stv0900_core.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977
  1. /*
  2. * stv0900_core.c
  3. *
  4. * Driver for ST STV0900 satellite demodulator IC.
  5. *
  6. * Copyright (C) ST Microelectronics.
  7. * Copyright (C) 2009 NetUP Inc.
  8. * Copyright (C) 2009 Igor M. Liplianin <liplianin@netup.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. *
  19. * GNU General Public License for more details.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/string.h>
  24. #include <linux/slab.h>
  25. #include <linux/i2c.h>
  26. #include "stv0900.h"
  27. #include "stv0900_reg.h"
  28. #include "stv0900_priv.h"
  29. #include "stv0900_init.h"
  30. int stvdebug = 1;
  31. module_param_named(debug, stvdebug, int, 0644);
  32. /* internal params node */
  33. struct stv0900_inode {
  34. /* pointer for internal params, one for each pair of demods */
  35. struct stv0900_internal *internal;
  36. struct stv0900_inode *next_inode;
  37. };
  38. /* first internal params */
  39. static struct stv0900_inode *stv0900_first_inode;
  40. /* find chip by i2c adapter and i2c address */
  41. static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap,
  42. u8 i2c_addr)
  43. {
  44. struct stv0900_inode *temp_chip = stv0900_first_inode;
  45. if (temp_chip != NULL) {
  46. /*
  47. Search of the last stv0900 chip or
  48. find it by i2c adapter and i2c address */
  49. while ((temp_chip != NULL) &&
  50. ((temp_chip->internal->i2c_adap != i2c_adap) ||
  51. (temp_chip->internal->i2c_addr != i2c_addr)))
  52. temp_chip = temp_chip->next_inode;
  53. }
  54. return temp_chip;
  55. }
  56. /* deallocating chip */
  57. static void remove_inode(struct stv0900_internal *internal)
  58. {
  59. struct stv0900_inode *prev_node = stv0900_first_inode;
  60. struct stv0900_inode *del_node = find_inode(internal->i2c_adap,
  61. internal->i2c_addr);
  62. if (del_node != NULL) {
  63. if (del_node == stv0900_first_inode) {
  64. stv0900_first_inode = del_node->next_inode;
  65. } else {
  66. while (prev_node->next_inode != del_node)
  67. prev_node = prev_node->next_inode;
  68. if (del_node->next_inode == NULL)
  69. prev_node->next_inode = NULL;
  70. else
  71. prev_node->next_inode =
  72. prev_node->next_inode->next_inode;
  73. }
  74. kfree(del_node);
  75. }
  76. }
  77. /* allocating new chip */
  78. static struct stv0900_inode *append_internal(struct stv0900_internal *internal)
  79. {
  80. struct stv0900_inode *new_node = stv0900_first_inode;
  81. if (new_node == NULL) {
  82. new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL);
  83. stv0900_first_inode = new_node;
  84. } else {
  85. while (new_node->next_inode != NULL)
  86. new_node = new_node->next_inode;
  87. new_node->next_inode = kmalloc(sizeof(struct stv0900_inode),
  88. GFP_KERNEL);
  89. if (new_node->next_inode != NULL)
  90. new_node = new_node->next_inode;
  91. else
  92. new_node = NULL;
  93. }
  94. if (new_node != NULL) {
  95. new_node->internal = internal;
  96. new_node->next_inode = NULL;
  97. }
  98. return new_node;
  99. }
  100. s32 ge2comp(s32 a, s32 width)
  101. {
  102. if (width == 32)
  103. return a;
  104. else
  105. return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a;
  106. }
  107. void stv0900_write_reg(struct stv0900_internal *intp, u16 reg_addr,
  108. u8 reg_data)
  109. {
  110. u8 data[3];
  111. int ret;
  112. struct i2c_msg i2cmsg = {
  113. .addr = intp->i2c_addr,
  114. .flags = 0,
  115. .len = 3,
  116. .buf = data,
  117. };
  118. data[0] = MSB(reg_addr);
  119. data[1] = LSB(reg_addr);
  120. data[2] = reg_data;
  121. ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1);
  122. if (ret != 1)
  123. dprintk("%s: i2c error %d\n", __func__, ret);
  124. }
  125. u8 stv0900_read_reg(struct stv0900_internal *intp, u16 reg)
  126. {
  127. int ret;
  128. u8 b0[] = { MSB(reg), LSB(reg) };
  129. u8 buf = 0;
  130. struct i2c_msg msg[] = {
  131. {
  132. .addr = intp->i2c_addr,
  133. .flags = 0,
  134. .buf = b0,
  135. .len = 2,
  136. }, {
  137. .addr = intp->i2c_addr,
  138. .flags = I2C_M_RD,
  139. .buf = &buf,
  140. .len = 1,
  141. },
  142. };
  143. ret = i2c_transfer(intp->i2c_adap, msg, 2);
  144. if (ret != 2)
  145. dprintk("%s: i2c error %d, reg[0x%02x]\n",
  146. __func__, ret, reg);
  147. return buf;
  148. }
  149. static void extract_mask_pos(u32 label, u8 *mask, u8 *pos)
  150. {
  151. u8 position = 0, i = 0;
  152. (*mask) = label & 0xff;
  153. while ((position == 0) && (i < 8)) {
  154. position = ((*mask) >> i) & 0x01;
  155. i++;
  156. }
  157. (*pos) = (i - 1);
  158. }
  159. void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val)
  160. {
  161. u8 reg, mask, pos;
  162. reg = stv0900_read_reg(intp, (label >> 16) & 0xffff);
  163. extract_mask_pos(label, &mask, &pos);
  164. val = mask & (val << pos);
  165. reg = (reg & (~mask)) | val;
  166. stv0900_write_reg(intp, (label >> 16) & 0xffff, reg);
  167. }
  168. u8 stv0900_get_bits(struct stv0900_internal *intp, u32 label)
  169. {
  170. u8 val = 0xff;
  171. u8 mask, pos;
  172. extract_mask_pos(label, &mask, &pos);
  173. val = stv0900_read_reg(intp, label >> 16);
  174. val = (val & mask) >> pos;
  175. return val;
  176. }
  177. static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp)
  178. {
  179. s32 i;
  180. if (intp == NULL)
  181. return STV0900_INVALID_HANDLE;
  182. intp->chip_id = stv0900_read_reg(intp, R0900_MID);
  183. if (intp->errs != STV0900_NO_ERROR)
  184. return intp->errs;
  185. /*Startup sequence*/
  186. stv0900_write_reg(intp, R0900_P1_DMDISTATE, 0x5c);
  187. stv0900_write_reg(intp, R0900_P2_DMDISTATE, 0x5c);
  188. msleep(3);
  189. stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c);
  190. stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f);
  191. stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20);
  192. stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20);
  193. stv0900_write_reg(intp, R0900_NCOARSE, 0x13);
  194. msleep(3);
  195. stv0900_write_reg(intp, R0900_I2CCFG, 0x08);
  196. switch (intp->clkmode) {
  197. case 0:
  198. case 2:
  199. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20
  200. | intp->clkmode);
  201. break;
  202. default:
  203. /* preserve SELOSCI bit */
  204. i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
  205. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i);
  206. break;
  207. }
  208. msleep(3);
  209. for (i = 0; i < 181; i++)
  210. stv0900_write_reg(intp, STV0900_InitVal[i][0],
  211. STV0900_InitVal[i][1]);
  212. if (stv0900_read_reg(intp, R0900_MID) >= 0x20) {
  213. stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c);
  214. for (i = 0; i < 32; i++)
  215. stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0],
  216. STV0900_Cut20_AddOnVal[i][1]);
  217. }
  218. stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c);
  219. stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c);
  220. stv0900_write_reg(intp, R0900_P1_PDELCTRL2, 0x01);
  221. stv0900_write_reg(intp, R0900_P2_PDELCTRL2, 0x21);
  222. stv0900_write_reg(intp, R0900_P1_PDELCTRL3, 0x20);
  223. stv0900_write_reg(intp, R0900_P2_PDELCTRL3, 0x20);
  224. stv0900_write_reg(intp, R0900_TSTRES0, 0x80);
  225. stv0900_write_reg(intp, R0900_TSTRES0, 0x00);
  226. return STV0900_NO_ERROR;
  227. }
  228. static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk)
  229. {
  230. u32 mclk = 90000000, div = 0, ad_div = 0;
  231. div = stv0900_get_bits(intp, F0900_M_DIV);
  232. ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
  233. mclk = (div + 1) * ext_clk / ad_div;
  234. dprintk("%s: Calculated Mclk = %d\n", __func__, mclk);
  235. return mclk;
  236. }
