siena.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "farch_regs.h"
  21. #include "io.h"
  22. #include "workarounds.h"
  23. #include "mcdi.h"
  24. #include "mcdi_pcol.h"
  25. #include "selftest.h"
  26. #include "siena_sriov.h"
  27. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  28. static void siena_init_wol(struct efx_nic *efx);
  29. static void siena_push_irq_moderation(struct efx_channel *channel)
  30. {
  31. struct efx_nic *efx = channel->efx;
  32. efx_dword_t timer_cmd;
  33. if (channel->irq_moderation_us) {
  34. unsigned int ticks;
  35. ticks = efx_usecs_to_ticks(efx, channel->irq_moderation_us);
  36. EFX_POPULATE_DWORD_2(timer_cmd,
  37. FRF_CZ_TC_TIMER_MODE,
  38. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  39. FRF_CZ_TC_TIMER_VAL,
  40. ticks - 1);
  41. } else {
  42. EFX_POPULATE_DWORD_2(timer_cmd,
  43. FRF_CZ_TC_TIMER_MODE,
  44. FFE_CZ_TIMER_MODE_DIS,
  45. FRF_CZ_TC_TIMER_VAL, 0);
  46. }
  47. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  48. channel->channel);
  49. }
  50. void siena_prepare_flush(struct efx_nic *efx)
  51. {
  52. if (efx->fc_disable++ == 0)
  53. efx_mcdi_set_mac(efx);
  54. }
  55. void siena_finish_flush(struct efx_nic *efx)
  56. {
  57. if (--efx->fc_disable == 0)
  58. efx_mcdi_set_mac(efx);
  59. }
  60. static const struct efx_farch_register_test siena_register_tests[] = {
  61. { FR_AZ_ADR_REGION,
  62. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  63. { FR_CZ_USR_EV_CFG,
  64. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  65. { FR_AZ_RX_CFG,
  66. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  67. { FR_AZ_TX_CFG,
  68. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  69. { FR_AZ_TX_RESERVED,
  70. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  71. { FR_AZ_SRM_TX_DC_CFG,
  72. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  73. { FR_AZ_RX_DC_CFG,
  74. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  75. { FR_AZ_RX_DC_PF_WM,
  76. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  77. { FR_BZ_DP_CTRL,
  78. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  79. { FR_BZ_RX_RSS_TKEY,
  80. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  81. { FR_CZ_RX_RSS_IPV6_REG1,
  82. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  83. { FR_CZ_RX_RSS_IPV6_REG2,
  84. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  85. { FR_CZ_RX_RSS_IPV6_REG3,
  86. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  87. };
  88. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  89. {
  90. enum reset_type reset_method = RESET_TYPE_ALL;
  91. int rc, rc2;
  92. efx_reset_down(efx, reset_method);
  93. /* Reset the chip immediately so that it is completely
  94. * quiescent regardless of what any VF driver does.
  95. */
  96. rc = efx_mcdi_reset(efx, reset_method);
  97. if (rc)
  98. goto out;
  99. tests->registers =
  100. efx_farch_test_registers(efx, siena_register_tests,
  101. ARRAY_SIZE(siena_register_tests))
  102. ? -1 : 1;
  103. rc = efx_mcdi_reset(efx, reset_method);
  104. out:
  105. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  106. return rc ? rc : rc2;
  107. }
  108. /**************************************************************************
  109. *
  110. * PTP
  111. *
  112. **************************************************************************
  113. */
  114. static void siena_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
  115. {
  116. _efx_writed(efx, cpu_to_le32(host_time),
  117. FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
  118. }
  119. static int siena_ptp_set_ts_config(struct efx_nic *efx,
  120. struct hwtstamp_config *init)
  121. {
  122. int rc;
  123. switch (init->rx_filter) {
  124. case HWTSTAMP_FILTER_NONE:
  125. /* if TX timestamping is still requested then leave PTP on */
  126. return efx_ptp_change_mode(efx,
  127. init->tx_type != HWTSTAMP_TX_OFF,
  128. efx_ptp_get_mode(efx));
  129. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  130. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  131. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  132. init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
  133. return efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V1);
  134. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  135. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  136. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  137. init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  138. rc = efx_ptp_change_mode(efx, true,
  139. MC_CMD_PTP_MODE_V2_ENHANCED);
  140. /* bug 33070 - old versions of the firmware do not support the
  141. * improved UUID filtering option. Similarly old versions of the
  142. * application do not expect it to be enabled. If the firmware
  143. * does not accept the enhanced mode, fall back to the standard
  144. * PTP v2 UUID filtering. */
  145. if (rc != 0)
  146. rc = efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V2);
  147. return rc;
  148. default:
  149. return -ERANGE;
  150. }
  151. }
  152. /**************************************************************************
  153. *
  154. * Device reset
  155. *
  156. **************************************************************************
  157. */
  158. static int siena_map_reset_flags(u32 *flags)
  159. {
  160. enum {
  161. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  162. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  163. ETH_RESET_PHY),
  164. SIENA_RESET_MC = (SIENA_RESET_PORT |
  165. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  166. };
  167. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  168. *flags &= ~SIENA_RESET_MC;
  169. return RESET_TYPE_WORLD;
  170. }
  171. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  172. *flags &= ~SIENA_RESET_PORT;
  173. return RESET_TYPE_ALL;
  174. }
  175. /* no invisible reset implemented */
  176. return -EINVAL;
  177. }
  178. #ifdef CONFIG_EEH
  179. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  180. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  181. * was written to minimise MMIO read (for latency) then a periodic call to check
  182. * the EEH status of the device is required so that device recovery can happen
  183. * in a timely fashion.
