. .ring_id = WIL_RX_DESC_RING_ID,
  2885. },
  2886. .status_ring_id = status_ring_id,
  2887. .irq_index = WIL_RX_STATUS_IRQ_IDX,
  2888. };
  2889. struct {
  2890. struct wmi_cmd_hdr hdr;
  2891. struct wmi_rx_desc_ring_cfg_done_event evt;
  2892. } __packed reply = {
  2893. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2894. };
  2895. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2896. cmd.sw_tail_host_addr = cpu_to_le64(ring->edma_rx_swtail.pa);
  2897. rc = wmi_call(wil, WMI_RX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2898. sizeof(cmd), WMI_RX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2899. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2900. if (rc) {
  2901. wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2902. return rc;
  2903. }
  2904. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2905. wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, status %d\n",
  2906. reply.evt.status);
  2907. return -EINVAL;
  2908. }
  2909. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2910. return 0;
  2911. }
  2912. int wil_wmi_tx_desc_ring_add(struct wil6210_vif *vif, int ring_id, int cid,
  2913. int tid)
  2914. {
  2915. struct wil6210_priv *wil = vif_to_wil(vif);
  2916. int sring_id = wil->tx_sring_idx; /* there is only one TX sring */
  2917. int rc;
  2918. struct wil_ring *ring = &wil->ring_tx[ring_id];
  2919. struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
  2920. struct wmi_tx_desc_ring_add_cmd cmd = {
  2921. .ring_cfg = {
  2922. .ring_size = cpu_to_le16(ring->size),
  2923. .ring_id = ring_id,
  2924. },
  2925. .status_ring_id = sring_id,
  2926. .cid = cid,
  2927. .tid = tid,
  2928. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  2929. .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
  2930. .schd_params = {
  2931. .priority = cpu_to_le16(0),
  2932. .timeslot_us = cpu_to_le16(0xfff),
  2933. }
  2934. };
  2935. struct {
  2936. struct wmi_cmd_hdr hdr;
  2937. struct wmi_tx_desc_ring_cfg_done_event evt;
  2938. } __packed reply = {
  2939. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2940. };
  2941. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2942. rc = wmi_call(wil, WMI_TX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2943. sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2944. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2945. if (rc) {
  2946. wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2947. return rc;
  2948. }
  2949. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2950. wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, status %d\n",
  2951. reply.evt.status);
  2952. return -EINVAL;
  2953. }
  2954. spin_lock_bh(&txdata->lock);
  2955. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2956. txdata->mid = vif->mid;
  2957. txdata->enabled = 1;
  2958. spin_unlock_bh(&txdata->lock);
  2959. return 0;
  2960. }
  2961. int wil_wmi_bcast_desc_ring_add(struct wil6210_vif *vif, int ring_id)
  2962. {
  2963. struct wil6210_priv *wil = vif_to_wil(vif);
  2964. struct wil_ring *ring = &wil->ring_tx[ring_id];
  2965. int rc;
  2966. struct wmi_bcast_desc_ring_add_cmd cmd = {
  2967. .ring_cfg = {
  2968. .ring_size = cpu_to_le16(ring->size),
  2969. .ring_id = ring_id,
  2970. },
  2971. .status_ring_id = wil->tx_sring_idx,
  2972. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  2973. };
  2974. struct {
  2975. struct wmi_cmd_hdr hdr;
  2976. struct wmi_rx_desc_ring_cfg_done_event evt;
  2977. } __packed reply = {
  2978. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2979. };
  2980. struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
  2981. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2982. rc = wmi_call(wil, WMI_BCAST_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2983. sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2984. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2985. if (rc) {
  2986. wil_err(wil, "WMI_BCAST_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2987. return rc;
  2988. }
  2989. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2990. wil_err(wil, "Broadcast Tx config failed, status %d\n",
  2991. reply.evt.status);
  2992. return -EINVAL;
  2993. }
  2994. spin_lock_bh(&txdata->lock);
  2995. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2996. txdata->mid = vif->mid;
  2997. txdata->enabled = 1;
  2998. spin_unlock_bh(&txdata->lock);
  2999. return 0;
  3000. }
  3001. int wmi_link_stats_cfg(struct wil6210_vif *vif, u32 type, u8 cid, u32 interval)
  3002. {
  3003. struct wil6210_priv *wil = vif_to_wil(vif);
  3004. struct wmi_link_stats_cmd cmd = {
  3005. .record_type_mask = cpu_to_le32(type),
  3006. .cid = cid,
  3007. .action = WMI_LINK_STATS_SNAPSHOT,
  3008. .interval_msec = cpu_to_le32(interval),
  3009. };
  3010. struct {
  3011. struct wmi_cmd_hdr wmi;
  3012. struct wmi_link_stats_config_done_event evt;
  3013. } __packed reply = {
  3014. .evt = {.status = WMI_FW_STATUS_FAILURE},
  3015. };
  3016. int rc;
  3017. rc = wmi_call(wil, WMI_LINK_STATS_CMDID, vif->mid, &cmd, sizeof(cmd),
  3018. WMI_LINK_STATS_CONFIG_DONE_EVENTID, &reply,
  3019. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  3020. if (rc) {
  3021. wil_err(wil, "WMI_LINK_STATS_CMDID failed, rc %d\n", rc);
  3022. return rc;
  3023. }
  3024. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  3025. wil_err(wil, "Link statistics config failed, status %d\n",
  3026. reply.evt.status);
  3027. return -EINVAL;
  3028. }
  3029. return 0;
  3030. }