  237. static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk)
  238. {
  239. u32 m_div, clk_sel;
  240. if (intp == NULL)
  241. return STV0900_INVALID_HANDLE;
  242. if (intp->errs)
  243. return STV0900_I2C_ERROR;
  244. dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk,
  245. intp->quartz);
  246. clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6);
  247. m_div = ((clk_sel * mclk) / intp->quartz) - 1;
  248. stv0900_write_bits(intp, F0900_M_DIV, m_div);
  249. intp->mclk = stv0900_get_mclk_freq(intp,
  250. intp->quartz);
  251. /*Set the DiseqC frequency to 22KHz */
  252. /*
  253. Formula:
  254. DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg)
  255. DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg)
  256. */
  257. m_div = intp->mclk / 704000;
  258. stv0900_write_reg(intp, R0900_P1_F22TX, m_div);
  259. stv0900_write_reg(intp, R0900_P1_F22RX, m_div);
  260. stv0900_write_reg(intp, R0900_P2_F22TX, m_div);
  261. stv0900_write_reg(intp, R0900_P2_F22RX, m_div);
  262. if ((intp->errs))
  263. return STV0900_I2C_ERROR;
  264. return STV0900_NO_ERROR;
  265. }
  266. static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr,
  267. enum fe_stv0900_demod_num demod)
  268. {
  269. u32 lsb, msb, hsb, err_val;
  270. switch (cntr) {
  271. case 0:
  272. default:
  273. hsb = stv0900_get_bits(intp, ERR_CNT12);
  274. msb = stv0900_get_bits(intp, ERR_CNT11);
  275. lsb = stv0900_get_bits(intp, ERR_CNT10);
  276. break;
  277. case 1:
  278. hsb = stv0900_get_bits(intp, ERR_CNT22);
  279. msb = stv0900_get_bits(intp, ERR_CNT21);
  280. lsb = stv0900_get_bits(intp, ERR_CNT20);
  281. break;
  282. }
  283. err_val = (hsb << 16) + (msb << 8) + (lsb);
  284. return err_val;
  285. }
  286. static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  287. {
  288. struct stv0900_state *state = fe->demodulator_priv;
  289. struct stv0900_internal *intp = state->internal;
  290. enum fe_stv0900_demod_num demod = state->demod;
  291. stv0900_write_bits(intp, I2CT_ON, enable);
  292. return 0;
  293. }
  294. static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp,
  295. enum fe_stv0900_clock_type path1_ts,
  296. enum fe_stv0900_clock_type path2_ts)
  297. {
  298. dprintk("%s\n", __func__);
  299. if (intp->chip_id >= 0x20) {
  300. switch (path1_ts) {
  301. case STV0900_PARALLEL_PUNCT_CLOCK:
  302. case STV0900_DVBCI_CLOCK:
  303. switch (path2_ts) {
  304. case STV0900_SERIAL_PUNCT_CLOCK:
  305. case STV0900_SERIAL_CONT_CLOCK:
  306. default:
  307. stv0900_write_reg(intp, R0900_TSGENERAL,
  308. 0x00);
  309. break;
  310. case STV0900_PARALLEL_PUNCT_CLOCK:
  311. case STV0900_DVBCI_CLOCK:
  312. stv0900_write_reg(intp, R0900_TSGENERAL,
  313. 0x06);
  314. stv0900_write_bits(intp,
  315. F0900_P1_TSFIFO_MANSPEED, 3);
  316. stv0900_write_bits(intp,
  317. F0900_P2_TSFIFO_MANSPEED, 0);
  318. stv0900_write_reg(intp,
  319. R0900_P1_TSSPEED, 0x14);
  320. stv0900_write_reg(intp,
  321. R0900_P2_TSSPEED, 0x28);
  322. break;
  323. }
  324. break;
  325. case STV0900_SERIAL_PUNCT_CLOCK:
  326. case STV0900_SERIAL_CONT_CLOCK:
  327. default:
  328. switch (path2_ts) {
  329. case STV0900_SERIAL_PUNCT_CLOCK:
  330. case STV0900_SERIAL_CONT_CLOCK:
  331. default:
  332. stv0900_write_reg(intp,
  333. R0900_TSGENERAL, 0x0C);
  334. break;
  335. case STV0900_PARALLEL_PUNCT_CLOCK:
  336. case STV0900_DVBCI_CLOCK:
  337. stv0900_write_reg(intp,
  338. R0900_TSGENERAL, 0x0A);
  339. dprintk("%s: 0x0a\n", __func__);
  340. break;
  341. }
  342. break;
  343. }
  344. } else {
  345. switch (path1_ts) {
  346. case STV0900_PARALLEL_PUNCT_CLOCK:
  347. case STV0900_DVBCI_CLOCK:
  348. switch (path2_ts) {
  349. case STV0900_SERIAL_PUNCT_CLOCK:
  350. case STV0900_SERIAL_CONT_CLOCK:
  351. default:
  352. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  353. 0x10);
  354. break;
  355. case STV0900_PARALLEL_PUNCT_CLOCK:
  356. case STV0900_DVBCI_CLOCK:
  357. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  358. 0x16);
  359. stv0900_write_bits(intp,
  360. F0900_P1_TSFIFO_MANSPEED, 3);
  361. stv0900_write_bits(intp,
  362. F0900_P2_TSFIFO_MANSPEED, 0);
  363. stv0900_write_reg(intp, R0900_P1_TSSPEED,
  364. 0x14);
  365. stv0900_write_reg(intp, R0900_P2_TSSPEED,
  366. 0x28);
  367. break;
  368. }
  369. break;
  370. case STV0900_SERIAL_PUNCT_CLOCK:
  371. case STV0900_SERIAL_CONT_CLOCK:
  372. default:
  373. switch (path2_ts) {
  374. case STV0900_SERIAL_PUNCT_CLOCK:
  375. case STV0900_SERIAL_CONT_CLOCK:
  376. default:
  377. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  378. 0x14);
  379. break;
  380. case STV0900_PARALLEL_PUNCT_CLOCK:
  381. case STV0900_DVBCI_CLOCK:
  382. stv0900_write_reg(intp, R0900_TSGENERAL1X,
  383. 0x12);
  384. dprintk("%s: 0x12\n", __func__);
  385. break;
  386. }
  387. break;
  388. }
  389. }
  390. switch (path1_ts) {
  391. case STV0900_PARALLEL_PUNCT_CLOCK:
  392. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
  393. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
  394. break;
  395. case STV0900_DVBCI_CLOCK:
  396. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00);
  397. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
  398. break;
  399. case STV0900_SERIAL_PUNCT_CLOCK:
  400. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
  401. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00);
  402. break;
  403. case STV0900_SERIAL_CONT_CLOCK:
  404. stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01);
  405. stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01);
  406. break;
  407. default:
  408. break;
  409. }
  410. switch (path2_ts) {
  411. case STV0900_PARALLEL_PUNCT_CLOCK:
  412. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
  413. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
  414. break;
  415. case STV0900_DVBCI_CLOCK:
  416. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00);
  417. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
  418. break;
  419. case STV0900_SERIAL_PUNCT_CLOCK:
  420. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
  421. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00);
  422. break;
  423. case STV0900_SERIAL_CONT_CLOCK:
  424. stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01);
  425. stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01);
  426. break;
  427. default:
  428. break;
  429. }
  430. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
  431. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
  432. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
  433. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
  434. }
  435. void stv0900_set_tuner(struct dvb_frontend *fe, u32 frequency,
  436. u32 bandwidth)
  437. {
  438. struct dvb_frontend_ops *frontend_ops = NULL;
  439. struct dvb_tuner_ops *tuner_ops = NULL;
  440. frontend_ops = &fe->ops;
  441. tuner_ops = &frontend_ops->tuner_ops;
  442. if (tuner_ops->set_frequency) {
  443. if ((tuner_ops->set_frequency(fe, frequency)) < 0)
  444. dprintk("%s: Invalid parameter\n", __func__);
  445. else
  446. dprintk("%s: Frequency=%d\n", __func__, frequency);
  447. }
  448. if (tuner_ops->set_bandwidth) {
  449. if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
  450. dprintk("%s: Invalid parameter\n", __func__);
  451. else
  452. dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
  453. }
  454. }
  455. void stv0900_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
  456. {
  457. struct dvb_frontend_ops *frontend_ops = NULL;
  458. struct dvb_tuner_ops *tuner_ops = NULL;
  459. frontend_ops = &fe->ops;
  460. tuner_ops = &frontend_ops->tuner_ops;
  461. if (tuner_ops->set_bandwidth) {
  462. if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0)