  184. */
  185. static void siena_monitor(struct efx_nic *efx)
  186. {
  187. struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
  188. eeh_dev_check_failure(eehdev);
  189. }
  190. #endif
  191. static int siena_probe_nvconfig(struct efx_nic *efx)
  192. {
  193. u32 caps = 0;
  194. int rc;
  195. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  196. efx->timer_quantum_ns =
  197. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  198. 3072 : 6144; /* 768 cycles */
  199. efx->timer_max_ns = efx->type->timer_period_max *
  200. efx->timer_quantum_ns;
  201. return rc;
  202. }
  203. static int siena_dimension_resources(struct efx_nic *efx)
  204. {
  205. /* Each port has a small block of internal SRAM dedicated to
  206. * the buffer table and descriptor caches. In theory we can
  207. * map both blocks to one port, but we don't.
  208. */
  209. efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  210. return 0;
  211. }
  212. /* On all Falcon-architecture NICs, PFs use BAR 0 for I/O space and BAR 2(&3)
  213. * for memory.
  214. */
  215. static unsigned int siena_mem_bar(struct efx_nic *efx)
  216. {
  217. return 2;
  218. }
  219. static unsigned int siena_mem_map_size(struct efx_nic *efx)
  220. {
  221. return FR_CZ_MC_TREG_SMEM +
  222. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
  223. }
  224. static int siena_probe_nic(struct efx_nic *efx)
  225. {
  226. struct siena_nic_data *nic_data;
  227. efx_oword_t reg;
  228. int rc;
  229. /* Allocate storage for hardware specific data */
  230. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  231. if (!nic_data)
  232. return -ENOMEM;
  233. nic_data->efx = efx;
  234. efx->nic_data = nic_data;
  235. if (efx_farch_fpga_ver(efx) != 0) {
  236. netif_err(efx, probe, efx->net_dev,
  237. "Siena FPGA not supported\n");
  238. rc = -ENODEV;
  239. goto fail1;
  240. }
  241. efx->max_channels = EFX_MAX_CHANNELS;
  242. efx->max_tx_channels = EFX_MAX_CHANNELS;
  243. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  244. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  245. rc = efx_mcdi_init(efx);
  246. if (rc)
  247. goto fail1;
  248. /* Now we can reset the NIC */
  249. rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
  250. if (rc) {
  251. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  252. goto fail3;
  253. }
  254. siena_init_wol(efx);
  255. /* Allocate memory for INT_KER */
  256. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  257. GFP_KERNEL);
  258. if (rc)
  259. goto fail4;
  260. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  261. netif_dbg(efx, probe, efx->net_dev,
  262. "INT_KER at %llx (virt %p phys %llx)\n",
  263. (unsigned long long)efx->irq_status.dma_addr,
  264. efx->irq_status.addr,
  265. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  266. /* Read in the non-volatile configuration */
  267. rc = siena_probe_nvconfig(efx);
  268. if (rc == -EINVAL) {
  269. netif_err(efx, probe, efx->net_dev,
  270. "NVRAM is invalid therefore using defaults\n");
  271. efx->phy_type = PHY_TYPE_NONE;
  272. efx->mdio.prtad = MDIO_PRTAD_NONE;
  273. } else if (rc) {
  274. goto fail5;
  275. }
  276. rc = efx_mcdi_mon_probe(efx);
  277. if (rc)
  278. goto fail5;
  279. #ifdef CONFIG_SFC_SRIOV
  280. efx_siena_sriov_probe(efx);
  281. #endif
  282. efx_ptp_defer_probe_with_channel(efx);
  283. return 0;
  284. fail5:
  285. efx_nic_free_buffer(efx, &efx->irq_status);
  286. fail4:
  287. fail3:
  288. efx_mcdi_detach(efx);
  289. efx_mcdi_fini(efx);
  290. fail1:
  291. kfree(efx->nic_data);
  292. return rc;
  293. }
  294. static int siena_rx_pull_rss_config(struct efx_nic *efx)
  295. {
  296. efx_oword_t temp;
  297. /* Read from IPv6 RSS key as that's longer (the IPv4 key is just the
  298. * first 128 bits of the same key, assuming it's been set by
  299. * siena_rx_push_rss_config, below)
  300. */
  301. efx_reado(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  302. memcpy(efx->rss_context.rx_hash_key, &temp, sizeof(temp));
  303. efx_reado(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  304. memcpy(efx->rss_context.rx_hash_key + sizeof(temp), &temp, sizeof(temp));
  305. efx_reado(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  306. memcpy(efx->rss_context.rx_hash_key + 2 * sizeof(temp), &temp,
  307. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  308. efx_farch_rx_pull_indir_table(efx);
  309. return 0;
  310. }
  311. static int siena_rx_push_rss_config(struct efx_nic *efx, bool user,
  312. const u32 *rx_indir_table, const u8 *key)
  313. {
  314. efx_oword_t temp;
  315. /* Set hash key for IPv4 */
  316. if (key)
  317. memcpy(efx->rss_context.rx_hash_key, key, sizeof(temp));
  318. memcpy(&temp, efx->rss_context.rx_hash_key, sizeof(temp));
  319. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  320. /* Enable IPv6 RSS */
  321. BUILD_BUG_ON(sizeof(efx->rss_context.rx_hash_key) <
  322. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  323. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  324. memcpy(&temp, efx->rss_context.rx_hash_key, sizeof(temp));
  325. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  326. memcpy(&temp, efx->rss_context.rx_hash_key + sizeof(temp), sizeof(temp));
  327. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  328. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  329. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  330. memcpy(&temp, efx->rss_context.rx_hash_key + 2 * sizeof(temp),
  331. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  332. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  333. memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
  334. sizeof(efx->rss_context.rx_indir_table));
  335. efx_farch_rx_push_indir_table(efx);
  336. return 0;
  337. }
  338. /* This call performs hardware-specific global initialisation, such as
  339. * defining the descriptor cache sizes and number of RSS channels.
  340. * It does not set up any buffers, descriptor rings or event queues.
  341. */
  342. static int siena_init_nic(struct efx_nic *efx)
  343. {
  344. efx_oword_t temp;
  345. int rc;
  346. /* Recover from a failed assertion post-reset */
  347. rc = efx_mcdi_handle_assertion(efx);
  348. if (rc)
  349. return rc;
  350. /* Squash TX of packets of 16 bytes or less */
  351. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  352. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  353. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  354. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  355. * descriptors (which is bad).
  356. */
  357. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  358. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  359. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  360. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  361. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  362. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  363. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  364. /* Enable hash insertion. This is broken for the 'Falcon' hash
  365. * if IPv6 hashing is also enabled, so also select Toeplitz
  366. * TCP/IPv4 and IPv4 hashes. */
  367. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  368. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  369. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  370. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  371. EFX_RX_USR_BUF_SIZE >> 5);
  372. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  373. siena_rx_push_rss_config(efx, false, efx->rss_context.rx_indir_table, NULL);
  374. efx->rss_context.context_id = 0; /* indicates RSS is active */
  375. /* Enable event logging */
  376. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  377. if (rc)
  378. return rc;
  379. /* Set destination of both TX and RX Flush events */
  380. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  381. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  382. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  383. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  384. efx_farch_init_common(efx);
  385. return 0;
  386. }
  387. static void siena_remove_nic(struct efx_nic *efx)
  388. {
  389. efx_mcdi_mon_remove(efx);
  390. efx_nic_free_buffer(efx, &efx->irq_status);
  391. efx_mcdi_reset(efx, RESET_TYPE_ALL);
  392. efx_mcdi_detach(efx);
  393. efx_mcdi_fini(efx);
  394. /* Tear down the private nic state */
  395. kfree(efx->nic_data);
  396. efx->nic_data = NULL;
  397. }
  398. #define SIENA_DMA_STAT(ext_name, mcdi_name) \