  463. dprintk("%s: Invalid parameter\n", __func__);
  464. else
  465. dprintk("%s: Bandwidth=%d\n", __func__, bandwidth);
  466. }
  467. }
  468. u32 stv0900_get_freq_auto(struct stv0900_internal *intp, int demod)
  469. {
  470. u32 freq, round;
  471. /* Formulat :
  472. Tuner_Frequency(MHz) = Regs / 64
  473. Tuner_granularity(MHz) = Regs / 2048
  474. real_Tuner_Frequency = Tuner_Frequency(MHz) - Tuner_granularity(MHz)
  475. */
  476. freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) +
  477. (stv0900_get_bits(intp, TUN_RFFREQ1) << 2) +
  478. stv0900_get_bits(intp, TUN_RFFREQ0);
  479. freq = (freq * 1000) / 64;
  480. round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) +
  481. stv0900_get_bits(intp, TUN_RFRESTE0);
  482. round = (round * 1000) / 2048;
  483. return freq + round;
  484. }
  485. void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency,
  486. u32 Bandwidth, int demod)
  487. {
  488. u32 tunerFrequency;
  489. /* Formulat:
  490. Tuner_frequency_reg= Frequency(MHz)*64
  491. */
  492. tunerFrequency = (Frequency * 64) / 1000;
  493. stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10));
  494. stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff);
  495. stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03));
  496. /* Low Pass Filter = BW /2 (MHz)*/
  497. stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000);
  498. /* Tuner Write trig */
  499. stv0900_write_reg(intp, TNRLD, 1);
  500. }
  501. static s32 stv0900_get_rf_level(struct stv0900_internal *intp,
  502. const struct stv0900_table *lookup,
  503. enum fe_stv0900_demod_num demod)
  504. {
  505. s32 agc_gain = 0,
  506. imin,
  507. imax,
  508. i,
  509. rf_lvl = 0;
  510. dprintk("%s\n", __func__);
  511. if ((lookup == NULL) || (lookup->size <= 0))
  512. return 0;
  513. agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1),
  514. stv0900_get_bits(intp, AGCIQ_VALUE0));
  515. imin = 0;
  516. imax = lookup->size - 1;
  517. if (INRANGE(lookup->table[imin].regval, agc_gain,
  518. lookup->table[imax].regval)) {
  519. while ((imax - imin) > 1) {
  520. i = (imax + imin) >> 1;
  521. if (INRANGE(lookup->table[imin].regval,
  522. agc_gain,
  523. lookup->table[i].regval))
  524. imax = i;
  525. else
  526. imin = i;
  527. }
  528. rf_lvl = (s32)agc_gain - lookup->table[imin].regval;
  529. rf_lvl *= (lookup->table[imax].realval -
  530. lookup->table[imin].realval);
  531. rf_lvl /= (lookup->table[imax].regval -
  532. lookup->table[imin].regval);
  533. rf_lvl += lookup->table[imin].realval;
  534. } else if (agc_gain > lookup->table[0].regval)
  535. rf_lvl = 5;
  536. else if (agc_gain < lookup->table[lookup->size-1].regval)
  537. rf_lvl = -100;
  538. dprintk("%s: RFLevel = %d\n", __func__, rf_lvl);
  539. return rf_lvl;
  540. }
  541. static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  542. {
  543. struct stv0900_state *state = fe->demodulator_priv;
  544. struct stv0900_internal *internal = state->internal;
  545. s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf,
  546. state->demod);
  547. rflevel = (rflevel + 100) * (65535 / 70);
  548. if (rflevel < 0)
  549. rflevel = 0;
  550. if (rflevel > 65535)
  551. rflevel = 65535;
  552. *strength = rflevel;
  553. return 0;
  554. }
  555. static s32 stv0900_carr_get_quality(struct dvb_frontend *fe,
  556. const struct stv0900_table *lookup)
  557. {
  558. struct stv0900_state *state = fe->demodulator_priv;
  559. struct stv0900_internal *intp = state->internal;
  560. enum fe_stv0900_demod_num demod = state->demod;
  561. s32 c_n = -100,
  562. regval,
  563. imin,
  564. imax,
  565. i,
  566. noise_field1,
  567. noise_field0;
  568. dprintk("%s\n", __func__);
  569. if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
  570. noise_field1 = NOSPLHT_NORMED1;
  571. noise_field0 = NOSPLHT_NORMED0;
  572. } else {
  573. noise_field1 = NOSDATAT_NORMED1;
  574. noise_field0 = NOSDATAT_NORMED0;
  575. }
  576. if (stv0900_get_bits(intp, LOCK_DEFINITIF)) {
  577. if ((lookup != NULL) && lookup->size) {
  578. regval = 0;
  579. msleep(5);
  580. for (i = 0; i < 16; i++) {
  581. regval += MAKEWORD(stv0900_get_bits(intp,
  582. noise_field1),
  583. stv0900_get_bits(intp,
  584. noise_field0));
  585. msleep(1);
  586. }
  587. regval /= 16;
  588. imin = 0;
  589. imax = lookup->size - 1;
  590. if (INRANGE(lookup->table[imin].regval,
  591. regval,
  592. lookup->table[imax].regval)) {
  593. while ((imax - imin) > 1) {
  594. i = (imax + imin) >> 1;
  595. if (INRANGE(lookup->table[imin].regval,
  596. regval,
  597. lookup->table[i].regval))
  598. imax = i;
  599. else
  600. imin = i;
  601. }
  602. c_n = ((regval - lookup->table[imin].regval)
  603. * (lookup->table[imax].realval
  604. - lookup->table[imin].realval)
  605. / (lookup->table[imax].regval
  606. - lookup->table[imin].regval))
  607. + lookup->table[imin].realval;
  608. } else if (regval < lookup->table[imin].regval)
  609. c_n = 1000;
  610. }
  611. }
  612. return c_n;
  613. }
  614. static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
  615. {
  616. struct stv0900_state *state = fe->demodulator_priv;
  617. struct stv0900_internal *intp = state->internal;
  618. enum fe_stv0900_demod_num demod = state->demod;
  619. u8 err_val1, err_val0;
  620. u32 header_err_val = 0;
  621. *ucblocks = 0x0;
  622. if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) {
  623. /* DVB-S2 delineator errors count */
  624. /* retreiving number for errnous headers */
  625. err_val1 = stv0900_read_reg(intp, BBFCRCKO1);
  626. err_val0 = stv0900_read_reg(intp, BBFCRCKO0);
  627. header_err_val = (err_val1 << 8) | err_val0;
  628. /* retreiving number for errnous packets */
  629. err_val1 = stv0900_read_reg(intp, UPCRCKO1);
  630. err_val0 = stv0900_read_reg(intp, UPCRCKO0);
  631. *ucblocks = (err_val1 << 8) | err_val0;
  632. *ucblocks += header_err_val;
  633. }
  634. return 0;
  635. }
  636. static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr)
  637. {
  638. s32 snrlcl = stv0900_carr_get_quality(fe,
  639. (const struct stv0900_table *)&stv0900_s2_cn);
  640. snrlcl = (snrlcl + 30) * 384;
  641. if (snrlcl < 0)
  642. snrlcl = 0;
  643. if (snrlcl > 65535)
  644. snrlcl = 65535;
  645. *snr = snrlcl;
  646. return 0;
  647. }
  648. static u32 stv0900_get_ber(struct stv0900_internal *intp,
  649. enum fe_stv0900_demod_num demod)
  650. {
  651. u32 ber = 10000000, i;
  652. s32 demod_state;
  653. demod_state = stv0900_get_bits(intp, HEADER_MODE);
  654. switch (demod_state) {
  655. case STV0900_SEARCH:
  656. case STV0900_PLH_DETECTED:
  657. default:
  658. ber = 10000000;
  659. break;
  660. case STV0900_DVBS_FOUND:
  661. ber = 0;
  662. for (i = 0; i < 5; i++) {
  663. msleep(5);
  664. ber += stv0900_get_err_count(intp, 0, demod);
  665. }
  666. ber /= 5;
  667. if (stv0900_get_bits(intp, PRFVIT)) {
  668. ber *= 9766;
  669. ber = ber >> 13;
  670. }
  671. break;
  672. case STV0900_DVBS2_FOUND:
  673. ber = 0;
  674. for (i = 0; i < 5; i++) {
  675. msleep(5);
  676. ber += stv0900_get_err_count(intp, 0, demod);
  677. }
  678. ber /= 5;
  679. if (stv0900_get_bits(intp, PKTDELIN_LOCK)) {
  680. ber *= 9766;
  681. ber = ber >> 13;
  682. }
  683. break;
  684. }
  685. return ber;
  686. }
  687. static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber)
  688. {
  689. struct stv0900_state *state = fe->demodulator_priv;
  690. struct stv0900_internal *internal = state->internal;
  691. *ber = stv0900_get_ber(internal, state->demod);
  692. return 0;
  693. }
  694. int stv0900_get_demod_lock(struct stv0900_internal *intp,
  695. enum fe_stv0900_demod_num demod, s32 time_out)
  696. {
  697. s32 timer = 0,
  698. lock = 0;
  699. enum fe_stv0900_search_state dmd_state;
  700. while ((timer < time_out) && (lock == 0)) {
  701. dmd_state = stv0900_get_bits(intp, HEADER_MODE);
  702. dprintk("Demod State = %d\n", dmd_state);
  703. switch (dmd_state) {
  704. case STV0900_SEARCH:
  705. case STV0900_PLH_DETECTED:
  706. default:
  707. lock = 0;
  708. break;
  709. case STV0900_DVBS2_FOUND:
  710. case STV0900_DVBS_FOUND:
  711. lock = stv0900_get_bits(intp, LOCK_DEFINITIF);
  712. break;
  713. }
  714. if (lock == 0)
  715. msleep(10);
  716. timer += 10;
  717. }
  718. if (lock)
  719. dprintk("DEMOD LOCK OK\n");
  720. else
  721. dprintk("DEMOD LOCK FAIL\n");
  722. return lock;
  723. }
  724. void stv0900_stop_all_s2_modcod(struct stv0900_internal *intp,
  725. enum fe_stv0900_demod_num demod)
  726. {
  727. s32 regflist,
  728. i;
  729. dprintk("%s\n", __func__);
  730. regflist = MODCODLST0;
  731. for (i = 0; i < 16; i++)
  732. stv0900_write_reg(intp, regflist + i, 0xff);
  733. }
  734. void stv0900_activate_s2_modcod(struct stv0900_internal *intp,
  735. enum fe_stv0900_demod_num demod)
  736. {
  737. u32 matype,
  738. mod_code,
  739. fmod,
  740. reg_index,
  741. field_index;
  742. dprintk("%s\n", __func__);
  743. if (intp->chip_id <= 0x11) {
  744. msleep(5);
  745. mod_code = stv0900_read_reg(intp, PLHMODCOD);
  746. matype = mod_code & 0x3;
  747. mod_code = (mod_code & 0x7f) >> 2;
  748. reg_index = MODCODLSTF - mod_code / 2;
  749. field_index = mod_code % 2;
  750. switch (matype) {
  751. case 0:
  752. default:
  753. fmod = 14;
  754. break;
  755. case 1:
  756. fmod = 13;
  757. break;
  758. case 2:
  759. fmod = 11;
  760. break;
  761. case 3:
  762. fmod = 7;
  763. break;
  764. }
  765. if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910))
  766. && (matype <= 1)) {
  767. if (field_index == 0)
  768. stv0900_write_reg(intp, reg_index,
  769. 0xf0 | fmod);
  770. else
  771. stv0900_write_reg(intp, reg_index,
  772. (fmod << 4) | 0xf);
  773. }
  774. } else if (intp->chip_id >= 0x12) {
  775. for (reg_index = 0; reg_index < 7; reg_index++)
  776. stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff);
  777. stv0900_write_reg(intp, MODCODLSTE, 0xff);
  778. stv0900_write_reg(intp, MODCODLSTF, 0xcf);
  779. for (reg_index = 0; reg_index < 8; reg_index++)
  780. stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc);
  781. }
  782. }
  783. void stv0900_activate_s2_modcod_single(struct stv0900_internal *intp,
  784. enum fe_stv0900_demod_num demod)
  785. {
  786. u32 reg_index;
  787. dprintk("%s\n", __func__);
  788. stv0900_write_reg(intp, MODCODLST0, 0xff);
  789. stv0900_write_reg(intp, MODCODLST1, 0xf0);
  790. stv0900_write_reg(intp, MODCODLSTF, 0x0f);
  791. for (reg_index = 0; reg_index < 13; reg_index++)
  792. stv0900_write_reg(intp, MODCODLST2 + reg_index, 0);
  793. }
  794. static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe)
  795. {
  796. return DVBFE_ALGO_CUSTOM;
  797. }
  798. void stv0900_start_search(struct stv0900_internal *intp,
  799. enum fe_stv0900_demod_num demod)
  800. {
  801. u32 freq;
  802. s16 freq_s16 ;
  803. stv0900_write_bits(intp, DEMOD_MODE, 0x1f);
  804. if (intp->chip_id == 0x10)
  805. stv0900_write_reg(intp, CORRELEXP, 0xaa);
  806. if (intp->chip_id < 0x20)
  807. stv0900_write_reg(intp, CARHDR, 0x55);
  808. if (intp->chip_id <= 0x20) {
  809. if (intp->symbol_rate[0] <= 5000000) {
  810. stv0900_write_reg(intp, CARCFG, 0x44);
  811. stv0900_write_reg(intp, CFRUP1, 0x0f);
  812. stv0900_write_reg(intp, CFRUP0, 0xff);
  813. stv0900_write_reg(intp, CFRLOW1, 0xf0);
  814. stv0900_write_reg(intp, CFRLOW0, 0x00);
  815. stv0900_write_reg(intp, RTCS2, 0x68);
  816. } else {
  817. stv0900_write_reg(intp, CARCFG, 0xc4);
  818. stv0900_write_reg(intp, RTCS2, 0x44);
  819. }
  820. } else { /*cut 3.0 above*/
  821. if (intp->symbol_rate[demod] <= 5000000)
  822. stv0900_write_reg(intp, RTCS2, 0x68);
  823. else
  824. stv0900_write_reg(intp, RTCS2, 0x44);
  825. stv0900_write_reg(intp, CARCFG, 0x46);
  826. if (intp->srch_algo[demod] == STV0900_WARM_START) {
  827. freq = 1000 << 16;
  828. freq /= (intp->mclk / 1000);
  829. freq_s16 = (s16)freq;
  830. } else {
  831. freq = (intp->srch_range[demod] / 2000);
  832. if (intp->symbol_rate[demod] <= 5000000)
  833. freq += 80;
  834. else
  835. freq += 600;
  836. freq = freq << 16;
  837. freq /= (intp->mclk / 1000);
  838. freq_s16 = (s16)freq;
  839. }
  840. stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16));
  841. stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16));
  842. freq_s16 *= (-1);
  843. stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16));
  844. stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16));
  845. }
  846. stv0900_write_reg(intp, CFRINIT1, 0);
  847. stv0900_write_reg(intp, CFRINIT0, 0);
  848. if (intp->chip_id >= 0x20) {
  849. stv0900_write_reg(intp, EQUALCFG, 0x41);
  850. stv0900_write_reg(intp, FFECFG, 0x41);
  851. if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) ||
  852. (intp->srch_standard[demod] == STV0900_SEARCH_DSS) ||
  853. (intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) {
  854. stv0900_write_reg(intp, VITSCALE,
  855. 0x82);
  856. stv0900_write_reg(intp, VAVSRVIT, 0x0);
  857. }
  858. }
  859. stv0900_write_reg(intp, SFRSTEP, 0x00);
  860. stv0900_write_reg(intp, TMGTHRISE, 0xe0);
  861. stv0900_write_reg(intp, TMGTHFALL, 0xc0);
  862. stv0900_write_bits(intp, SCAN_ENABLE, 0);
  863. stv0900_write_bits(intp, CFR_AUTOSCAN, 0);
  864. stv0900_write_bits(intp, S1S2_SEQUENTIAL, 0);
  865. stv0900_write_reg(intp, RTC, 0x88);
  866. if (intp->chip_id >= 0x20) {
  867. if (intp->symbol_rate[demod] < 2000000) {
  868. if (intp->chip_id <= 0x20)
  869. stv0900_write_reg(intp, CARFREQ, 0x39);
  870. else /*cut 3.0*/
  871. stv0900_write_reg(intp, CARFREQ, 0x89);
  872. stv0900_write_reg(intp, CARHDR, 0x40);
  873. } else if (intp->symbol_rate[demod] < 10000000) {
  874. stv0900_write_reg(intp, CARFREQ, 0x4c);
  875. stv0900_write_reg(intp, CARHDR, 0x20);
  876. } else {
  877. stv0900_write_reg(intp, CARFREQ, 0x4b);
  878. stv0900_write_reg(intp, CARHDR, 0x20);
  879. }
  880. } else {
  881. if (intp->symbol_rate[demod] < 10000000)
  882. stv0900_write_reg(intp, CARFREQ, 0xef);
  883. else
  884. stv0900_write_reg(intp, CARFREQ, 0xed);
  885. }
  886. switch (intp->srch_algo[demod]) {
  887. case STV0900_WARM_START:
  888. stv0900_write_reg(intp, DMDISTATE, 0x1f);
  889. stv0900_write_reg(intp, DMDISTATE, 0x18);
  890. break;
  891. case STV0900_COLD_START:
  892. stv0900_write_reg(intp, DMDISTATE, 0x1f);
  893. stv0900_write_reg(intp, DMDISTATE, 0x15);
  894. break;
  895. default:
  896. break;
  897. }
  898. }
  899. u8 stv0900_get_optim_carr_loop(s32 srate, enum fe_stv0900_modcode modcode,
  900. s32 pilot, u8 chip_id)
  901. {
  902. u8 aclc_value = 0x29;
  903. s32 i, cllas2_size;
  904. const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2;
  905. dprintk("%s\n", __func__);
  906. if (chip_id <= 0x12) {
  907. cls2 = FE_STV0900_S2CarLoop;
  908. cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
  909. cllas2 = FE_STV0900_S2APSKCarLoopCut30;
  910. cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
  911. } else if (chip_id == 0x20) {
  912. cls2 = FE_STV0900_S2CarLoopCut20;
  913. cllqs2 = FE_STV0900_S2LowQPCarLoopCut20;
  914. cllas2 = FE_STV0900_S2APSKCarLoopCut20;
  915. cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut20);
  916. } else {
  917. cls2 = FE_STV0900_S2CarLoopCut30;
  918. cllqs2 = FE_STV0900_S2LowQPCarLoopCut30;
  919. cllas2 = FE_STV0900_S2APSKCarLoopCut30;
  920. cllas2_size = ARRAY_SIZE(FE_STV0900_S2APSKCarLoopCut30);