  399. [SIENA_STAT_ ## ext_name] = \
  400. { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
  401. #define SIENA_OTHER_STAT(ext_name) \
  402. [SIENA_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  403. #define GENERIC_SW_STAT(ext_name) \
  404. [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  405. static const struct efx_hw_stat_desc siena_stat_desc[SIENA_STAT_COUNT] = {
  406. SIENA_DMA_STAT(tx_bytes, TX_BYTES),
  407. SIENA_OTHER_STAT(tx_good_bytes),
  408. SIENA_DMA_STAT(tx_bad_bytes, TX_BAD_BYTES),
  409. SIENA_DMA_STAT(tx_packets, TX_PKTS),
  410. SIENA_DMA_STAT(tx_bad, TX_BAD_FCS_PKTS),
  411. SIENA_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
  412. SIENA_DMA_STAT(tx_control, TX_CONTROL_PKTS),
  413. SIENA_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
  414. SIENA_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
  415. SIENA_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
  416. SIENA_DMA_STAT(tx_lt64, TX_LT64_PKTS),
  417. SIENA_DMA_STAT(tx_64, TX_64_PKTS),
  418. SIENA_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
  419. SIENA_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
  420. SIENA_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
  421. SIENA_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
  422. SIENA_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
  423. SIENA_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
  424. SIENA_DMA_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS),
  425. SIENA_OTHER_STAT(tx_collision),
  426. SIENA_DMA_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS),
  427. SIENA_DMA_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS),
  428. SIENA_DMA_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS),
  429. SIENA_DMA_STAT(tx_deferred, TX_DEFERRED_PKTS),
  430. SIENA_DMA_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS),
  431. SIENA_DMA_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS),
  432. SIENA_DMA_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS),
  433. SIENA_DMA_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS),
  434. SIENA_DMA_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS),
  435. SIENA_DMA_STAT(rx_bytes, RX_BYTES),
  436. SIENA_OTHER_STAT(rx_good_bytes),
  437. SIENA_DMA_STAT(rx_bad_bytes, RX_BAD_BYTES),
  438. SIENA_DMA_STAT(rx_packets, RX_PKTS),
  439. SIENA_DMA_STAT(rx_good, RX_GOOD_PKTS),
  440. SIENA_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
  441. SIENA_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
  442. SIENA_DMA_STAT(rx_control, RX_CONTROL_PKTS),
  443. SIENA_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
  444. SIENA_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
  445. SIENA_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
  446. SIENA_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
  447. SIENA_DMA_STAT(rx_64, RX_64_PKTS),
  448. SIENA_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
  449. SIENA_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
  450. SIENA_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
  451. SIENA_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
  452. SIENA_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
  453. SIENA_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
  454. SIENA_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
  455. SIENA_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
  456. SIENA_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
  457. SIENA_DMA_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS),
  458. SIENA_DMA_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS),
  459. SIENA_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
  460. SIENA_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
  461. SIENA_DMA_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS),
  462. SIENA_DMA_STAT(rx_nodesc_drop_cnt, RX_NODESC_DROPS),
  463. GENERIC_SW_STAT(rx_nodesc_trunc),
  464. GENERIC_SW_STAT(rx_noskb_drops),
  465. };
  466. static const unsigned long siena_stat_mask[] = {
  467. [0 ... BITS_TO_LONGS(SIENA_STAT_COUNT) - 1] = ~0UL,
  468. };
  469. static size_t siena_describe_nic_stats(struct efx_nic *efx, u8 *names)
  470. {
  471. return efx_nic_describe_stats(siena_stat_desc, SIENA_STAT_COUNT,