  921. }
  922. if (modcode < STV0900_QPSK_12) {
  923. i = 0;
  924. while ((i < 3) && (modcode != cllqs2[i].modcode))
  925. i++;
  926. if (i >= 3)
  927. i = 2;
  928. } else {
  929. i = 0;
  930. while ((i < 14) && (modcode != cls2[i].modcode))
  931. i++;
  932. if (i >= 14) {
  933. i = 0;
  934. while ((i < 11) && (modcode != cllas2[i].modcode))
  935. i++;
  936. if (i >= 11)
  937. i = 10;
  938. }
  939. }
  940. if (modcode <= STV0900_QPSK_25) {
  941. if (pilot) {
  942. if (srate <= 3000000)
  943. aclc_value = cllqs2[i].car_loop_pilots_on_2;
  944. else if (srate <= 7000000)
  945. aclc_value = cllqs2[i].car_loop_pilots_on_5;
  946. else if (srate <= 15000000)
  947. aclc_value = cllqs2[i].car_loop_pilots_on_10;
  948. else if (srate <= 25000000)
  949. aclc_value = cllqs2[i].car_loop_pilots_on_20;
  950. else
  951. aclc_value = cllqs2[i].car_loop_pilots_on_30;
  952. } else {
  953. if (srate <= 3000000)
  954. aclc_value = cllqs2[i].car_loop_pilots_off_2;
  955. else if (srate <= 7000000)
  956. aclc_value = cllqs2[i].car_loop_pilots_off_5;
  957. else if (srate <= 15000000)
  958. aclc_value = cllqs2[i].car_loop_pilots_off_10;
  959. else if (srate <= 25000000)
  960. aclc_value = cllqs2[i].car_loop_pilots_off_20;
  961. else
  962. aclc_value = cllqs2[i].car_loop_pilots_off_30;
  963. }
  964. } else if (modcode <= STV0900_8PSK_910) {
  965. if (pilot) {
  966. if (srate <= 3000000)
  967. aclc_value = cls2[i].car_loop_pilots_on_2;
  968. else if (srate <= 7000000)
  969. aclc_value = cls2[i].car_loop_pilots_on_5;
  970. else if (srate <= 15000000)
  971. aclc_value = cls2[i].car_loop_pilots_on_10;
  972. else if (srate <= 25000000)
  973. aclc_value = cls2[i].car_loop_pilots_on_20;
  974. else
  975. aclc_value = cls2[i].car_loop_pilots_on_30;
  976. } else {
  977. if (srate <= 3000000)
  978. aclc_value = cls2[i].car_loop_pilots_off_2;
  979. else if (srate <= 7000000)
  980. aclc_value = cls2[i].car_loop_pilots_off_5;
  981. else if (srate <= 15000000)
  982. aclc_value = cls2[i].car_loop_pilots_off_10;
  983. else if (srate <= 25000000)
  984. aclc_value = cls2[i].car_loop_pilots_off_20;
  985. else
  986. aclc_value = cls2[i].car_loop_pilots_off_30;
  987. }
  988. } else if (i < cllas2_size) {
  989. if (srate <= 3000000)
  990. aclc_value = cllas2[i].car_loop_pilots_on_2;
  991. else if (srate <= 7000000)
  992. aclc_value = cllas2[i].car_loop_pilots_on_5;
  993. else if (srate <= 15000000)
  994. aclc_value = cllas2[i].car_loop_pilots_on_10;
  995. else if (srate <= 25000000)
  996. aclc_value = cllas2[i].car_loop_pilots_on_20;
  997. else
  998. aclc_value = cllas2[i].car_loop_pilots_on_30;
  999. }
  1000. return aclc_value;
  1001. }
  1002. u8 stv0900_get_optim_short_carr_loop(s32 srate,
  1003. enum fe_stv0900_modulation modulation,
  1004. u8 chip_id)
  1005. {
  1006. const struct stv0900_short_frames_car_loop_optim *s2scl;
  1007. const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30;
  1008. s32 mod_index = 0;
  1009. u8 aclc_value = 0x0b;
  1010. dprintk("%s\n", __func__);
  1011. s2scl = FE_STV0900_S2ShortCarLoop;
  1012. s2sclc30 = FE_STV0900_S2ShortCarLoopCut30;
  1013. switch (modulation) {
  1014. case STV0900_QPSK:
  1015. default:
  1016. mod_index = 0;
  1017. break;
  1018. case STV0900_8PSK:
  1019. mod_index = 1;
  1020. break;
  1021. case STV0900_16APSK:
  1022. mod_index = 2;
  1023. break;
  1024. case STV0900_32APSK:
  1025. mod_index = 3;
  1026. break;
  1027. }
  1028. if (chip_id >= 0x30) {
  1029. if (srate <= 3000000)
  1030. aclc_value = s2sclc30[mod_index].car_loop_2;
  1031. else if (srate <= 7000000)
  1032. aclc_value = s2sclc30[mod_index].car_loop_5;
  1033. else if (srate <= 15000000)
  1034. aclc_value = s2sclc30[mod_index].car_loop_10;
  1035. else if (srate <= 25000000)
  1036. aclc_value = s2sclc30[mod_index].car_loop_20;
  1037. else
  1038. aclc_value = s2sclc30[mod_index].car_loop_30;
  1039. } else if (chip_id >= 0x20) {
  1040. if (srate <= 3000000)
  1041. aclc_value = s2scl[mod_index].car_loop_cut20_2;
  1042. else if (srate <= 7000000)
  1043. aclc_value = s2scl[mod_index].car_loop_cut20_5;
  1044. else if (srate <= 15000000)
  1045. aclc_value = s2scl[mod_index].car_loop_cut20_10;
  1046. else if (srate <= 25000000)
  1047. aclc_value = s2scl[mod_index].car_loop_cut20_20;
  1048. else
  1049. aclc_value = s2scl[mod_index].car_loop_cut20_30;
  1050. } else {
  1051. if (srate <= 3000000)
  1052. aclc_value = s2scl[mod_index].car_loop_cut12_2;
  1053. else if (srate <= 7000000)
  1054. aclc_value = s2scl[mod_index].car_loop_cut12_5;
  1055. else if (srate <= 15000000)
  1056. aclc_value = s2scl[mod_index].car_loop_cut12_10;
  1057. else if (srate <= 25000000)
  1058. aclc_value = s2scl[mod_index].car_loop_cut12_20;
  1059. else
  1060. aclc_value = s2scl[mod_index].car_loop_cut12_30;
  1061. }
  1062. return aclc_value;
  1063. }
  1064. static
  1065. enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp,
  1066. enum fe_stv0900_demod_mode LDPC_Mode,
  1067. enum fe_stv0900_demod_num demod)
  1068. {
  1069. s32 reg_ind;
  1070. dprintk("%s\n", __func__);
  1071. switch (LDPC_Mode) {
  1072. case STV0900_DUAL:
  1073. default:
  1074. if ((intp->demod_mode != STV0900_DUAL)
  1075. || (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) {
  1076. stv0900_write_reg(intp, R0900_GENCFG, 0x1d);
  1077. intp->demod_mode = STV0900_DUAL;
  1078. stv0900_write_bits(intp, F0900_FRESFEC, 1);
  1079. stv0900_write_bits(intp, F0900_FRESFEC, 0);
  1080. for (reg_ind = 0; reg_ind < 7; reg_ind++)
  1081. stv0900_write_reg(intp,
  1082. R0900_P1_MODCODLST0 + reg_ind,
  1083. 0xff);
  1084. for (reg_ind = 0; reg_ind < 8; reg_ind++)
  1085. stv0900_write_reg(intp,
  1086. R0900_P1_MODCODLST7 + reg_ind,
  1087. 0xcc);
  1088. stv0900_write_reg(intp, R0900_P1_MODCODLSTE, 0xff);
  1089. stv0900_write_reg(intp, R0900_P1_MODCODLSTF, 0xcf);
  1090. for (reg_ind = 0; reg_ind < 7; reg_ind++)
  1091. stv0900_write_reg(intp,
  1092. R0900_P2_MODCODLST0 + reg_ind,
  1093. 0xff);
  1094. for (reg_ind = 0; reg_ind < 8; reg_ind++)
  1095. stv0900_write_reg(intp,
  1096. R0900_P2_MODCODLST7 + reg_ind,
  1097. 0xcc);
  1098. stv0900_write_reg(intp, R0900_P2_MODCODLSTE, 0xff);
  1099. stv0900_write_reg(intp, R0900_P2_MODCODLSTF, 0xcf);
  1100. }
  1101. break;
  1102. case STV0900_SINGLE:
  1103. if (demod == STV0900_DEMOD_2) {
  1104. stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_1);
  1105. stv0900_activate_s2_modcod_single(intp,
  1106. STV0900_DEMOD_2);
  1107. stv0900_write_reg(intp, R0900_GENCFG, 0x06);
  1108. } else {
  1109. stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_2);
  1110. stv0900_activate_s2_modcod_single(intp,
  1111. STV0900_DEMOD_1);
  1112. stv0900_write_reg(intp, R0900_GENCFG, 0x04);
  1113. }
  1114. intp->demod_mode = STV0900_SINGLE;
  1115. stv0900_write_bits(intp, F0900_FRESFEC, 1);
  1116. stv0900_write_bits(intp, F0900_FRESFEC, 0);
  1117. stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 1);
  1118. stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 0);
  1119. stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 1);
  1120. stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 0);
  1121. break;
  1122. }
  1123. return STV0900_NO_ERROR;
  1124. }
  1125. static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe,
  1126. struct stv0900_init_params *p_init)
  1127. {
  1128. struct stv0900_state *state = fe->demodulator_priv;
  1129. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1130. enum fe_stv0900_error demodError = STV0900_NO_ERROR;
  1131. struct stv0900_internal *intp = NULL;
  1132. int selosci, i;
  1133. struct stv0900_inode *temp_int = find_inode(state->i2c_adap,
  1134. state->config->demod_address);
  1135. dprintk("%s\n", __func__);
  1136. if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) {
  1137. state->internal = temp_int->internal;
  1138. (state->internal->dmds_used)++;
  1139. dprintk("%s: Find Internal Structure!\n", __func__);
  1140. return STV0900_NO_ERROR;
  1141. } else {
  1142. state->internal = kmalloc(sizeof(struct stv0900_internal),
  1143. GFP_KERNEL);
  1144. if (state->internal == NULL)
  1145. return STV0900_INVALID_HANDLE;
  1146. temp_int = append_internal(state->internal);
  1147. if (temp_int == NULL) {
  1148. kfree(state->internal);
  1149. state->internal = NULL;
  1150. return STV0900_INVALID_HANDLE;
  1151. }
  1152. state->internal->dmds_used = 1;
  1153. state->internal->i2c_adap = state->i2c_adap;
  1154. state->internal->i2c_addr = state->config->demod_address;
  1155. state->internal->clkmode = state->config->clkmode;
  1156. state->internal->errs = STV0900_NO_ERROR;
  1157. dprintk("%s: Create New Internal Structure!\n", __func__);
  1158. }
  1159. if (state->internal == NULL) {
  1160. error = STV0900_INVALID_HANDLE;
  1161. return error;
  1162. }
  1163. demodError = stv0900_initialize(state->internal);
  1164. if (demodError == STV0900_NO_ERROR) {
  1165. error = STV0900_NO_ERROR;
  1166. } else {
  1167. if (demodError == STV0900_INVALID_HANDLE)
  1168. error = STV0900_INVALID_HANDLE;
  1169. else
  1170. error = STV0900_I2C_ERROR;
  1171. return error;
  1172. }
  1173. intp = state->internal;
  1174. intp->demod_mode = p_init->demod_mode;
  1175. stv0900_st_dvbs2_single(intp, intp->demod_mode, STV0900_DEMOD_1);
  1176. intp->chip_id = stv0900_read_reg(intp, R0900_MID);
  1177. intp->rolloff = p_init->rolloff;
  1178. intp->quartz = p_init->dmd_ref_clk;
  1179. stv0900_write_bits(intp, F0900_P1_ROLLOFF_CONTROL, p_init->rolloff);
  1180. stv0900_write_bits(intp, F0900_P2_ROLLOFF_CONTROL, p_init->rolloff);
  1181. intp->ts_config = p_init->ts_config;
  1182. if (intp->ts_config == NULL)
  1183. stv0900_set_ts_parallel_serial(intp,
  1184. p_init->path1_ts_clock,
  1185. p_init->path2_ts_clock);
  1186. else {
  1187. for (i = 0; intp->ts_config[i].addr != 0xffff; i++)
  1188. stv0900_write_reg(intp,
  1189. intp->ts_config[i].addr,
  1190. intp->ts_config[i].val);
  1191. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1);
  1192. stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0);
  1193. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1);
  1194. stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0);
  1195. }
  1196. intp->tuner_type[0] = p_init->tuner1_type;
  1197. intp->tuner_type[1] = p_init->tuner2_type;
  1198. /* tuner init */
  1199. switch (p_init->tuner1_type) {
  1200. case 3: /*FE_AUTO_STB6100:*/
  1201. stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c);
  1202. stv0900_write_reg(intp, R0900_P1_TNRCFG2, 0x86);
  1203. stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18);
  1204. stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */
  1205. stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05);
  1206. stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17);
  1207. stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f);
  1208. stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0);
  1209. stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 3);
  1210. break;
  1211. /* case FE_SW_TUNER: */
  1212. default:
  1213. stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 6);
  1214. break;
  1215. }
  1216. stv0900_write_bits(intp, F0900_P1_TUN_MADDRESS, p_init->tun1_maddress);
  1217. switch (p_init->tuner1_adc) {
  1218. case 1:
  1219. stv0900_write_reg(intp, R0900_TSTTNR1, 0x26);
  1220. break;
  1221. default:
  1222. break;
  1223. }
  1224. stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */
  1225. /* tuner init */
  1226. switch (p_init->tuner2_type) {
  1227. case 3: /*FE_AUTO_STB6100:*/
  1228. stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c);
  1229. stv0900_write_reg(intp, R0900_P2_TNRCFG2, 0x86);
  1230. stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18);
  1231. stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */
  1232. stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05);
  1233. stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17);
  1234. stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f);
  1235. stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0);
  1236. stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 3);
  1237. break;
  1238. /* case FE_SW_TUNER: */
  1239. default:
  1240. stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 6);
  1241. break;
  1242. }
  1243. stv0900_write_bits(intp, F0900_P2_TUN_MADDRESS, p_init->tun2_maddress);
  1244. switch (p_init->tuner2_adc) {
  1245. case 1:
  1246. stv0900_write_reg(intp, R0900_TSTTNR3, 0x26);
  1247. break;
  1248. default:
  1249. break;
  1250. }
  1251. stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */
  1252. stv0900_write_bits(intp, F0900_P1_TUN_IQSWAP, p_init->tun1_iq_inv);
  1253. stv0900_write_bits(intp, F0900_P2_TUN_IQSWAP, p_init->tun2_iq_inv);
  1254. stv0900_set_mclk(intp, 135000000);
  1255. msleep(3);
  1256. switch (intp->clkmode) {
  1257. case 0:
  1258. case 2:
  1259. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode);
  1260. break;
  1261. default:
  1262. selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL);
  1263. stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci);
  1264. break;
  1265. }
  1266. msleep(3);
  1267. intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz);
  1268. if (intp->errs)
  1269. error = STV0900_I2C_ERROR;
  1270. return error;
  1271. }
  1272. static int stv0900_status(struct stv0900_internal *intp,
  1273. enum fe_stv0900_demod_num demod)
  1274. {
  1275. enum fe_stv0900_search_state demod_state;
  1276. int locked = FALSE;
  1277. u8 tsbitrate0_val, tsbitrate1_val;
  1278. s32 bitrate;
  1279. demod_state = stv0900_get_bits(intp, HEADER_MODE);
  1280. switch (demod_state) {
  1281. case STV0900_SEARCH:
  1282. case STV0900_PLH_DETECTED:
  1283. default:
  1284. locked = FALSE;
  1285. break;
  1286. case STV0900_DVBS2_FOUND:
  1287. locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
  1288. stv0900_get_bits(intp, PKTDELIN_LOCK) &&
  1289. stv0900_get_bits(intp, TSFIFO_LINEOK);
  1290. break;
  1291. case STV0900_DVBS_FOUND:
  1292. locked = stv0900_get_bits(intp, LOCK_DEFINITIF) &&
  1293. stv0900_get_bits(intp, LOCKEDVIT) &&
  1294. stv0900_get_bits(intp, TSFIFO_LINEOK);
  1295. break;
  1296. }
  1297. dprintk("%s: locked = %d\n", __func__, locked);
  1298. if (stvdebug) {
  1299. /* Print TS bitrate */
  1300. tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0);
  1301. tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1);
  1302. /* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */
  1303. bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000)
  1304. * (tsbitrate1_val << 8 | tsbitrate0_val);
  1305. bitrate /= 16384;
  1306. dprintk("TS bitrate = %d Mbit/sec\n", bitrate);
  1307. }
  1308. return locked;
  1309. }
  1310. static int stv0900_set_mis(struct stv0900_internal *intp,
  1311. enum fe_stv0900_demod_num demod, int mis)
  1312. {
  1313. dprintk("%s\n", __func__);
  1314. if (mis < 0 || mis > 255) {
  1315. dprintk("Disable MIS filtering\n");
  1316. stv0900_write_bits(intp, FILTER_EN, 0);
  1317. } else {
  1318. dprintk("Enable MIS filtering - %d\n", mis);
  1319. stv0900_write_bits(intp, FILTER_EN, 1);
  1320. stv0900_write_reg(intp, ISIENTRY, mis);
  1321. stv0900_write_reg(intp, ISIBITENA, 0xff);
  1322. }
  1323. return STV0900_NO_ERROR;
  1324. }
  1325. static enum dvbfe_search stv0900_search(struct dvb_frontend *fe)