  472. siena_stat_mask, names);
  473. }
  474. static int siena_try_update_nic_stats(struct efx_nic *efx)
  475. {
  476. struct siena_nic_data *nic_data = efx->nic_data;
  477. u64 *stats = nic_data->stats;
  478. __le64 *dma_stats;
  479. __le64 generation_start, generation_end;
  480. dma_stats = efx->stats_buffer.addr;
  481. generation_end = dma_stats[efx->num_mac_stats - 1];
  482. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  483. return 0;
  484. rmb();
  485. efx_nic_update_stats(siena_stat_desc, SIENA_STAT_COUNT, siena_stat_mask,
  486. stats, efx->stats_buffer.addr, false);
  487. rmb();
  488. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  489. if (generation_end != generation_start)
  490. return -EAGAIN;
  491. /* Update derived statistics */
  492. efx_nic_fix_nodesc_drop_stat(efx,
  493. &stats[SIENA_STAT_rx_nodesc_drop_cnt]);
  494. efx_update_diff_stat(&stats[SIENA_STAT_tx_good_bytes],
  495. stats[SIENA_STAT_tx_bytes] -
  496. stats[SIENA_STAT_tx_bad_bytes]);
  497. stats[SIENA_STAT_tx_collision] =
  498. stats[SIENA_STAT_tx_single_collision] +
  499. stats[SIENA_STAT_tx_multiple_collision] +
  500. stats[SIENA_STAT_tx_excessive_collision] +
  501. stats[SIENA_STAT_tx_late_collision];
  502. efx_update_diff_stat(&stats[SIENA_STAT_rx_good_bytes],
  503. stats[SIENA_STAT_rx_bytes] -
  504. stats[SIENA_STAT_rx_bad_bytes]);
  505. efx_update_sw_stats(efx, stats);
  506. return 0;
  507. }
  508. static size_t siena_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
  509. struct rtnl_link_stats64 *core_stats)
  510. {
  511. struct siena_nic_data *nic_data = efx->nic_data;
  512. u64 *stats = nic_data->stats;
  513. int retry;
  514. /* If we're unlucky enough to read statistics wduring the DMA, wait
  515. * up to 10ms for it to finish (typically takes <500us) */
  516. for (retry = 0; retry < 100; ++retry) {
  517. if (siena_try_update_nic_stats(efx) == 0)
  518. break;
  519. udelay(100);
  520. }
  521. if (full_stats)
  522. memcpy(full_stats, stats, sizeof(u64) * SIENA_STAT_COUNT);
  523. if (core_stats) {
  524. core_stats->rx_packets = stats[SIENA_STAT_rx_packets];
  525. core_stats->tx_packets = stats[SIENA_STAT_tx_packets];
  526. core_stats->rx_bytes = stats[SIENA_STAT_rx_bytes];
  527. core_stats->tx_bytes = stats[SIENA_STAT_tx_bytes];
  528. core_stats->rx_dropped = stats[SIENA_STAT_rx_nodesc_drop_cnt] +
  529. stats[GENERIC_STAT_rx_nodesc_trunc] +
  530. stats[GENERIC_STAT_rx_noskb_drops];
  531. core_stats->multicast = stats[SIENA_STAT_rx_multicast];
  532. core_stats->collisions = stats[SIENA_STAT_tx_collision];
  533. core_stats->rx_length_errors =
  534. stats[SIENA_STAT_rx_gtjumbo] +
  535. stats[SIENA_STAT_rx_length_error];
  536. core_stats->rx_crc_errors = stats[SIENA_STAT_rx_bad];
  537. core_stats->rx_frame_errors = stats[SIENA_STAT_rx_align_error];
  538. core_stats->rx_fifo_errors = stats[SIENA_STAT_rx_overflow];
  539. core_stats->tx_window_errors =
  540. stats[SIENA_STAT_tx_late_collision];
  541. core_stats->rx_errors = (core_stats->rx_length_errors +
  542. core_stats->rx_crc_errors +
  543. core_stats->rx_frame_errors +
  544. stats[SIENA_STAT_rx_symbol_error]);
  545. core_stats->tx_errors = (core_stats->tx_window_errors +
  546. stats[SIENA_STAT_tx_bad]);
  547. }
  548. return SIENA_STAT_COUNT;
  549. }
  550. static int siena_mac_reconfigure(struct efx_nic *efx)
  551. {
  552. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  553. int rc;
  554. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  555. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  556. sizeof(efx->multicast_hash));
  557. efx_farch_filter_sync_rx_mode(efx);
  558. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  559. rc = efx_mcdi_set_mac(efx);
  560. if (rc != 0)
  561. return rc;
  562. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  563. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  564. return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  565. inbuf, sizeof(inbuf), NULL, 0, NULL);
  566. }
  567. /**************************************************************************
  568. *
  569. * Wake on LAN
  570. *
  571. **************************************************************************
  572. */
  573. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  574. {