  1326. {
  1327. struct stv0900_state *state = fe->demodulator_priv;
  1328. struct stv0900_internal *intp = state->internal;
  1329. enum fe_stv0900_demod_num demod = state->demod;
  1330. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  1331. struct stv0900_search_params p_search;
  1332. struct stv0900_signal_info p_result = intp->result[demod];
  1333. enum fe_stv0900_error error = STV0900_NO_ERROR;
  1334. dprintk("%s: ", __func__);
  1335. if (!(INRANGE(100000, c->symbol_rate, 70000000)))
  1336. return DVBFE_ALGO_SEARCH_FAILED;
  1337. if (state->config->set_ts_params)
  1338. state->config->set_ts_params(fe, 0);
  1339. stv0900_set_mis(intp, demod, c->stream_id);
  1340. p_result.locked = FALSE;
  1341. p_search.path = demod;
  1342. p_search.frequency = c->frequency;
  1343. p_search.symbol_rate = c->symbol_rate;
  1344. p_search.search_range = 10000000;
  1345. p_search.fec = STV0900_FEC_UNKNOWN;
  1346. p_search.standard = STV0900_AUTO_SEARCH;
  1347. p_search.iq_inversion = STV0900_IQ_AUTO;
  1348. p_search.search_algo = STV0900_BLIND_SEARCH;
  1349. /* Speeds up DVB-S searching */
  1350. if (c->delivery_system == SYS_DVBS)
  1351. p_search.standard = STV0900_SEARCH_DVBS1;
  1352. intp->srch_standard[demod] = p_search.standard;
  1353. intp->symbol_rate[demod] = p_search.symbol_rate;
  1354. intp->srch_range[demod] = p_search.search_range;
  1355. intp->freq[demod] = p_search.frequency;
  1356. intp->srch_algo[demod] = p_search.search_algo;
  1357. intp->srch_iq_inv[demod] = p_search.iq_inversion;
  1358. intp->fec[demod] = p_search.fec;
  1359. if ((stv0900_algo(fe) == STV0900_RANGEOK) &&
  1360. (intp->errs == STV0900_NO_ERROR)) {
  1361. p_result.locked = intp->result[demod].locked;
  1362. p_result.standard = intp->result[demod].standard;
  1363. p_result.frequency = intp->result[demod].frequency;
  1364. p_result.symbol_rate = intp->result[demod].symbol_rate;
  1365. p_result.fec = intp->result[demod].fec;
  1366. p_result.modcode = intp->result[demod].modcode;
  1367. p_result.pilot = intp->result[demod].pilot;
  1368. p_result.frame_len = intp->result[demod].frame_len;
  1369. p_result.spectrum = intp->result[demod].spectrum;
  1370. p_result.rolloff = intp->result[demod].rolloff;
  1371. p_result.modulation = intp->result[demod].modulation;
  1372. } else {
  1373. p_result.locked = FALSE;
  1374. switch (intp->err[demod]) {
  1375. case STV0900_I2C_ERROR:
  1376. error = STV0900_I2C_ERROR;
  1377. break;
  1378. case STV0900_NO_ERROR:
  1379. default:
  1380. error = STV0900_SEARCH_FAILED;
  1381. break;
  1382. }
  1383. }
  1384. if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) {
  1385. dprintk("Search Success\n");
  1386. return DVBFE_ALGO_SEARCH_SUCCESS;
  1387. } else {
  1388. dprintk("Search Fail\n");
  1389. return DVBFE_ALGO_SEARCH_FAILED;
  1390. }
  1391. }
  1392. static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status)
  1393. {
  1394. struct stv0900_state *state = fe->demodulator_priv;
  1395. dprintk("%s: ", __func__);
  1396. if ((stv0900_status(state->internal, state->demod)) == TRUE) {
  1397. dprintk("DEMOD LOCK OK\n");
  1398. *status = FE_HAS_CARRIER
  1399. | FE_HAS_VITERBI
  1400. | FE_HAS_SYNC
  1401. | FE_HAS_LOCK;
  1402. if (state->config->set_lock_led)
  1403. state->config->set_lock_led(fe, 1);
  1404. } else {
  1405. *status = 0;
  1406. if (state->config->set_lock_led)
  1407. state->config->set_lock_led(fe, 0);
  1408. dprintk("DEMOD LOCK FAIL\n");
  1409. }
  1410. return 0;
  1411. }
  1412. static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts)
  1413. {
  1414. struct stv0900_state *state = fe->demodulator_priv;
  1415. struct stv0900_internal *intp = state->internal;
  1416. enum fe_stv0900_demod_num demod = state->demod;
  1417. if (stop_ts == TRUE)
  1418. stv0900_write_bits(intp, RST_HWARE, 1);
  1419. else
  1420. stv0900_write_bits(intp, RST_HWARE, 0);
  1421. return 0;
  1422. }
  1423. static int stv0900_diseqc_init(struct dvb_frontend *fe)
  1424. {
  1425. struct stv0900_state *state = fe->demodulator_priv;
  1426. struct stv0900_internal *intp = state->internal;
  1427. enum fe_stv0900_demod_num demod = state->demod;
  1428. stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode);
  1429. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1430. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1431. return 0;
  1432. }
  1433. static int stv0900_init(struct dvb_frontend *fe)
  1434. {
  1435. dprintk("%s\n", __func__);
  1436. stv0900_stop_ts(fe, 1);
  1437. stv0900_diseqc_init(fe);
  1438. return 0;
  1439. }
  1440. static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data,
  1441. u32 NbData, enum fe_stv0900_demod_num demod)
  1442. {
  1443. s32 i = 0;
  1444. stv0900_write_bits(intp, DIS_PRECHARGE, 1);
  1445. while (i < NbData) {
  1446. while (stv0900_get_bits(intp, FIFO_FULL))
  1447. ;/* checkpatch complains */
  1448. stv0900_write_reg(intp, DISTXDATA, data[i]);
  1449. i++;
  1450. }
  1451. stv0900_write_bits(intp, DIS_PRECHARGE, 0);
  1452. i = 0;
  1453. while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) {
  1454. msleep(10);
  1455. i++;
  1456. }
  1457. return 0;
  1458. }
  1459. static int stv0900_send_master_cmd(struct dvb_frontend *fe,
  1460. struct dvb_diseqc_master_cmd *cmd)
  1461. {
  1462. struct stv0900_state *state = fe->demodulator_priv;
  1463. return stv0900_diseqc_send(state->internal,
  1464. cmd->msg,
  1465. cmd->msg_len,
  1466. state->demod);
  1467. }
  1468. static int stv0900_send_burst(struct dvb_frontend *fe,
  1469. enum fe_sec_mini_cmd burst)
  1470. {
  1471. struct stv0900_state *state = fe->demodulator_priv;
  1472. struct stv0900_internal *intp = state->internal;
  1473. enum fe_stv0900_demod_num demod = state->demod;
  1474. u8 data;
  1475. switch (burst) {
  1476. case SEC_MINI_A:
  1477. stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */
  1478. data = 0x00;
  1479. stv0900_diseqc_send(intp, &data, 1, state->demod);
  1480. break;
  1481. case SEC_MINI_B:
  1482. stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */
  1483. data = 0xff;
  1484. stv0900_diseqc_send(intp, &data, 1, state->demod);
  1485. break;
  1486. }
  1487. return 0;
  1488. }
  1489. static int stv0900_recv_slave_reply(struct dvb_frontend *fe,
  1490. struct dvb_diseqc_slave_reply *reply)
  1491. {
  1492. struct stv0900_state *state = fe->demodulator_priv;
  1493. struct stv0900_internal *intp = state->internal;
  1494. enum fe_stv0900_demod_num demod = state->demod;
  1495. s32 i = 0;
  1496. reply->msg_len = 0;
  1497. while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) {
  1498. msleep(10);
  1499. i++;
  1500. }
  1501. if (stv0900_get_bits(intp, RX_END)) {
  1502. reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR);
  1503. for (i = 0; i < reply->msg_len; i++)
  1504. reply->msg[i] = stv0900_read_reg(intp, DISRXDATA);
  1505. }
  1506. return 0;
  1507. }
  1508. static int stv0900_set_tone(struct dvb_frontend *fe,
  1509. enum fe_sec_tone_mode toneoff)
  1510. {
  1511. struct stv0900_state *state = fe->demodulator_priv;
  1512. struct stv0900_internal *intp = state->internal;
  1513. enum fe_stv0900_demod_num demod = state->demod;
  1514. dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off"));
  1515. switch (toneoff) {
  1516. case SEC_TONE_ON:
  1517. /*Set the DiseqC mode to 22Khz _continues_ tone*/
  1518. stv0900_write_bits(intp, DISTX_MODE, 0);
  1519. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1520. /*release DiseqC reset to enable the 22KHz tone*/
  1521. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1522. break;
  1523. case SEC_TONE_OFF:
  1524. /*return diseqc mode to config->diseqc_mode.