  575. struct siena_nic_data *nic_data = efx->nic_data;
  576. wol->supported = WAKE_MAGIC;
  577. if (nic_data->wol_filter_id != -1)
  578. wol->wolopts = WAKE_MAGIC;
  579. else
  580. wol->wolopts = 0;
  581. memset(&wol->sopass, 0, sizeof(wol->sopass));
  582. }
  583. static int siena_set_wol(struct efx_nic *efx, u32 type)
  584. {
  585. struct siena_nic_data *nic_data = efx->nic_data;
  586. int rc;
  587. if (type & ~WAKE_MAGIC)
  588. return -EINVAL;
  589. if (type & WAKE_MAGIC) {
  590. if (nic_data->wol_filter_id != -1)
  591. efx_mcdi_wol_filter_remove(efx,
  592. nic_data->wol_filter_id);
  593. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  594. &nic_data->wol_filter_id);
  595. if (rc)
  596. goto fail;
  597. pci_wake_from_d3(efx->pci_dev, true);
  598. } else {
  599. rc = efx_mcdi_wol_filter_reset(efx);
  600. nic_data->wol_filter_id = -1;
  601. pci_wake_from_d3(efx->pci_dev, false);
  602. if (rc)
  603. goto fail;
  604. }
  605. return 0;
  606. fail:
  607. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  608. __func__, type, rc);
  609. return rc;
  610. }
  611. static void siena_init_wol(struct efx_nic *efx)
  612. {
  613. struct siena_nic_data *nic_data = efx->nic_data;
  614. int rc;
  615. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  616. if (rc != 0) {
  617. /* If it failed, attempt to get into a synchronised
  618. * state with MC by resetting any set WoL filters */
  619. efx_mcdi_wol_filter_reset(efx);
  620. nic_data->wol_filter_id = -1;
  621. } else if (nic_data->wol_filter_id != -1) {
  622. pci_wake_from_d3(efx->pci_dev, true);
  623. }
  624. }
  625. /**************************************************************************
  626. *
  627. * MCDI
  628. *
  629. **************************************************************************
  630. */
  631. #define MCDI_PDU(efx) \
  632. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  633. #define MCDI_DOORBELL(efx) \
  634. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  635. #define MCDI_STATUS(efx) \
  636. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  637. static void siena_mcdi_request(struct efx_nic *efx,
  638. const efx_dword_t *hdr, size_t hdr_len,
  639. const efx_dword_t *sdu, size_t sdu_len)
  640. {
  641. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  642. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  643. unsigned int i;
  644. unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);
  645. EFX_WARN_ON_PARANOID(hdr_len != 4);
  646. efx_writed(efx, hdr, pdu);
  647. for (i = 0; i < inlen_dw; i++)
  648. efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);
  649. /* Ensure the request is written out before the doorbell */
  650. wmb();
  651. /* ring the doorbell with a distinctive value */
  652. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  653. }
  654. static bool siena_mcdi_poll_response(struct efx_nic *efx)
  655. {
  656. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  657. efx_dword_t hdr;
  658. efx_readd(efx, &hdr, pdu);
  659. /* All 1's indicates that shared memory is in reset (and is
  660. * not a valid hdr). Wait for it to come out reset before
  661. * completing the command
  662. */
  663. return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
  664. EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  665. }
  666. static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
  667. size_t offset, size_t outlen)
  668. {
  669. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  670. unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
  671. int i;
  672. for (i = 0; i < outlen_dw; i++)
  673. efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
  674. }
  675. static int siena_mcdi_poll_reboot(struct efx_nic *efx)
  676. {
  677. struct siena_nic_data *nic_data = efx->nic_data;
  678. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  679. efx_dword_t reg;
  680. u32 value;
  681. efx_readd(efx, &reg, addr);
  682. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  683. if (value == 0)
  684. return 0;
  685. EFX_ZERO_DWORD(reg);
  686. efx_writed(efx, &reg, addr);
  687. /* MAC statistics have been cleared on the NIC; clear the local
  688. * copies that we update with efx_update_diff_stat().