  1525. Usually it's without _continues_ tone */
  1526. stv0900_write_bits(intp, DISTX_MODE,
  1527. state->config->diseqc_mode);
  1528. /*maintain the DiseqC reset to disable the 22KHz tone*/
  1529. stv0900_write_bits(intp, DISEQC_RESET, 1);
  1530. stv0900_write_bits(intp, DISEQC_RESET, 0);
  1531. break;
  1532. default:
  1533. return -EINVAL;
  1534. }
  1535. return 0;
  1536. }
  1537. static void stv0900_release(struct dvb_frontend *fe)
  1538. {
  1539. struct stv0900_state *state = fe->demodulator_priv;
  1540. dprintk("%s\n", __func__);
  1541. if (state->config->set_lock_led)
  1542. state->config->set_lock_led(fe, 0);
  1543. if ((--(state->internal->dmds_used)) <= 0) {
  1544. dprintk("%s: Actually removing\n", __func__);
  1545. remove_inode(state->internal);
  1546. kfree(state->internal);
  1547. }
  1548. kfree(state);
  1549. }
  1550. static int stv0900_sleep(struct dvb_frontend *fe)
  1551. {
  1552. struct stv0900_state *state = fe->demodulator_priv;
  1553. dprintk("%s\n", __func__);
  1554. if (state->config->set_lock_led)
  1555. state->config->set_lock_led(fe, 0);
  1556. return 0;
  1557. }
  1558. static int stv0900_get_frontend(struct dvb_frontend *fe,
  1559. struct dtv_frontend_properties *p)
  1560. {
  1561. struct stv0900_state *state = fe->demodulator_priv;
  1562. struct stv0900_internal *intp = state->internal;
  1563. enum fe_stv0900_demod_num demod = state->demod;
  1564. struct stv0900_signal_info p_result = intp->result[demod];
  1565. p->frequency = p_result.locked ? p_result.frequency : 0;
  1566. p->symbol_rate = p_result.locked ? p_result.symbol_rate : 0;
  1567. return 0;
  1568. }
  1569. static const struct dvb_frontend_ops stv0900_ops = {
  1570. .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
  1571. .info = {
  1572. .name = "STV0900 frontend",
  1573. .frequency_min_hz = 950 * MHz,
  1574. .frequency_max_hz = 2150 * MHz,
  1575. .frequency_stepsize_hz = 125 * kHz,
  1576. .symbol_rate_min = 1000000,
  1577. .symbol_rate_max = 45000000,
  1578. .symbol_rate_tolerance = 500,
  1579. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  1580. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
  1581. FE_CAN_FEC_7_8 | FE_CAN_QPSK |
  1582. FE_CAN_2G_MODULATION |
  1583. FE_CAN_FEC_AUTO
  1584. },
  1585. .release = stv0900_release,
  1586. .init = stv0900_init,
  1587. .get_frontend = stv0900_get_frontend,
  1588. .sleep = stv0900_sleep,
  1589. .get_frontend_algo = stv0900_frontend_algo,
  1590. .i2c_gate_ctrl = stv0900_i2c_gate_ctrl,
  1591. .diseqc_send_master_cmd = stv0900_send_master_cmd,
  1592. .diseqc_send_burst = stv0900_send_burst,
  1593. .diseqc_recv_slave_reply = stv0900_recv_slave_reply,
  1594. .set_tone = stv0900_set_tone,
  1595. .search = stv0900_search,
  1596. .read_status = stv0900_read_status,
  1597. .read_ber = stv0900_read_ber,
  1598. .read_signal_strength = stv0900_read_signal_strength,
  1599. .read_snr = stv0900_read_snr,
  1600. .read_ucblocks = stv0900_read_ucblocks,
  1601. };
  1602. struct dvb_frontend *stv0900_attach(const struct stv0900_config *config,
  1603. struct i2c_adapter *i2c,
  1604. int demod)
  1605. {
  1606. struct stv0900_state *state = NULL;
  1607. struct stv0900_init_params init_params;
  1608. enum fe_stv0900_error err_stv0900;
  1609. state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL);
  1610. if (state == NULL)
  1611. goto error;
  1612. state->demod = demod;
  1613. state->config = config;
  1614. state->i2c_adap = i2c;
  1615. memcpy(&state->frontend.ops, &stv0900_ops,
  1616. sizeof(struct dvb_frontend_ops));
  1617. state->frontend.demodulator_priv = state;
  1618. switch (demod) {
  1619. case 0:
  1620. case 1:
  1621. init_params.dmd_ref_clk = config->xtal;
  1622. init_params.demod_mode = config->demod_mode;
  1623. init_params.rolloff = STV0900_35;
  1624. init_params.path1_ts_clock = config->path1_mode;
  1625. init_params.tun1_maddress = config->tun1_maddress;
  1626. init_params.tun1_iq_inv = STV0900_IQ_NORMAL;
  1627. init_params.tuner1_adc = config->tun1_adc;
  1628. init_params.tuner1_type = config->tun1_type;
  1629. init_params.path2_ts_clock = config->path2_mode;
  1630. init_params.ts_config = config->ts_config_regs;
  1631. init_params.tun2_maddress = config->tun2_maddress;
  1632. init_params.tuner2_adc = config->tun2_adc;
  1633. init_params.tuner2_type = config->tun2_type;
  1634. init_params.tun2_iq_inv = STV0900_IQ_SWAPPED;
  1635. err_stv0900 = stv0900_init_internal(&state->frontend,
  1636. &init_params);
  1637. if (err_stv0900)
  1638. goto error;
  1639. if (state->internal->chip_id >= 0x30)
  1640. state->frontend.ops.info.caps |= FE_CAN_MULTISTREAM;
  1641. break;
  1642. default:
  1643. goto error;
  1644. break;
  1645. }
  1646. dprintk("%s: Attaching STV0900 demodulator(%d) \n", __func__, demod);
  1647. return &state->frontend;
  1648. error:
  1649. dprintk("%s: Failed to attach STV0900 demodulator(%d) \n",
  1650. __func__, demod);
  1651. kfree(state);
  1652. return NULL;
  1653. }
  1654. EXPORT_SYMBOL(stv0900_attach);
  1655. MODULE_PARM_DESC(debug, "Set debug");
  1656. MODULE_AUTHOR("Igor M. Liplianin");
  1657. MODULE_DESCRIPTION("ST STV0900 frontend");
  1658. MODULE_LICENSE("GPL");