  689. */
  690. nic_data->stats[SIENA_STAT_tx_good_bytes] = 0;
  691. nic_data->stats[SIENA_STAT_rx_good_bytes] = 0;
  692. if (value == MC_STATUS_DWORD_ASSERT)
  693. return -EINTR;
  694. else
  695. return -EIO;
  696. }
  697. /**************************************************************************
  698. *
  699. * MTD
  700. *
  701. **************************************************************************
  702. */
  703. #ifdef CONFIG_SFC_MTD
  704. struct siena_nvram_type_info {
  705. int port;
  706. const char *name;
  707. };
  708. static const struct siena_nvram_type_info siena_nvram_types[] = {
  709. [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
  710. [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
  711. [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
  712. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
  713. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
  714. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
  715. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
  716. [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
  717. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
  718. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
  719. [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
  720. [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
  721. [MC_CMD_NVRAM_TYPE_FPGA] = { 0, "sfc_fpga" },
  722. };
  723. static int siena_mtd_probe_partition(struct efx_nic *efx,
  724. struct efx_mcdi_mtd_partition *part,
  725. unsigned int type)
  726. {
  727. const struct siena_nvram_type_info *info;
  728. size_t size, erase_size;
  729. bool protected;
  730. int rc;
  731. if (type >= ARRAY_SIZE(siena_nvram_types) ||
  732. siena_nvram_types[type].name == NULL)
  733. return -ENODEV;
  734. info = &siena_nvram_types[type];
  735. if (info->port != efx_port_num(efx))
  736. return -ENODEV;
  737. rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
  738. if (rc)
  739. return rc;
  740. if (protected)
  741. return -ENODEV; /* hide it */
  742. part->nvram_type = type;
  743. part->common.dev_type_name = "Siena NVRAM manager";
  744. part->common.type_name = info->name;
  745. part->common.mtd.type = MTD_NORFLASH;
  746. part->common.mtd.flags = MTD_CAP_NORFLASH;
  747. part->common.mtd.size = size;
  748. part->common.mtd.erasesize = erase_size;
  749. return 0;
  750. }
  751. static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
  752. struct efx_mcdi_mtd_partition *parts,
  753. size_t n_parts)
  754. {
  755. uint16_t fw_subtype_list[
  756. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
  757. size_t i;
  758. int rc;
  759. rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
  760. if (rc)
  761. return rc;
  762. for (i = 0; i < n_parts; i++)
  763. parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];
  764. return 0;
  765. }
  766. static int siena_mtd_probe(struct efx_nic *efx)
  767. {
  768. struct efx_mcdi_mtd_partition *parts;
  769. u32 nvram_types;
  770. unsigned int type;
  771. size_t n_parts;
  772. int rc;
  773. ASSERT_RTNL();
  774. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  775. if (rc)
  776. return rc;
  777. parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
  778. if (!parts)
  779. return -ENOMEM;
  780. type = 0;
  781. n_parts = 0;
  782. while (nvram_types != 0) {
  783. if (nvram_types & 1) {
  784. rc = siena_mtd_probe_partition(efx, &parts[n_parts],
  785. type);
  786. if (rc == 0)
  787. n_parts++;
  788. else if (rc != -ENODEV)
  789. goto fail;
  790. }
  791. type++;
  792. nvram_types >>= 1;
  793. }
  794. rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
  795. if (rc)
  796. goto fail;
  797. rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  798. fail:
  799. if (rc)
  800. kfree(parts);
  801. return rc;
  802. }
  803. #endif /* CONFIG_SFC_MTD */
  804. /**************************************************************************
  805. *
  806. * Revision-dependent attributes used by efx.c and nic.c
  807. *
  808. **************************************************************************
  809. */
  810. const struct efx_nic_type siena_a0_nic_type = {
  811. .is_vf = false,
  812. .mem_bar = siena_mem_bar,
  813. .mem_map_size = siena_mem_map_size,
  814. .probe = siena_probe_nic,
  815. .remove = siena_remove_nic,
  816. .init = siena_init_nic,
  817. .dimension_resources = siena_dimension_resources,
  818. .fini = efx_port_dummy_op_void,
  819. #ifdef CONFIG_EEH
  820. .monitor = siena_monitor,
  821. #else
  822. .monitor = NULL,
  823. #endif
  824. .map_reset_reason = efx_mcdi_map_reset_reason,
  825. .map_reset_flags = siena_map_reset_flags,
  826. .reset = efx_mcdi_reset,
  827. .probe_port = efx_mcdi_port_probe,
  828. .remove_port = efx_mcdi_port_remove,
  829. .fini_dmaq = efx_farch_fini_dmaq,
  830. .prepare_flush = siena_prepare_flush,
  831. .finish_flush = siena_finish_flush,
  832. .prepare_flr = efx_port_dummy_op_void,
  833. .finish_flr = efx_farch_finish_flr,
  834. .describe_stats = siena_describe_nic_stats,
  835. .update_stats = siena_update_nic_stats,
  836. .start_stats = efx_mcdi_mac_start_stats,
  837. .pull_stats = efx_mcdi_mac_pull_stats,
  838. .stop_stats = efx_mcdi_mac_stop_stats,
  839. .set_id_led = efx_mcdi_set_id_led,
  840. .push_irq_moderation = siena_push_irq_moderation,
  841. .reconfigure_mac = siena_mac_reconfigure,
  842. .check_mac_fault = efx_mcdi_mac_check_fault,
  843. .reconfigure_port = efx_mcdi_port_reconfigure,
  844. .get_wol = siena_get_wol,
  845. .set_wol = siena_set_wol,
  846. .resume_wol = siena_init_wol,
  847. .test_chip = siena_test_chip,
  848. .test_nvram = efx_mcdi_nvram_test_all,
  849. .mcdi_request = siena_mcdi_request,
  850. .mcdi_poll_response = siena_mcdi_poll_response,
  851. .mcdi_read_response = siena_mcdi_read_response,
  852. .mcdi_poll_reboot = siena_mcdi_poll_reboot,
  853. .irq_enable_master = efx_farch_irq_enable_master,
  854. .irq_test_generate = efx_farch_irq_test_generate,
  855. .irq_disable_non_ev = efx_farch_irq_disable_master,
  856. .irq_handle_msi = efx_farch_msi_interrupt,
  857. .irq_handle_legacy = efx_farch_legacy_interrupt,
  858. .tx_probe = efx_farch_tx_probe,
  859. .tx_init = efx_farch_tx_init,
  860. .tx_remove = efx_farch_tx_remove,
  861. .tx_write = efx_farch_tx_write,
  862. .tx_limit_len = efx_farch_tx_limit_len,
  863. .rx_push_rss_config = siena_rx_push_rss_config,
  864. .rx_pull_rss_config = siena_rx_pull_rss_config,
  865. .rx_probe = efx_farch_rx_probe,
  866. .rx_init = efx_farch_rx_init,
  867. .rx_remove = efx_farch_rx_remove,
  868. .rx_write = efx_farch_rx_write,
  869. .rx_defer_refill = efx_farch_rx_defer_refill,
  870. .ev_probe = efx_farch_ev_probe,
  871. .ev_init = efx_farch_ev_init,
  872. .ev_fini = efx_farch_ev_fini,
  873. .ev_remove = efx_farch_ev_remove,
  874. .ev_process = efx_farch_ev_process,
  875. .ev_read_ack = efx_farch_ev_read_ack,
  876. .ev_test_generate = efx_farch_ev_test_generate,
  877. .filter_table_probe = efx_farch_filter_table_probe,
  878. .filter_table_restore = efx_farch_filter_table_restore,
  879. .filter_table_remove = efx_farch_filter_table_remove,
  880. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  881. .filter_insert = efx_farch_filter_insert,
  882. .filter_remove_safe = efx_farch_filter_remove_safe,
  883. .filter_get_safe = efx_farch_filter_get_safe,
  884. .filter_clear_rx = efx_farch_filter_clear_rx,
  885. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  886. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  887. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  888. #ifdef CONFIG_RFS_ACCEL
  889. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  890. #endif
  891. #ifdef CONFIG_SFC_MTD
  892. .mtd_probe = siena_mtd_probe,
  893. .mtd_rename = efx_mcdi_mtd_rename,
  894. .mtd_read = efx_mcdi_mtd_read,
  895. .mtd_erase = efx_mcdi_mtd_erase,
  896. .mtd_write = efx_mcdi_mtd_write,
  897. .mtd_sync = efx_mcdi_mtd_sync,
  898. #endif
  899. .ptp_write_host_time = siena_ptp_write_host_time,
  900. .ptp_set_ts_config = siena_ptp_set_ts_config,
  901. #ifdef CONFIG_SFC_SRIOV
  902. .sriov_configure = efx_siena_sriov_configure,
  903. .sriov_init = efx_siena_sriov_init,
  904. .sriov_fini = efx_siena_sriov_fini,
  905. .sriov_wanted = efx_siena_sriov_wanted,
  906. .sriov_reset = efx_siena_sriov_reset,
  907. .sriov_flr = efx_siena_sriov_flr,
  908. .sriov_set_vf_mac = efx_siena_sriov_set_vf_mac,
  909. .sriov_set_vf_vlan = efx_siena_sriov_set_vf_vlan,
  910. .sriov_set_vf_spoofchk = efx_siena_sriov_set_vf_spoofchk,
  911. .sriov_get_vf_config = efx_siena_sriov_get_vf_config,
  912. .vswitching_probe = efx_port_dummy_op_int,
  913. .vswitching_restore = efx_port_dummy_op_int,
  914. .vswitching_remove = efx_port_dummy_op_void,
  915. .set_mac_address = efx_siena_sriov_mac_address_changed,
  916. #endif
  917. .revision = EFX_REV_SIENA_A0,
  918. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  919. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  920. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  921. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  922. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  923. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  924. .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
  925. .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
  926. .rx_buffer_padding = 0,
  927. .can_rx_scatter = true,
  928. .option_descriptors = false,
  929. .min_interrupt_mode = EFX_INT_MODE_LEGACY,
  930. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  931. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  932. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  933. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  934. .mcdi_max_ver = 1,
  935. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  936. .hwtstamp_filters = (1 << HWTSTAMP_FILTER_NONE |
  937. 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
  938. 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT),
  939. .rx_hash_key_size = 16,
  940. };